

OpenSceneGraph 3.0
Beginner's Guide

Create high-performance virtual reality applications with
OpenSceneGraph, one of the best 3D graphics engines

Rui Wang

Xuelei Qian

 BIRMINGHAM - MUMBAI

OpenSceneGraph 3.0
Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2010

Production Reference: 1081210

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849512-82-4

www.packtpub.com

Cover Image by Ed Maclean (edmaclean@gmail.com)

Credits

Authors

Rui Wang

Xuelei Qian

Reviewers

Jean-Sébastien Guay

Cedric Pinson

Acquisition Editor

Usha Iyer

Development Editor

Maitreya Bhakal

Technical Editors

Conrad Sardinha

Vanjeet D'souza

Indexers

Tejal Daruwale

Hemangini Bari

Monica Ajmera Mehta

Editorial Team Leader

Akshara Aware

Project Team Leader

Lata Basantani

Project Coordinator

Leena Purkait

Proofreader

Dirk Manuel

Graphics

Nilesh Mohite

Production Coordinator

Adline Swetha Jesuthas

Cover Work

Adline Swetha Jesuthas

Foreword

Scene graphs have been the foundation of real-time graphics applications for the last
two decades, whether it is a 3D game on a phone or a professional flight simulator
costing millions of pounds, a virtual reality application through to the latest 3D real-time
visualization on television, scene graphs are there under the hood, quietly churning out high
quality visuals.

However, even powerful tools like scene graphs don't write world leading graphics
applications by themselves, they still need developers with the skill and knowledge to make
best use of them and the hardware that they run on. This expertise isn't something that you
can gain by reading a few pages on the web—graphics hardware and software continues
to evolve and you need to keep up with it... It's a journey of learning and exploration
undertaken throughout your career.

OpenSceneGraph itself is the world's leading scene graph API, and has been written by,
and to fulfil the needs of, professional graphics application developers. It is written to be
powerful and productive to use rather than cut down and easy to use. Your first encounter
with OpenSceneGraph may well be daunting; it's a professional grade scene graph containing
many hundreds of classes and modules. But with this sophistication comes the ability to
write very powerful graphics applications quickly so it's well worth the effort in learning how
to make best use of it.

The authors of this book are users and contributors to the OpenSceneGraph software and its
community. For me it's rewarding to see this open source project reach out across the world
and inspire people, such as Rui Wang and Xuelei Qian, not only to use and contribute to the
software, but also to write a book about it so that others can start their own journey into
real-time graphics.

With this book their aim has been to take you from your first steps through to being able
to use advanced features of the OpenSceneGraph and the graphics hardware that it runs
on. Learning new concepts and APIs can often be dry and awkward, but once you get your
first applications on screen you'll glimpse the potential, and it won't be long before you are
seeing complex worlds come life. As a real-time graphics geek myself, I can't think anything
more rewarding than immersing yourself in 3D worlds that you help create. Some familiarity
with linear algebra, such like 3D vectors, quaternion numbers and matrix transformations, is
helpful, too.

Robert Osfield.
OpenSceneGraph Project Lead

About the Authors

Rui Wang is a software engineer at the Chinese Academy of Surveying and Mapping and the
manager of osgChina, the largest OSG discussion website in China. He is one of the most active
members of the official OSG community, who contributes to the serialization I/O, GPU-based
particle functionalities, BVH and animated GIF plugins, and other fixes and improvements to
the OSG project. He translated Paul Martz's OpenSceneGraph Quick Start Guide into Chinese in
2008, and wrote his own Chinese book OpenSceneGraph Design and Implementation in 2009,
cooperating with Xuelei Qian. He is also a novel writer and a guitar lover.

Xuelei Qian received his B.Sc. degree in Precision Instrument Engineering from Southeast
University, Jiangsu, China, and his Ph.D. degree in applied graphic computing from the
University of Derby, Derby, UK in 1998 and 2005, respectively. Upon completion of his Ph.D.
degree, he worked as a postdoctoral research fellow in the Dept. of Precision Instrument
and Mechanology at Tsinghua University and his current research interests include
E-manufacturing, STEP-NC and intelligent CNC, and virtual reality engineering.

Acknowledgement

We'd like to first thank Don Burns and Robert Osfield for their creative efforts in giving birth
to OpenSceneGraph, as well as thousands of members in the OSG core community, for their
supports and contributions all the time.

Thanks again to Robert Osfield, a pure open source enthusiast and father of a happy family,
for his tremendous passion in leading the development the OSG project for so many years
(since 1999). He also took time out of his busy schedule to write the foreword for this book.

We must express our deep gratitude to Rakesh Shejwal, Usha Iyer, Leena Purkait, Priya
Mukherji, and the entire Packt Publishing team for their talented work in producing yet
another product, as well as Jean-Sébastien Guay and Cedric Pinson for reviewing the first
drafts of the book and providing insightful feedback.

We would like to acknowledge John F. Richardson and Marek Teichmann, who announced
the book at the OpenSceneGraph BOF at SIGGRAPH 2010. We also offer special thanks to
Zhanying Wei, Xuexia Chen, Shixing Yang, Peng Xiao, Qingliang Liu, Su Jiang, and a number of
other people who contributed to the completion of this book in different ways.

Finally, we owe the most sincere thanks to Paul Martz, who dedicates the first
non-commercial book to OSG beginners all over the world and provides great help in
supporting the publication of our past and current books.

About the Reviewers

Jean-Sébastien Guay is a software developer from Montréal, Quebec, Canada. After
completing a Bachelor's Degree in Software Development and Software Engineering at
UQAM, he began a Master's Degree in Computer Graphics at École Polytechnique, where
he chose to use OpenSceneGraph for his Master's project. Motivated by the open nature
of the project and wanting to contribute, he started learning its inner workings, fixing bugs,
improving the Windows build system, and helping others with their problems on the osg-
users mailing list. He has been in the top three posters each month ever since. But is that a
good thing or just an indication that he talks too much?

Since late 2007, he has worked for CM-Labs Simulations Inc. (http://www.vortexsim.
com/), where he develops the Vortex physics toolkit and training simulators for various
industries such as construction, subsea, and others. Being the company's dedicated graphics
developer allows him to continue using and contributing to OpenSceneGraph. The best part
is he gets paid for it, too! Doing so has helped improve his proficiency with C++ as well as
allowed him to use other scene graphs such as Vega Prime and OpenSG, which lets him keep
an open mind and always see the big picture.

Jean-Sébastien has participated in several OpenSceneGraph user meetings, and he was
a presenter at the OpenSceneGraph BOFs at Siggraph in 2008 and 2009. He is also
a co-developer of the osgOcean nodekit, an ocean surface rendering add-on library for
OpenSceneGraph, which is available at http://osgocean.googlecode.com/. He has
also contributed to other open source projects, such as Bugzilla, Yafaray, and others.

Jean-Sébastien currently lives in the suburbs of Montréal, with his lovely wife and their three
young boys. His personal website can be found at http://whitestar02.webhop.org/.

Cedric M. Pinson has twelve years of experience in 3D software. He has worked in
the video game industry at Nemosoft and Mekensleep, before joining OutFlop, where
he has served as the project leader for 3D client technology. He is a contributor to the
OpenSceneGraph project and the author and maintainer of osgAnimation. He now does
freelance work around OpenGL technologies such as OpenSceneGraph and WebGL.

I would like to thank my friends, Loic Dachary for helping me with
his advice, Jeremy Moles for the motivation and comments about
OpenSceneGraph, Johan Euphrosine for his support, Olivier Lejade who
offered me a place to work, and Amy Jones who helps in many ways.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print and bookmark content

�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Rui Wang dedicates this book to his parents, Lihang Wang and Ximei Bao, and his lovely
fiancée Qin Leng, for their patience and moral support during the entire writing.

Xuelei Qian dedicates this book to his wife Yuehui Liu, for her constant love, support,
and feels she deserves a major share of this book. He also wants to thank his grandfather

Xinmin Zhu, mother Danmu Zhu, and father Gimping Qian, for their hugely spiritual support
and encouragement all along.

Table of Contents
Preface	 1

Chapter 1: The Journey into OpenSceneGraph	 7
A quick overview of rendering middleware	 8
Scene graphs	 8
The Birth and development of OSG	 9
Components	 10
Why OSG?	 12
Who uses OSG?	 13
Have a quick taste	 14
Time for action – say "Hello World" OSG style	 14
Live in community	 15
Summary	 17

Chapter 2: Compilation and Installation of OpenSceneGraph	 19
System requirements	 20
Using the installer	 20
Time for action – installing OSG	 21
Running utilities	 26
Time for action – playing with osgviewer	 26
Using the project wizard	 29
Time for action – creating your solution with one click	 29
Prebuilts making trouble?	 30
Cross-platform building	 31
Starting CMake	 31
Time for action – running CMake in GUI mode	 32
Setting up options	 35
Generating packages using Visual Studio	 37
Time for action – building with a Visual Studio solution	 37
Generating packages using gcc	 38

Table of Contents

[ii]

Time for action – building with a UNIX makefile	 38
Configuring environment variables	 40
Summary	 41

Chapter 3: Creating Your First OSG Program	 43
Constructing your own projects	 44
Time for action – building applications with CMake	 44
Using a root node	 46
Time for action – improving the "Hello World" example	 47
Understanding memory management	 48
ref_ptr<> and Referenced classes	 48
Collecting garbage: why and how	 50
Tracing the managed entities	 52
Time for action – monitoring counted objects	 52
Parsing command-line arguments	 55
Time for action – reading the model filename from the command line	 55
Tracing with the notifier	 57
Redirecting the notifier	 57
Time for action – saving the log file	 58
Summary	 60

Chapter 4: Building Geometry Models	 61
How OpenGL draws objects	 62
Geode and Drawable classes	 62
Rendering basic shapes	 63
Time for action – quickly creating simple objects	 64
Storing array data	 66
Vertices and vertex attributes	 66
Specifying drawing types	 68
Time for action – drawing a colored quad	 68
Indexing primitives	 72
Time for action – drawing an octahedron	 73
Using polygonal techniques	 77
Time for action – tessellating a polygon	 78
Rereading geometry attributes	 81
Customizing a primitive functor	 82
Time for action – collecting triangle faces	 82
Implementing your own drawables	 86
Using OpenGL drawing calls	 87
Time for action – creating the famous OpenGL teapot	 87
Summary	 91

Table of Contents

[iii]

Chapter 5: Managing Scene Graph	 93
The Group interface	 94
Managing parent nodes	 94
Time for action – adding models to the scene graph	 96
Traversing the scene graph	 98
Transformation nodes	 99
Understanding the matrix	 100
The MatrixTransform class	 101
Time for action – performing translations of child nodes	 101
Switch nodes	 104
Time for action – switching between the normal and damaged Cessna	 105
Level-of-detail nodes	 107
Time for action – constructing a LOD Cessna	 108
Proxy and paging nodes	 110
Time for action – loading a model at runtime	 110
Customizing your own NodeKits	 112
Time for action – animating the switch node	 113
The visitor design pattern	 116
Visiting scene graph structures	 117
Time for action – analyzing the Cessna structure	 118
Summary	 121

Chapter 6: Creating Realistic Rendering Effects	 123
Encapsulating the OpenGL state machine	 124
Attributes and modes	 124
Time for action – setting polygon modes of different nodes	 126
Inheriting render states	 128
Time for action – lighting the glider or not	 129
Playing with fixed-function effects	 131
Time for action – applying simple fog to models	 134
Lights and light sources	 136
Time for action – creating light sources in the scene	 137
The Image class	 140
The basis of texture mapping	 141
Time for action – loading and applying 2D textures	 143
Handling rendering order	 146
Time for action – achieving the translucent effect	 148
Understanding graphics shaders	 152
Using uniforms	 153
Time for action – implementing a cartoon cow	 154
Working with the geometry shader	 158

Table of Contents

[iv]

Time for action – generating a Bezier curve	 158
Summary	 162

Chapter 7: Viewing the World	 163
From world to screen	 164
The Camera class	 165
Rendering order of cameras	 167
Time for action – creating an HUD camera	 168
Using a single viewer	 170
Digging into the simulation loop	 170
Time for action – customizing the simulation loop	 172
Using a composite viewer	 175
Time for action – rendering more scenes at one time	 176
Changing global display settings	 179
Time for action – enabling global multisampling	 180
Stereo visualization	 182
Time for action – rendering anaglyph stereo scenes	 183
Rendering to textures	 184
Frame buffer, pixel buffer, and FBO	 185
Time for action – drawing aircrafts on a loaded terrain	 186
Summary	 192

Chapter 8: Animating Scene Objects	 193
Taking references to functions	 193
List of callbacks	 194
Time for action – switching nodes in the update traversal	 195
Avoiding conflicting modifications	 198
Time for action – drawing a geometry dynamically	 199
Understanding ease motions	 203
Animating the transformation nodes	 205
Time for action – making use of the animation path	 205
Changing rendering states	 208
Time for action – fading in	 209
Playing movies on textures	 214
Time for action – rendering a flashing spotlight	 215
Creating complex key-frame animations	 218
Channels and animation managers	 220
Time for action – managing animation channels	 221
Loading and rendering characters	 225
Time for action – creating and driving a character system	 225
Summary	 228

Table of Contents

[v]

Chapter 9: Interacting with Outside Elements	 231
Various events	 232
Handling mouse and keyboard inputs	 233
Time for action – driving the Cessna	 234
Adding customized events	 239
Time for action – creating a user timer	 239
Picking objects	 243
Intersection	 243
Time for action – clicking and selecting geometries	 245
Windows, graphics contexts, and cameras	 249
The Traits class	 250
Time for action – configuring the traits of a rendering window	 251
Integrating OSG into a window	 254
Time for action – attaching OSG with a window handle in Win32	 255
Summary	 260

Chapter 10: Saving and Loading Files	 263
Understanding file I/O plugins	 264
Discovery of specified extension	 265
Supported file formats	 266
The pseudo-loader	 270
Time for action – reading files from the Internet	 271
Configuring third-party dependencies	 272
Time for action – adding libcurl support for OSG	 273
Writing your own plugins	 276
Handling the data stream	 278
Time for action – designing and parsing a new file format	 279
Serializing OSG native scenes	 283
Creating serializers	 284
Time for action – creating serializers for user-defined classes	 285
Summary	 289

Chapter 11: Developing Visual Components	 291
Creating billboards in a scene	 292
Time for action – creating banners facing you	 292
Creating texts	 296
Time for action – writing descriptions for the Cessna	 297
Creating 3D texts	 300
Time for action – creating texts in the world space	 301
Creating particle animations	 303
Time for action – building a fountain in the scene	 305
Creating shadows on the ground	 310

Table of Contents

[vi]

Time for action – receiving and casting shadows	 311
Implementing special effects	 315
Time for action – drawing the outline of models	 316
Playing with more NodeKits	 318
Summary	 319

Chapter 12: Improving Rendering Efficiency	 321
OpenThreads basics	 322
Time for action – using a separate data receiver thread	 322
Understanding multithreaded rendering	 328
Time for action – switching between different threading models	 328
Dynamic scene culling	 335
Occluders and occludees	 336
Time for action – adding occluders to a complex scene	 337
Improving your application	 341
Time for action – sharing textures with a customized callback	 343
Paging huge scene data	 347
Making use of the quad-tree	 348
Time for action – building a quad-tree for massive rendering	 348
Summary	 357

Appendix: Pop Quiz Answers	 359
Chapter 2	 359

Dependencies of osgviewer	 359
The difference between ALL_BUILD and 'build all'	 359

Chapter 3	 360
Configuring OSG path options yourselves	 360
Release a smart pointer	 360

Chapter 4	 360
Results of different primitive types	 360
Optimizing indexed geometries	 360

Chapter 5	 361
Fast dynamic casting	 361
Matrix multiplications	 361

Chapter 6	 361
Lights without sources	 361
Replacements of built-in uniforms	 361

Chapter 7	 362
Changing model positions in the HUD camera	 362
Another way to display the same scene in different views	 362

Chapter 8	 362
Adding or setting callbacks	 362

Table of Contents

[vii]

Choosing the alpha setter and the callback	 363
Chapter 9	 363

Handling events within nodes	 363
Global and node-related events	 363

Chapter 10	 363
Getting rid of pseudo-loaders	 363
Understanding the inheritance relations	 364

Chapter 11	 364
Text positions and the projection matrix	 364

Chapter 12	 364
Carefully blocking threads	 364
Number of created levels and files	 365

Index	 367

Preface
Real-time rendering is in quite demand in computer science today, and OpenSceneGraph,
being one of the best 3D graphics toolkits, is being used widely in the fields of virtual reality,
scientific visualization, visual simulation, modeling, games, mobile applications, and so
on. Although you can use the powerful OpenSceneGraph, which is based on the low-level
OpenGL API, to implement applications that simulate different environments in the 3D
world, developing picture-perfect applications is easier said than done.

This book has been written with the goal of helping readers become familiar with the
structure and main functionalities of OpenSceneGraph, and guiding them to develop
virtual-reality applications using this powerful 3D graphics engine. This book covers the
essence of OpenSceneGraph, providing programmers with detailed explanations and
examples of scene graph APIs.

This book helps you take full advantages of the key features and functionalities of
OpenSceneGraph. You will learn almost all of the core elements required in a virtual reality
application, including memory management, geometry creation, the structure of the scene
graph, realistic rendering effects, scene navigation, animation, interaction with input devices
and external user interfaces, file reading and writing, and so on.

With the essential knowledge contained in this book, you will be able to start using
OpenSceneGraph in your own projects and research fields, and extend its functionalities by
referring to OpenSceneGraph's source code, official examples, and API documentation.

This handy book divides the core functionalities of the proved and comprehensive
OpenSceneGraph 3D graphics engine into different aspects, which are introduced in separate
chapters. Each chapter can be treated as an individual lesson that covers one important
field of OpenSceneGraph programming, along with several examples illustrating concrete
usages and solutions. The sequence of the chapters is organized from the easy topics to
the more difficult concepts, to help you to gradually build your knowledge and skills in with
OpenSceneGraph.

Preface

[2]

By the end of the whole book, you will have gained a ready-to-use OpenSceneGraph
development environment for yourself, and will have the ability to develop OpenSceneGraph
-based applications and extend practical functionalities for your own purposes.

With plenty of examples to get you started quickly, you'll master developing with
OpenSceneGraph in no time.

What this book covers
Chapter 1, The Journey into OpenSceneGraph introduces the history, structure and features
of OpenSceneGraph (OSG), and introduces the general concept of scene graph.

Chapter 2, Compilation and Installation of OpenSceneGraph guides readers through
compiling, installing and configuring an OSG development environment, either by using the
prebuilt binaries or building an environment wholly from the source code.

Chapter 3, Creating Your First OSG Program shows how to code an OSG-based application,
highlighting the utilization of smart pointers, notifying system, object instances and data
variances.

Chapter 4, Building Geometry Models explains how to create a geometry entity simply with
vertices and the drawing primitives defined within OSG.

Chapter 5, Managing Scene Graph is all about the implementation of a typical scene graph
using OSG, and shows the usages of the various types of scene graph nodes with special
focus on some commonly-used node types.

Chapter 6, Creating Realistic Rendering Effects introduces some basic knowledge about OSG
implementation of rendering states, texture mapping, shaders, and the render-to-texture
technique.

Chapter 7, Viewing the World shows the means by which developers can encapsulate the
cameras, manipulators, and stereo supports, and have them work together.

Chapter 8, Animating Scene Objects shows OSG's capability of creating animated graphic
presentations by using the built-in animation library, and showcases the implementations
of path animations, vertex-level animations, state and texture animations, and character
animations that a 3D application can use.

Chapter 9, Interacting with Outside Elements focuses on the implementation of human
computer interaction using OSG, including input device handling and GUI toolkit integration.

Chapter 10, Saving and Loading Files explains in detail the working mechanism of reading
and writing scene data, and gives tips for creating user-customized I/O plugins.

Preface

[3]

Chapter 11, Developing Visual Components covers a wide range of advanced scene
graph components, including billboards, texts, height mapped terrains, shadows, and
volume rendering.

Chapter 12, Improving Rendering Efficiency introduces the techniques necessary for building
a fast real time rendering system. It helps users to load, organize, and render massive
datasets in a very efficient manner.

What you need for this book
To use this book, you will need a graphics card with robust OpenGL support, with the latest
OpenGL device driver from your graphics hardware vendor installed.

You will also need a working compiler that can transform C++source code into executable
files. Some recommended ones include: .gcc, .mingw32, and Visual Studio. For Windows
users, there is a free Visual Studio Express Edition for use (http://www.microsoft.com/
express/Windows/). However, you should read the documentation in order to consider its
limitations carefully.

Who this book is for
This book is intended for software developers who are new to OpenSceneGraph and are
considering using it in their applications. It is assumed that you have basic knowledge of C++
before using this book, especially the standard template library (STL) constructs, of which
OSG makes extensive use. Some familiarity with design patterns as implemented in C++ is
also useful, but is not required.

You need to be familiar with OpenGL—the standard cross-platform low-level 3D graphics
API. We'll meet some math in the book, including geometry and linear algebra. Familiarity
with these topics will be great, but you don't need to be a math whiz to use this book.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Preface

[4]

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you have
learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "CMake will generate an OpenSceneGraph.sln
file at the root of the build directory".

A block of code is set as follows:

#include <osg/PolygonMode>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

Any command-line input or output is written as follows:

osgviewer --image picture_name.bmp

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Start the installer and you will
see the Choosing Language dialog, the Welcome page, and the License Agreement page".

Warnings or important notes appear in a box like this.

Preface

[5]

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book

You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
The Journey into

OpenSceneGraph

Before looking into various rendering effects and playing with carefully selected
code snippets, let us first get a glimpse of the history of OpenSceneGraph, learn
about its structures and capabilities, and join a web community to learn and
discuss OSG online. You will also have the chance to create a "Hello World"
application in OSG style, through which you will gain necessary information
about OSG's syntax and structure.

In this book, OSG is short for OpenSceneGraph. It will be used from time to
time to replace OpenSceneGraph's full name, for convenience.

In this chapter, we will:

�� Have a brief overview of the concept of scene graph and a history of OSG

�� Look into the fundamental structure and features of the latest OSG distribution

�� Have a first-hand taste of OSG with a very simple example

�� Establish a fast connection for interacting with the OSG community

The Journey into OpenSceneGraph

[8]

A quick overview of rendering middleware
Before entering the world of OpenSceneGraph, we assume that you are already experienced
in OpenGL programming. You work with stacks of matrices, set pipeline states, look for new
extensions, call rendering APIs or commands and immediately draw them on a context, no
matter if you are enjoying or suffering from the whole process.

A rendering middleware is a solution that raises the level of abstraction and eases the
complexity of using a low-level OpenGL API, at the cost of flexibility. The concepts of
modularity and object-orientation are often applied to manage graphics primitives,
materials, and different visual data sets in user applications, saving much development
time and allowing new functionalities to be combined as modules and plugins.

OpenSceneGraph is a well-designed rendering middleware application. It is actually a
retained rendering (or deferred rendering) system based on the theory of scene graph,
which records rendering commands and data in a buffer, for executing at some other
time. This allows the system to perform various optimizations before rendering, as well as
implement a multithreaded strategy for handling complex scenes.

Scene graphs
A scene graph is a general data structure that defines the spatial and logical relationship
of a graphical scene for efficient management and rendering of graphics data. It is typically
represented as a hierarchical graph, which contains a collection of graphics nodes including
a top-level root node, a number of group nodes each of which can have any number of child
nodes, and a set of leaf nodes each of which has zero child nodes and that serve together
as the bottom layer of the tree. A typical scene graph does not allow a directed cycle (where
some nodes are connected in a closed chain) or an isolated element (a node that has no
child or parent) inside of itself.

Each group node can have any number of children. Grouping these child nodes allows them
to share the information of the parent and be treated as one unit. By default, an operation
performed by a parent propagates its effects to all of its children.

It also happens that certain nodes have more than one parent node, in which case the
node is considered to be "instanced", and the scene graph can be defined as a directed
acyclic graph (DAG). Instancing produces many interesting effects, including data sharing
and multi-pass rendering.

The concept of scene graph has been widely applied in many modern software and
applications, for instance, AutoCAD, Maya, CorelDraw, VRML, Open Inventor, and the
one that we are going to investigate—OpenSceneGraph.

Chapter 1

[9]

The Birth and development of OSG
The OpenSceneGraph project was initiated as an avocation by Don Burns in 1998. He used to
work for SGI and is a hang-gliding enthusiast. He wrote a simplified SGI Performer-like scene
graph API on a humble Linux PC, named SG, which was the prototype of OSG.

In 1999, Robert Osfield, a design consultant for a hang-glider manufacturer, started to take
part in this young project. He suggested continuity to develop SG as a standalone, open
source project and soon ported its elements to Windows. At the end of the year, Robert
took over the project and changed its name to OpenSceneGraph. The project was then fully
rewritten to take advantage of C++ standards and design patterns.

In 2001, in response to the growing interest in the project, Robert set up OpenSceneGraph
Professional Services. He gave up the opportunity to work for other companies, and went
full-time providing both commercial and free OSG services. Don also formed his own
company, Andes Computer Engineering, and continues to support the development of OSG.

The first OpenSceneGraph birds-of-a-feather (BOF) meeting occurred the same year, at
SIGGRAPH 2001, with only 12 people attending. After that, attendance at the OSG BOF
continues to grow every year, with more and more people getting to know this great
OpenGL-based API.

The Producer library, which was initially created to provide windowing and multi-pipe
graphic system integrations for customer's needs, was added, along with other two
important libraries, osgText and osgFX, in 2003. Then, in 2005, OSG 1.0 was announced,
to the delight of over 1,100 members in the mailing list.

In 2007, a totally new OSG 2.0 was released, with improved multi-core, multi-GPU support,
and three important new libraries: osgViewer, osgManipulator, and osgShadow. From
then on, the unified build system CMake was used to simplify the build process. Then
the old Producer was deprecated and maintained by Andes Computer Engineering as an
independent project. The first two OSG books, OpenSceneGraph Quick Start Guide and
OpenSceneGraph Reference Manuals, were available, too. Paul Martz dedicated them to all
developers who were new to scene graph technology.

How time flies! Years have slipped away and OSG is developing at an incredible speed all the
time: osgWidget was first introduced in 2008; osgVolume and osgAnimation came out in
2009; and osgQt was born in 2010, with the coming 3.0 release and the amazing OpenGL ES
and OpenGL 3.0 support.

Today, several hundred high-performance applications are using OSG to render complex
scenes and manage massive datasets. With the great efforts made by 432 core contributors
and the continuous support of software developers around the world, it can be anticipated
that OSG has a very bright future ahead of it.

The Journey into OpenSceneGraph

[10]

Components
The computing infrastructure of OSG is designed to be highly scalable in order to enable
runtime access to extended functionalities. In addition to the standard core libraries, a set
of additional modular libraries known as NodeKits have been delivered to meet specific
development requirements.

The core OSG functionality consists of four libraries:

1.	 The OpenThreads library: This library is intended to provide a minimal and complete
Object-Oriented (OO) thread interface for C++ programmers. It is used by OSG as the
main threading model implementation.

2.	 The osg library: This library provides basic elements used to build scene graphs,
such as nodes, geometries, rendering states and textures, as well as related
management tools and methods. It also contains a few necessary math classes,
which are used to implement vector and matrix operations that are commonly
used in two-dimensional and three-dimensional spaces.

3.	 The osgDB library: This library provides a plugin mechanism for reading and writing
2D and 3D files, with a derivable class containing access to data files and stream I/O
operations. Its built-in database pager also supports dynamic loading and unloading
of scene graph segments, in order to achieve the scheduling of huge collections of
user data.

4.	 The osgUtil library: This library is designed for building the OSG rendering backend,
which traverses the scene tree, performs culling in each frame, and finally converts
the OSG scene into a series of OpenGL calls. There are also functionalities for user
intersections, and polygon modification algorithms.

The extra NodeKits and utilities available with current OSG distributions are:

�� The osgAnimation library: This library provides a range of general purpose utilities
for various animations, including skeleton and morphing. It uses generic templates
to construct multiple kinds of key frames and animation channels.

�� The osgFX library: This library has a framework for implementing special effects in
the 3D space, and contains several useful effect classes.

�� The osgGA library, which stands for OSG GUI abstraction: This library is an abstract
user interface on top of various windowing systems. It helps to handle interactive
events from peripheral devices, for example, a keyboard or mouse.

Chapter 1

[11]

�� The osgManipulator library: This library extends the scene graph to support 3D
interactive manipulation, such as moving, rotating, and scaling of transformable
nodes.

�� The osgParticle library: This library makes it possible to render explosions, fire,
smoke, and other particle-based effects.

�� The osgShadow library: This library provides a framework for various shadow
rendering techniques.

�� The osgSim library: This library meets some special requirements from simulation
systems, especially from the OpenFlight databases.

�� The osgTerrain library: This library provides geographic terrain rendering support
using height field and imagery data.

�� The osgText library: This library fully supports the rendering of TypeType and a
series of other font formats, based on the FreeType project. It can draw 2D and 3D
texts in 3D space or on the screen.

�� The osgViewer library: This library defines a set of viewer-related classes, and
therefore integrates OSG scene graphs and renders the backend with a wide
variety of windowing systems, including Win32, X11, Carbon, and Cocoa, as well
as providing indirect support for many other famous GUI toolkits.

�� The osgVolume library: This library includes an initial support for volume rendering
techniques.

�� The osgWidget library: This library extends the core OSG elements and provides a
2D GUI widget set for 3D applications.

�� The osgQt library: This library embeds the Qt GUI into scene graphs and thus has
the ability to display web pages and common Qt widgets in space.

All OSG core libraries and NodeKits, no matter what kind of features they implement or
who contributed them, have the same prefix "osg", and a short word or abbreviation
followed as the keyword.

The Journey into OpenSceneGraph

[12]

The whole OSG architecture can be illustrated as follows:

In most cases, the osg, osgDB, osgUtil, and osgViewer libraries are the major components
of an OSG-based application, and will be discussed in more detail in the following
chapters of this book, while other less frequently used NodeKits may also be mentioned in
specific chapters.

Why OSG?
The OSG project is open sourced and released under a modified GNU Lesser General Public
License (LGPL), named OSGPL. It brings about significant benefits to its users:

�� Rigorous structure: OSG makes full use of the Standard Template Library (STL)
and multiple design patterns. It also takes advantage of the open source
development model in order to provide a legacy-free and user-centric application
programming interface.

�� Superior performance: A series of scene graph techniques are already
well-implemented in OSG, including view-frustum and occlusion culling, level of
detail (LOD) configuration, rendering state sorting, particle and shadow supports,
and complete encapsulation of OpenGL extensions and the shader language.

�� High scalability: The core OSG functionalities are clean and highly extensible.
This makes it easy for users to write their own NodeKits and file I/O plugins,
and integrate them into scene graphs and applications.

Chapter 1

[13]

�� Software and hardware portability: The core OSG is already designed to have
minimal dependency on any specific platform or windowing system, requiring only
Standard C++ and OpenGL. This provides great convenience in being able to rapidly
port OSG-based applications to Windows, Linux, Mac OSX, FreeBSD, Solaris, and
even embedded platforms.

�� Latest activity: With an active developer community, OSG is growing at an
incredible speed. It supports the latest OpenGL and OpenGL ES extensions and
various graphics concepts and techniques, along with a great deal of feedback in
the development cycle.

�� Open source: In modern industry, open source means co-intelligence, quality and
flexibility, rather than merely inexpensive. Users and companies also don't have to
worry about software patent violations when using OSG in their own applications.

Who uses OSG?
The following is a rough list of some of the organizations that are using or have used OSG as
a development tool for their applications and products:

Organization name Download link (if downloadable) Purpose using OSG

Boeing - Flight simulation

Delta 3D www.delta3d.org Game engine

Flight Gear www.flightgear.org Flight simulation

Intra - Train simulation

Magic Earth - Oil and gas probing

NASA - Earth simulation

Norcontrol - Maritime simulation

ossimPlanet www.ossim.org/OSSIM/
ossimPlanet.html

Geo-spatial visualization

Virtual Terrain Project www.vterrain.org CAD and GIS related fields

VR Juggler www.vrjuggler.org Virtual reality system

Other customers include ESA, Landmark Graphics, Sony, STN Atlas, Northrop Grumman, and
even the military sectors. To learn more about the large number of OSG-based projects and
outcome, just search the whole web, and always keep in contact with developers all over the
world through the web community.

The Journey into OpenSceneGraph

[14]

Have a quick taste
Before sitting down and coding, you should have already set up an OSG development
environment consisting of header files and libraries, either by obtaining a prebuilt package
compliant to your compiler version, or building everything with the source code. Please refer
to Chapter 2, Compilation & Installation of OpenSceneGraph for details.

Time for action – say "Hello World" OSG style
Can't wait to have a taste of OSG programming? Here is the simplest example, which shows
how to load an existing model file and render it on the screen. It is much more interesting
than just printing a "Hello World" text on the console:

1.	 Create a new project with any source code editor:

#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
int main(int argc, char** argv)
{
 osgViewer::Viewer viewer;
 viewer.setSceneData(osgDB::readNodeFile("cessna.osg"));
 return viewer.run();
}

2.	 Specify the OSG header location and dependent libraries. You need to tell the
linker to link your project with five libraries: OpenThreads, osg, osgDB, osgUtil, and
osgViewer. You will learn more about configuring an OSG application in the next
chapter.

3.	 Build your project. Make sure the file cessna.osg already exists in the same
directory as the executable file, or in the path specified with the OSG_FILE_PATH
environment variable.

4.	 Check it out! You get a full-screen display with a flight model shown in the middle:

Chapter 1

[15]

5.	 Try to make some changes to what you are observing simply with your mouse. Press
and hold the left, middle, and right mouse buttons when you are moving the mouse,
to rotate, move, and scale the Cessna. Note that you are not actually modifying the
model but changing the virtual view point instead.

What just happened?
An easy-to-read example was just created to show how powerful and clear OSG is. The
osgDB::readNodeFile() function is used to read an existing node file, that is, a scene
graph that represents the Cessna model. The osgViewer::Viewer instance is then created
to set the scene data and provide a simulation loop for the application.

Here, osgDB and osgViewer are namespaces, and Viewer is a class name. The naming style
of a function or class member uses the same convention as the famous "camel-case", that is,
the first word of the function name starts with a lowercase letter, and additional ones start
with upper-case letters.

Live in community
Everyone interested in learning and making use of OSG is welcome to join the community
at any time. There are several ways to get in touch with the core developing team and
thousands of OSG programmers.

The Journey into OpenSceneGraph

[16]

The preferred way is to use one of the two major public mailing lists. A mailing list here is a
list of subscribers who have discussions on the same particular topic, via e-mail. To subscribe
to an OSG mailing list, follow the appropriate links mentioned:

Mailing list Subscription link Description

osg-users http://lists.openscenegraph.
org/listinfo.cgi/osg-users-
openscenegraph.org

General technique support
and discussions

osg-submissions http://lists.openscenegraph.
org/listinfo.cgi/osg-
submissions-openscenegraph.org

Submission of code
changes and bug fixes only

The forum, which is already linked to the mailing lists, is also provided for people who like
this form: http://forum.openscenegraph.org/.

You will find a greater variety of OSG discussion groups on the internet, such as IRC channel,
Google group, LinkedIn, and even a Chinese mirror:

�� irc.freenode.net #openscenegraph

�� http://groups.google.com/group/osg-users/topics

�� http://www.linkedin.com/e/gis/61724/6F710C14EBAF

�� http://bbs.osgchina.org/

Companies and individuals may ask for professional services, too, by making the appropriate
payments. A number of professional OSG contractors are listed here as a reference:
http://www.openscenegraph.org/projects/osg/wiki/Community/Contractors.

Finally, remember to visit the wiki website and developer blog at any time. This contains
an enormous wealth of information, including the latest news and download links for OSG
distributions:

�� http://www.openscenegraph.org/

�� http://blog.openscenegraph.org/

Chapter 1

[17]

Summary
This chapter gave a bird's eye view of OSG, in which we have drawn in mind a rough image
about what we are going to learn about this widely used 3D graphics API. We sincerely hope
the following chapters of this small book will serve as a ladder to help the readers, rung by
rung, to get into the world of OSG-based programming.

In this chapter, we specially covered:

�� The cornerstone and funder of OSG

�� The basic structure of OSG including various functional modular libraries

�� A quick view of how to write OSG-style applications

�� The way to join the OSG community and obtain the latest news

2
Compilation and Installation

of OpenSceneGraph

It is usually a painstaking process to create binary files completely from the
source code in order to construct an efficient development environment. There
are two different ways to set up the OSG working environment: for beginners,
an easy-to-use prebuilt package installer can be obtained from the official
OSG website, which may help with installing particular versions of OSG (not
all versions have a corresponding installer); and for developers with more
experience, there is a more flexible way to work with the OSG source code—
using the CMake build system, which is also presented in detail.

In this chapter, we will tell you:

�� How to obtain OSG prebuilt packages with the quick installer

�� How to make use of application utilities provided by the installed OSG distribution

�� How to get familiar with the CMake build system and how to set compilation
options properly

�� How to build OSG and set up a working environment from the source code on
Windows and UNIX platforms

�� How to configure development environment variables

Compilation and Installation of OpenSceneGraph

[20]

System requirements
OSG can run on most computers, as well as mobile devices with OpenGL ES installed which is
a subset of OpenGL 3D Graphical API that was specially designed for embedded devices. OSG
has been designed to take advantage of multi-processor and multi-core architectures, and
works fine on both 32 and 64 bit processors.

Since OSG is an OpenGL-based scene graph API, it is recommended that you have an AGP
or PCI-Express graphics card which guarantees satisfying OpenGL performance. In fact,
most professional and consumer grade graphics hardware on the market nowadays should
suffice for development needs. OSG is capable of working with a very low version OpenGL
and limited graphics RAM, at the price of losing particular rendering features and functional
extensions. Therefore, it is suggested that you have the latest version of the device driver
installed on your machine before programming with OSG. A graphics card with 256 MB or
512 MB of memory will be a good start, too.

The needs for disk space and system memory depend on specific application requirements
and the scale of the datasets to be rendered. Basically, the core OSG binary and library file
size is up to 30 MB, without any debug information. The size of the executable file will be
even smaller and only those shared library files are necessary at runtime.

Note that developers who decide to build OSG completely from the source code
have to make sure there is at least 3GB of free disk space available for storage of
intermediate files generated during the compilation process.

Using the installer
It is easy and fast to use a prebuilt OSG package to deploy the binaries and libraries
necessary for creating your own programs. A typical prebuilt binary package is designed,
compiled, and tested by a third party, and often includes run-time executables, shared
libraries, static-link libraries, headers, third-party dependencies, documentation, and other
useful resources, and is available to developers in the form of a freeware or a commercial
product.

To quickly set up your OSG development environment, you may get an OSG installer with
the following URL: http://www.openscenegraph.org/files/dev/OpenSceneGraph-
Installer.exe

This tiny and simple installer will check your computer's configuration and automatically
download the previously mentioned prebuilt binary packages from the official OSG website.
The installer will read from a .ini configuration file first, which will be updated as soon as
new prebuilt packages are released. In this way, users can keep their OSG version up-to-date
simply by re-executing the installer.

Chapter 2

[21]

Time for action – installing OSG
The installer is designed to make the installation process flow more efficiently. If you are not
familiar with the process of compiling a project from source code, or just want to have an
initial impression of the OSG utilities, the following instructions may help you to install an
OSG development environment step by step by using the installer.

Note that only Microsoft Windows developers can benefit from the installer at present.
Users of Linux, Mac OS X, and other systems should refer to the Cross-platform building
section.

1.	 Start the installer and you will see the Choosing Language dialog, the Welcome
page, and the License Agreement page. Read the OpenSceneGraph license carefully,
select I accept the terms of the License Agreement, then click on Next to continue:

Compilation and Installation of OpenSceneGraph

[22]

2.	 If you have already installed a previous OSG version, the installer will pop up a
warning dialog box and ask if you want to continue with the installation, or quit
and uninstall the old version first. Please note that it may cause unexpected trouble
if you have different versions of OSG installed on the same machine, because an
application developed with one specific OSG version may incorrectly link to shared
libraries created by another during the linking process. To avoid link errors or
runtime exceptions, each time before you install a new version of OSG, it is
suggested that you remove the old version, because OSG is backwards compatible.
Here we assume it is the first time that you installed OSG; please select Yes to
ignore and continue:

3.	 There will be one or more distributions listed on this page, in addition to
an entry panel for selection of the Visual C++ product directory. Select a
distribution and specify the C++ working directory and click on Next.

Make sure that the displayed building environment of the item goes with your
system and development settings. For example, you should have installed Visual
Studio 2008 Service Pack 1 on a 32-bit Windows XP system, in order to make use of
the OSG 3.0 prebuilt packages shown in the following image, either with dynamic
debug or release configuration.

Chapter 2

[23]

4.	 The massage box below will show up if the processor architecture, operating
system, or the IDE is mismatched with the distribution's requirements. Don't
ignore it unless you have specific requirements and know what will happen.

5.	 Now it is time to decide the components to be installed, which have been
classified into eight categories by the installer. Users are allowed to select one or
more of them according to their individual requirements. A grayed out (disabled)
section means that that part is not included in the current distribution:

�� Binaries: Core runtime libraries (DLL), key plugins and utilities,
which will be placed in the bin subdirectory of the installation
directory.

Compilation and Installation of OpenSceneGraph

[24]

�� Developer files: Headers and static-link libraries for developing
OSG-based applications, placed in the include and lib
subdirectories.

�� Extra plugins: Extra plugins and related runtime dependencies,
which will be placed in the bin subdirectory. A list of supported file
I/O plugins can be found in Chapter 10, Saving and Loading Files.

�� Sample data: Sample datasets for demonstrations and
experiments. Some of the sample data will be used many times in
this book. It will be installed in the data subdirectory.

�� Documentation: The API documentation in HTML help file format
(.chm), which will be easy to read on Windows platforms.

�� Examples: A great deal of useful examples and tests, installed in
the examples subdirectory of the installation directory.

�� Visual Studio project wizard: See Using the project wizard for
details. Be sure to select this.

�� Environment variables: See Configuring environment variables
below, for details. Be sure to select this, unless you have already
had other OSG distributions on your computer and have set the
environment variables yourself.

Chapter 2

[25]

6.	 What we need to do in the next few steps is quite simple: decide upon the
installation directory, specify the start menu folder, and launch the installation! Make
sure the Internet connection remains alive during the entire installation process.

7.	 Click on Finish and if everything progresses well, you will see a Cessna model
in the middle of a deep blue background. This installer's demo is actually what
Chapter 1, The Journey into OpenSceneGraph is going to demonstrate in the
"Hello World" example!

What just happened?
The installer will generate a few subdirectories under the installation directory
(hereafter INSTDIR) and copy files into those subdirectories. Binaries and plugins will
be copied to INSTDIR/bin, header files to INSTDIR/include, static-link libraries to
INSTDIR/lib, sample data to INSTDIR/data, documentation to INSTDIR/doc, and
examples to INSTDIR/share.

Compilation and Installation of OpenSceneGraph

[26]

Running utilities
OSG comes with a few command-line tools that can be used to quickly view models and
images, and convert them into other file formats. Run the command prompt first:

�� On Windows platforms, you can access the command prompt simply by going to
the Start Menu and typing in the command cmd in the Run command box.

�� For a Mac OS X system, open the Terminal application, which is located by default
inside the Applications | Utilities folder

�� On a Linux console, type the commands directly and see the output results

Now enter the following command at the prompt:

osgversion

Here, the pound sign (#) is used to indicate the prompt itself. Other kinds of user prompts
may include the current directory, the username, and the printing time. You shall also
explicitly provide a path in the command line for your executables on a UNIX shell.

The osgversion application will output the working OSG version, for example:

OpenSceneGraph Library 3.0.0

Moreover, OSG provides a flexible and powerful model and image viewing tool—
osgviewer, as well as a model format converter—osgconv.

Time for action – playing with osgviewer
If you have chosen to download the sample data and configured environment variables by
using the installer, it is time to load and display a sample model. Here we will reproduce
the "Hello World" example of the first chapter. Developers who have trouble compiling the
example code are suggested to look into the osgviewer first.

1.	 Start the osgviewer utility by issuing the following command:

	 # osgviewer cessna.osg

2.	 The displayed result will be nearly the same as our "Hello World" example
and the installer's demo. Don't forget to change the view point with your
mouse. Pressing the space bar at any time will return you to the initial view.

3.	 Besides that, osgviewer provides lots of shortcuts to switch between different
display modes and gather rendering performance information as well. To have a
first-hand experience of them, press the Esc key to quit the currently running
osgviewer, and type in:

	 # osgviewer cow.osg

Chapter 2

[27]

4.	 Now you will see a cow with a beautiful reflection map:

5.	 Press the W key to switch polygon modes, which include filled (by default),
wireframe, and points.

6.	 Press the T key to toggle textures on or off to activate or deactivate the
reflection map.

7.	 Press the I key to enable or disable lighting. Scenery loaded in osgviewer are
lighted by default.

8.	 Press the F key to change between full-screen and windowed display.

9.	 Press the S key repeatedly to display real-time rendering statistics, which are very
useful for optimizing graphics. The following image illustrates the current frame
rate and traversal time, which was displayed by pressing the S key twice:

Compilation and Installation of OpenSceneGraph

[28]

What just happened?
We have already had an overview of the osgviewer. The osgviewer is a fundamental but
feature-rich scene graph viewing tool, which is used for loading models and images, and fully
observing them by taking advantage of a series of auxiliary functionalities.

To load a picture with osgviewer, issue the following command:

osgviewer --image picture_name.bmp

To learn more about the osgviewer command-line arguments, start the shell prompt again
without any arguments, and read the output text carefully:

osgviewer

Please try more models and image files in different formats, and you will find that
osgviewer supports a great number of data formats, including but not limited to .3ds,
.obj, .stl, .bmp and .dds. For the external data formats that OSG supports, you can
find out more details in Chapter 10, Saving and Loading Files.

Pop quiz – dependencies of osgviewer
Copy the osgviewer utility and the data file cessna.osg (which is in the data subfolder
of the installation directory) to another computer on which OSG has never been installed. Do
you think it can work properly this time? OSG-based applications depend heavily on related
dynamic libraries. Could you find out which libraries are required by osgviewer while
reading cessna.osg?

Some dependent modules locator software may help a lot in finishing such
work. For example, you may download the free Dependency Walker utility from
http://www.dependencywalker.com/.

Have a go hero – playing with osgconv
Another tool named osgconv is mainly used for converting between formats. To summarize
the usage, osgconv can import graphical contents in order to export to different file
formats. It supports as many input formats as osgviewer. Please note that whether a
given format can be written depends on the plugin, which means that some formats can
only be read while others can be read and written. We will discuss this later in Chapter 10,
Saving and Loading Files. Now, you can try to convert a .osg file to a .3ds file by using the
following command, and then open the new file with any 3D modeling software such as
3dsmax, on your own, if you like:

osgconv cessna.osg cessna.3ds

Chapter 2

[29]

Using the project wizard
If you are a Windows user, and have experience in developing with the Visual Studio IDE,
you may obtain the OSG prebuilt packages installer and select the item Visual Studio
project wizard when selecting components to install. Wait until the package installation is
successfully done, and then a new Visual Studio project wizard will appear. This can help
beginners to configure their OSG-based applications and start tasting OSG programming
quickly.

Time for action – creating your solution with one click
At present, the project wizard can only work with Visual Studio 7 (2003), 8 (2005), 9 (2008),
and 10 (2010) under Windows. If you have any problems using it, contact the author directly.

1.	 Open your Visual Studio IDE and start a new project. You will find a new project
template named OSG Wizard in the Visual C++ project types, which is illustrated
as follows:

2.	 Enter the project name, click on OK, and create your solution with the OSG wizard
in one step! After that, you will have a ready-to-use working environment.

Compilation and Installation of OpenSceneGraph

[30]

What just happened?
So far you have created your solution with the OSG wizard and also established a ready-to-
use working environment. Try programming and debugging the example code, then open
the project property page, and have a look at the pre-configured items in C/C++ | General |
Additional Include Directories, Linker | General | Additional Library Directories, and Linker
| Input | Additional Dependencies, which will be useful for constructing your own project in
the next chapter.

A non-Windows or non-Visual Studio developer will never see the wizard interface and thus
is not necessary to have the related installer option selected.

Have a go hero – constructing "Hello World" with the wizard
Do you still have problems compiling the "Hello World" example in Chapter 1, The Journey
into OpenSceneGraph? Now it is time to finish this work with the help of the Visual Studio
wizard. You may also compare your own project's properties with the ones in the generated
project, and try to point out problems, if any.

Prebuilts making trouble?
There are several inconveniences when using prebuilt packages and installers. First,
these prebuilts are often compiler-dependent, platform-dependent, and even
architecture-dependent. For example, you can never run osgviewer.exe on a UNIX
system if the executable was built under Windows XP and Visual Studio 2008. One more
example: although a 32-bit OSG application is capable of running on 64-bit Windows
servers, a 64-bit OSG application compiled specifically for 64-bit Windows will only run on
64-bit Windows. In these cases, you will have to wait until others who are using the same
computing environment with you have their OSG package built and published.

Secondly, the prebuilts are seldom made from the latest version. Their creators may think
of using a more stable distribution, or some specified ones instead, intending to meet their
own development requirements. This is of course a pain for developers to be stalled from
adopting new releases, especially those including exciting features and important bug fixes.

Last but not least, it is more customizable, flexible, and sometimes interesting to
compile binaries and developer files from the source code, under different platforms
and configurations. OSG is open sourced, so why not to think and act from open source
perspective?

Chapter 2

[31]

Cross-platform building
From the 2.0 version, OSG starts to make use of a powerful build system—CMake. This
can be used to configure software compilation processes with a compiler-independent
scripting language. With simple configuration files, CMake can generate native makefiles
and workspaces that can be applied to various compilation environments and platforms.
That is why an increasing number of projects, such as KDE, VTK, Boost, MySql, and
OpenSceneGraph, choose CMake for cross-platform building.

You may download the CMake binaries or source code at:
http://www.cmake.org/cmake/resources/software.html.

After that, you may start to download the latest OSG source package or any previous version
you are interested in. Be aware that there are usually two different kinds of OSG versions:
stable releases and developer releases. For end-users, the former is preferred because
of their stability. And for software developers and community contributors, the latter will
be at the cutting edge and will always contain exciting new features, although you may
occasionally see build and runtime errors on particular platforms.

OSG uses odd minor version numbers to denote developer releases and even minor version
numbers for stable ones. For example, OpenSceneGraph 2.8 was the previous stable release
branch, based on the work that was done in the 2.7.x versions. Then the 2.9.x versions were
intermediate versions leading to the latest stable release family, named OpenSceneGraph
3.0. The patch version after the minor version number is used to denote very minor changes
and bug fixes.

Stable source code can be downloaded from:
http://www.openscenegraph.org/projects/osg/wiki/Downloads.

And for early adopters, remember to keep track of the latest developments at: http://
www.openscenegraph.org/projects/osg/wiki/Downloads/DeveloperReleases.

The link to the SVN repository, which is even more bleeding-edge but requires
a subversion client (for example, TortoiseSVN) to check out the source code:
http://www.openscenegraph.org/projects/osg/wiki/Downloads/SVN.

Starting CMake
The steps for using CMake for cross-platform compiling are nearly the same in different
system environments. In following sections, we will take Windows and Visual Studio 2010
Express as an example. The steps can be easily transposed to UNIX and Mac OS X, too.

Compilation and Installation of OpenSceneGraph

[32]

Time for action – running CMake in GUI mode
After Cmake has been installed on your system, you can run it from the command line, or
choose to run in GUI mode, which allows you to edit the options in a much easier way.

1.	 Find the executalbe cmake-gui.exe from the start menu folder and run it. A GUI
will show up with two entry panels for specifying the source and binary directories,
as well as a couple of text boxes.

2.	 To make it work with the OpenSceneGraph source code, you should first identify
the place where the source code is: drag the file CMakeLists.txt from the
OSG root directory, and drop it onto the CMake window. The contents of two
entry panels will change at the same time, and, to the same absolute path
value, which indicates that the platform-dependent workspaces or makefiles
will be generated directly in the source code directory, and the compilation
process will start at the same place, too. In short, this is an in-source build.

3.	 Conversely, an out-of-source build will export the generated files into a completely
separate directory, with the source code unchanged. For that purpose, you should
modify the path value of Where to build the binaries, and designate the expected
path. Out-of-source is always recommended because it will keep the source code
clear, and make it possible to generate multiple variants of project configurations.

Chapter 2

[33]

4.	 Assuming that you have already downloaded the OSG source code to
C:\OpenSceneGraph, and set the binary directory to C:\build_
OpenSceneGraph, as shown in the previous image, the next step is to
click on Configure, and select a suitable generator for your system in following
pop-up dialog:

5.	 Please do not specify a generator that does not exist on your system. CMake
will automatically search for an available compiler and a linker according to
your selection, and report any errors if this fails. Select Visual Studio 10, or any
other generator in the list. Beginners can download the free Visual Studio 10
(2010) Express from http://www.microsoft.com/express/Windows/.

Compilation and Installation of OpenSceneGraph

[34]

6.	 Press the Finish button to continue. After that you will see the blank text box
filling with red-highlighted building options. Choose Grouped View in the
central combo box and rearrange the options in tree structures, as shown:

7.	 Try opening a top-level tree item, for instance, the BUILD group. Now it is
time to set up building options and get ready to create your Visual Studio
10 solutions. See the section Setting up options below, for more details.

8.	 After all of the options are selected and accepted, click on Generate in order
to generate the Visual Studio solutions or UNIX makefiles,\ according to your
previous selection:

Chapter 2

[35]

9.	 Close the CMake GUI, and navigate to C:\build_OpenSceneGraph—the
predetermined place to build the binaries. If everything progressed properly, you
will find that the solution file has already been created. Open the freshly-baked
OpenSceneGraph.sln file, and start to compile OSG binaries and libraries at once!

What just happened?
CMake will generate makefiles and cache files in the Where to build the binaries
directory. The cache files are used to keep the build settings, and will remember the user's
choices for future rebuilding, which means that options don't have to be repeated if CMake
is running on the same build directory the next time.

Setting up options
There exist three kinds of options:

�� Check box: Provide an option list for the user to select. The state can be defined
as ON or OFF, each of which may lead to different additional options and building
behaviors.

�� Search box: Provide an entry panel and a file browser for the user to specify a
directory or file. It may also search the path automatically in applicable cases.
The result will be used as an include path or dependency of a project.

�� Text box: Provide an entry panel, the text value of which may work as a macro
definition or compiling flag	 .

Compilation and Installation of OpenSceneGraph

[36]

As an OSG beginner, you don't have to learn and configure all of the options immediately.
In Chapter 10, Saving and Loading Files, you will have the chance to add third-party
dependencies in order to configure some of the OSG plugins, and recompile the whole
solution again. However, at present, we will simply have a look at several important options
in the following table, and then build your first package from the source code:

Group CMake options Values Description

BUILD BUILD_OSG_APPLICATIONS ON/OFF Set to ON to build OSG utilities (osgviewer,
osgconv, etc.).

BUILD_OSG_EXAMPLES ON/OFF Set to ON to build OSG native examples, which
are great for learning advanced topics in OSG.

CMake CMAKE_BUILD_TYPE String For UNIX, the type will be Debug or Release.
For Windows, this field contains all possible
configurations, and developers can select
which one to build in Visual Studio after
opening the solution file.

CMAKE_DEBUG_POSTFIX String Sometimes it's annoying to have the
same library name for Debug and Release
configurations, because people can hardly
differentiate them at first sight. This option can
set a postfix (default is 'd') for Debug building
outputs.

CMAKE_INSTALL_PREFIX String This specifies the installation prefix, which
determines the base installation path of the
created runtime files and development files.

OSG OSG_MSVC_VERSIONED_DLL ON/OFF Use versioned names for shared libraries. In
some cases, this may not be convenient. Set to
OFF to avoid this behavior.

WIN32 WIN32_USE_DYNAMICBASE ON/OFF If you are still working with Windows 7 Beta
Version, then you users may meet a linker error
while building. This option may help to solve it.

WIN32_USE_MP ON/OFF Build with multiple processes, which can reduce
the total time to compile the source files.

Not all options are shown at the beginning. Each time you change the values and click on
Configure to update, you may see some more new options being displayed in red. Decide
whether you want to modify them or not, and press Configure again, until all of the options
turn gray.

The generating process will apply all user options when creating the build files, based on the
CMake script files, that is the CMakeLists.txt file, in each subdirectory.

Chapter 2

[37]

Generating packages using Visual Studio
The Microsoft Visual Studio IDE provides a truly high-end compiler that is used for building
binaries from source code under Windows. It uses a solution file (.sln) to organize a set
of projects. CMake will generate an OpenSceneGraph.sln file at the root of the build
directory. Open the solution file and start building OSG with the Visual Studio compiler.

Time for action – building with a Visual Studio solution
There are only two steps left in order to build the Visual Studio solution and create your
own OSG packages, which will include runtime binaries, headers, static-link libraries,
utilities, and examples.

1.	 First, select a build type (Debug, Release, RelWithDebInfo, or MinSizeRel), and build
the ALL_BUILD project. This may take an extremely long time during first-time building,
but will save a lot of time in subsequent compilations, unless you have cleared all
intermediate files and decided to rebuild the solution completely from scratch.

2.	 When the building process has finished, switch to the INSTALL project and "build"
it. The compiler will traverse a series of post-build events that install all of the
built files into the directory defined by the CMAKE_INSTALL_PREFIX option.

Compilation and Installation of OpenSceneGraph

[38]

What just happened?
Everything is done as if you are working on your own Visual Studio solutions! The only
difference is that every subproject will include an extra CMakeLists.txt file, which will
check if the source files or settings were modified in the pre-build step, and automatically
regenerate the project if necessary.

Go to your installation directory to see if all of the necessary files are already there. Then
run the osgversion and osgviewer commands in the binary directory to see if the
new package performs correctly. Do not forget to hide or uninstall the prebuilt packages
generated by the quick installer in order to avoid any confusion caused by the coexistence
of more than one binary package.

Please note that, when using Debug build type, the installed filename will have a postfix, of
d. For example, osgviewer.exe will be renamed to osgviewerd.exe, to be distinct from
the Release distribution. This behavior can be changed by setting the CMAKE_DEBUG_
POSTFIX option and re-configuring the solution.

Pop quiz – the difference between ALL_BUILD and 'build all'
Some developers may love the following steps for building their Visual Studio solutions: open
the Batch Build dialog box, select all projects in the current solution for inclusion in the batch
build, start the build process, and go and have a cup of coffee (maybe more). Do you think
this will produce the same result as using ALL_BUILD and then the INSTALL project? Will they
take the same time?

Generating packages using gcc
Most UNIX systems adopt the GNU compiler collection (gcc) as the major compiler system.
The gcc uses makefiles to build and manage projects, which is a little more complex than
Visual Studio solutions, but is extremely powerful.

Time for action – building with a UNIX makefile
With a desktop system like KDE and Gnome, a UNIX developer may execute the cmake-gui
application and work the way described above. The only difference is that the generator
should be set to Unix Makefiles, and a makefile hierarchy will be generated instead of Visual
Studio solutions.

Chapter 2

[39]

1.	 After closing the CMake GUI, start a terminal (make sure you are logged in
as root unless CMAKE_INSTALL_PREFIX has been set to a
path in the user's home directory), and then type:

	 # make

	 # make install

2.	 Built files will be exported to the specified place, usually /usr/local or the
path defined by CMAKE_INSTALL_PREFIX.

What just happened?
You will find that cmake-gui is able to work on most windowing systems, if you have
downloaded a ready-made binary package for your platform. Or you can use the
curses-based ccmake. This is a text-mode GUI with the same interface as cmake-gui.
You can set options with it visually, switch binary choices from TRUE to FALSE via the
Enter key, and then when you are done, press c for configure and g for generate. However,
on a console, the whole process should start from the cmake command-line. Take a Linux
console—for example, assuming source in /home/OpenSceneGraph and the binary
directory in /home/build_OpenSceneGraph, you may have to build OSG source code
in the following way:

cd /home/build_OpenSceneGraph

cmake -DCMAKE_BUILD_TYPE=Release ,,/OpenSceneGraph

make

make install

More options could be added as command-line arguments here.

Have a go hero – checking mis-compiled parts
So far you have finished the compilation of OSG from the source code. Before starting to use
this for future development, spend a little more time to compare the outcomes of using a
quick installer and compiling from the source code. Look into the two installation directories
and try to find if there is any difference among files and subfolders.

�� The bin subfolder contains all of the utilities and shared libraries of the core OSG, as
well as an osgPlugins-x.x.x subdirectory made up of dozens of file I/O plugins.
Here, x.x.x refers to the OSG distribution version. Note that, shared libraries and
plugins will go into the lib subfolder on UNIX.

Compilation and Installation of OpenSceneGraph

[40]

�� The include subfolder contains the C++ headers that declare the exported OSG
classes, functions, and identifiers that are usable in user applications.

�� The lib subfolder contains all of the static-link libraries that will be used as
dependencies in user applications, and import libraries when using DLLs
on Windows.

�� The share subfolder contains an OpenSceneGraph/bin subdirectory full of
example executables, all of which could be run to test various features.

Note that the osgPlugins-x.x.x subdirectory may be placed in the lib folder in
UNIX systems.

Configuring environment variables
The last but not least thing to do before programming with the installed OSG is to configure
some important environment variables. It is OK if you ignore this section and continue to the
next chapter, but understanding what environment variables do and how to make use of
them will bring about significant benefits.

Environment variables are a set of global values that may affect a program's starting
behaviors. OSG has defined a number of environment variables that can be used to change
its internal running states and display settings. Due to limited textual length, only the most
commonly-used variables are introduced here. These are automatically set for the Current
User if you are using the installer on Windows:

�� OSG_FILE_PATH identifies the location of the sample data. According to the path
value kept by it, OSG could directly find and read any file archived in the specified
path, otherwise you may have to enter an absolute path like C:/Programs
Files/OpenSceneGraph/data/cessna.osg.

�� OSG_NOTIFY_LEVEL sets a value that controls the verbosity level of debugging
messages displayed by OSG. The default value is NOTICE. We will discuss this
variable, and the notification mechanism, in more detail in Chapter 3, Creating
Your First OSG Program.

�� OSG_ROOT is not used by OSG itself. It defines the OSG installation path,
which is quite useful for other independent projects that use OSG and the
CMake build system.

To set environment variables manually, you can either change the profiles for permanent
modification, or start the command-line shell for temporary changes during set-up. On
Windows, an environment variable dialog can be found by right-clicking the My Computer
icon and selecting Properties | Advanced, but to set a temporary one you can type set
VARIABLE=value in the shell before running the application. On UNIX, use start-up profiles
and the export/setenv commands instead.

Chapter 2

[41]

Summary
This chapter taught us how to compile, install, and configure an OSG development
environment, either by using the prebuilt binaries or completely from the source code.
It also illustrated how to make use of the application utilities provided by the OSG
distribution.

More specifically, in this chapter we covered:

�� The minimum system requirements for building up an OSG development
environment

�� How to utilize the quick installer in order to set up an OSG development
environment in a very efficient manner

�� How to set up an OSG development environment from the source code
and the CMake tools on different operating systems

�� How to use the scene graph viewer and converter that are distributed with OSG

We have also discussed how to configure environment variables in order to facilitate future
programming. Now you are ready to create your first OSG program.

3
Creating Your First

OSG Program

This chapter demonstrates a common method to create your own OSG
applications. The CMake build system, which has already been discussed in
the last chapter, will be used for quickly generating solutions and makefiles on
different platforms. The native memory management mechanism of OSG is also
explained in detail, which is designed to avoid memory leaks at run-time, OSG
also supports a refined argument parser and a debugging message notifier,
both of which will be introduced.

In this chapter, we will:

�� Show how to build and run your first OSG program with the CMake tool

�� Discuss the utilization of OSG native smart pointers for automatic garbage collection
and memory deallocation

�� Introduce the argument parser that will read arguments from the command line

�� Work with the message notifier tool to trace and debug OSG programs

Creating Your First OSG Program

[44]

Constructing your own projects
To build an executable program from your own source code, a platform-dependent solution
or makefile is always required. For Windows developers, we have already introduced
a project wizard tool in the last chapter. But this doesn't work for UNIX and Mac OS X
developers, or even those who are using MinGW and Cygwin under Windows.

At the beginning of this chapter, we are going to introduce another way to construct
platform-independent projects with the CMake system, by which means, we are able to
focus on interacting with the code and ignore the painstaking compiling and building process.

Time for action – building applications with CMake
Before constructing your own project with CMake scripts, it could be helpful to keep
the headers and source files together in an empty directory first. The second step is
to create a CMakeLists.txt file using any text editor, then and start writing some simple
CMake build rules.

1.	 The following code will implement a project with additional OSG headers
and dependency libraries. Please enter them into the newly-created
CMakeLists.txt file:

cmake_minimum_required(VERSION 2.6)
project(MyProject)

find_package(OpenThreads)
find_package(osg)
find_package(osgDB)
find_package(osgUtil)
find_package(osgViewer)

macro(config_project PROJNAME LIBNAME)
 include_directories(${${LIBNAME}_INCLUDE_DIR})
 target_link_libraries(${PROJNAME} ${${LIBNAME}_LIBRARY})
endmacro()

add_executable(MyProject main.cpp)
config_project(MyProject OPENTHREADS)
config_project(MyProject OSG)
config_project(MyProject OSGDB)
config_project(MyProject OSGUTIL)
config_project(MyProject OSGVIEWER)

Chapter 3

[45]

2.	 We have only added a main.cpp source file here, which is made up of the "Hello
World" example and will be compiled to generate an executable file named
MyProject. This small project depends on five major OSG components. All of
these configurations can be modified to meet certain requirements and different
user applications, as explained in the following chapters.

3.	 Next, start cmake-gui and drag your CMakeLists.txt into the GUI. You may not
be familiar with the CMake scripts to be executed, at present. However, the CMake
wiki will be helpful for further understanding: http://www.cmake.org/Wiki/
CMake.

4.	 Follow the step-by-step instructions provided in the last chapter to create and build
a Visual Studio solution or a makefile.

5.	 The only point is that you have to ensure that your CMake software version is
equal to or greater than 2.6, and make sure you have the OSG_ROOT environment
variable set. Otherwise, the find_package() macro may not be able to find
OSG installations correctly. The following image shows the unexpected errors
encountered because OSG headers and libraries were not found in the path
indicated by OSG_ROOT (or the variable was just missed):

Creating Your First OSG Program

[46]

6.	 Note that, there is no INSTALL project in the Visual Studio solution, or any make
install command to run at this time, because we don't write such CMake scripts
for post-build installations. You could just run the executable file in the build
directory directly.

What just happened?
CMake provides easy-to-read commands to automatically find dependencies for user
projects. It will check preset directories and environment variables to see if there are any
headers and libraries for the required package.

The environment variable OSG_ROOT (OSG_DIR is OK, too) will facilitate in looking for OSG
under Windows and UNIX, as CMake will first search for valid paths defined in it, and check if
there are OSG prebuilt headers and libraries existing in these paths.

Pop quiz – configuring OSG path options yourselves
Your CMake may not be able to find the OSG headers and development files for special
reasons, for instance, the headers and libraries may be placed in different places, or you just
intend to use a distribution different from the one set by OSG_ROOT or OSG_DIR.

Can you set CMake options yourselves at this time? There are often three options in each
OSG-related group (OPENTHREADS, OSG, OSGDB, and so on), such as OSG_INCLUDE_DIR,
OSG_LIBRARY, and OSG_LIBRARY_DEBUG. What do they mean, in your opinion?

Have a go hero – testing with different generators
Just try a series of tests to generate your project, using Visual Studio, MinGW, and the UNIX
gcc compiler. You will find that CMake is a convenient tool for building binary files from
source code on different platforms. Maybe this is also a good start to learning programming
in a multi-platform style.

Using a root node
Now we are going to write some code and build it with a self-created CMake script. We will
again make a slight change to the frequently-used "Hello World" example.

Chapter 3

[47]

Time for action – improving the "Hello World" example
The included headers, <osgDB/ReadFile> and <osgViewer/Viewer>, do not need to be
modified. We only add a root variable that provides the runtime access to the Cessna model
and assigns it to the setSceneData() method.

1.	 In the main entry, record the Cessna model with a variable named root:

osg::ref_ptr<osg::Node> root = osgDB::readNodeFile("cessna.osg");
osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

2.	 Build and run it at once:

3.	 You will see no difference between this example and the previous "Hello World". So
what actually happened?

What just happened?
In this example, we introduced two new OSG classes: osg::ref_ptr<> and osg::Node.
The osg::Node class represents the basic element of a scene graph. The variable root
stands for the root node of a Cessna model, which is used as the scene data to be visualized.

Meanwhile, an instance of the osg::ref_ptr<> class template is created to manage the
node object. It is a smart pointer, which provides additional features for the purpose of
efficient memory management.

Creating Your First OSG Program

[48]

Understanding memory management
In a typical programming scenario, the developer should create a pointer to the root
node, which directly or indirectly manages all other child nodes of the scene graph. In
that case, the application will traverse the scene graph and delete each node and its
internal data carefully when they no longer need to be rendered. This process is tiresome
and error-prone, debugging dozens of bad trees and wild pointers, because developers can
never know how many other objects still keep a pointer to the one being deleted. However
without writing the management code, data segments occupied by all scene nodes will never
be deleted, which will lead to unexpected memory leaks.

This is why memory management is important in OSG programming. A basic concept
of memory management always involves two topics:

1.	 Allocation: Providing the memory needed by an object, by allocating the
required memory block.

2.	 Deallocation: Recycling the allocated memory for reuse, when its data is no
longer used.

Some modern languages, such as C#, Java, and Visual Basic, use a garbage collector to free
memory blocks that are unreachable from any program variables. That means to store the
number of objects reaching a memory block, and deallocate the memory when the number
decrements to zero.

The standard C++ approach does not work in such a way, but we can mimic it by means
of a smart pointer, which is defined as an object that acts like a pointer, but is much
smarter in the management of memory. For example, the boost library provides the
boost::shared_ptr<> class template to store pointers in order to dynamically allocated
related objects.

ref_ptr<> and Referenced classes
Fortunately, OSG also provides a native smart pointer, osg::ref_ptr<>, for the purpose of
automatic garbage collection and deallocation. To make it work properly, OSG also provides
the osg::Referenced class to manage reference-counted memory blocks, which is used as
the base class of any classes that may serve as the template argument.

The osg::ref_ptr<> class template re-implements a number of C++ operators as well
as member functions, and thus provides convenient methods to developers. Its main
components are as follows:

�� get(): This public method returns the managed pointer, for instance, the
osg::Node* pointer if you are using osg::Node as the template argument.

Chapter 3

[49]

�� operator*(): This is actually a dereference operator, which returns l-value at the
pointer address, for instance, the osg::Node& reference variable.

�� operator->() and operator=(): These operators allow a user application to
use osg::ref_ptr<> as a normal pointer. The former calls member functions
of the managed object, and the latter replaces the current managed pointer with
a new one.

�� operator==(), operator!=(), and operator!(): These operators help to
compare smart pointers, or check if a certain pointer is invalid. An osg::ref_
ptr<> object with NULL value assigned or without any assignment is considered
invalid.

�� valid(): This public method returns true if the managed pointer is not NULL.
The expression some_ptr.valid() equals to some_ptr!=NULL if some_ptr is
defined as a smart pointer.

�� release(): This public method is useful when returning the managed address from
a function. It will be discussed later.

The osg::Referenced class is the pure base class of all elements in a scene graph, such
as nodes, geometries, rendering states, and any other allocatable scene objects. The
osg::Node class actually inherits from osg::Referenced indirectly. This is the reason
why we program as follows:

 osg::ref_ptr<osg::Node> root;

The osg::Referenced class contains an integer number to handle the memory block
allocated. The reference count is initialized to 0 in the class constructor, and will be increased
by 1 if the osg::Referenced object is referred to by an osg::ref_ptr<> smart pointer.
On the contrary, the number will be decreased by 1 if the object is removed from a certain
smart pointer. The object itself will be automatically destroyed when no longer referenced
by any smart pointers.

The osg::Referenced class provides three main member methods:

�� The public method ref() increases the referenced counting number by 1

�� The public method unref() decreases the referenced counting number by 1

�� The public method referenceCount() returns the value of the current
referenced counting number, which is useful for code debugging

These methods could also work for classes that are derived from osg::Referenced.
Note that it is very rarely necessary to call ref() or unref() directly in user programs,
which means that the reference count is managed manually and may conflict with what the
osg::ref_ptr<> is going to do. Otherwise, OSG's internal garbage collecting system will
get the wrong number of smart pointers in use and even crash when managing memory
blocks in an improper way.

Creating Your First OSG Program

[50]

Collecting garbage: why and how
Here are some reasons for using smart pointers and the garbage collection system
in programming:

�� Fewer bugs: Using smart pointers means the automatic initialization and cleanup
of pointers. No dangling pointers will be created because they are always
reference-counted.

�� Efficient management: Objects will be reclaimed as soon as they are no
longer referenced, which gives more available memory to applications with
limited resources.

�� Easy to debug: We can easily obtain the referenced counting number and other
information on objects, and then apply other optimizations and experiments.

For instance, a scene graph tree is composed by a root node and multiple levels of child
nodes. Assuming that all children are managed with osg::ref_ptr<>, user applications
may only keep the pointer to the root node. As is illustrated by the following image, the
operation of deleting the root node pointer will cause a cascading effect that will destroy
the whole node hierarchy:

Each node in the example scene graph is managed by its parent, and will automatically be
unreferenced during the deletion of the parent node. This node, if no longer referenced by
any other nodes, will be destroyed immediately, and all of its children will be freed up. The
entire scene graph will finally be cleaned without worries after the last group node or leaf
node is deleted.

The process is really convenient and efficient, isn't it? Please make sure the OSG smart
pointer can work for you, and use a class derived from osg::Referenced as the
osg::ref_ptr<> template argument, and correctly assign newly-allocated objects to
smart pointers.

A smart pointer can be used either as a local variable, a global variable, or a class member
variable, and will automatically decrease the referenced counting number when reassigned
to another object or moved out of the smart pointer's declaration scope.

Chapter 3

[51]

It is strongly recommended that user applications always use smart pointers to manage
their scenes, but there are still some issues that need special attention:

�� osg::Referenced and its derivatives should be created from the heap only.
They cannot be used as local variables because class destructors are declared
protected internally for safety. For example:

osg::ref_ptr<osg::Node> node = new osg::Node; // this is legal
osg::Node node; // this is illegal!

�� A regular C++ pointer is still workable temporarily. But user applications should
remember to assign it to osg::ref_ptr<> or add it to a scene graph element
(almost all OSG scene classes use smart pointers to manage child objects) in the
end, as it is always the safest approach.

osg::Node* tmpNode = new osg::Node; // this is OK
…
osg::ref_ptr<osg::Node> node = tmpNode; // Good finish!

�� Don't play with reference cycles, as the garbage collecting mechanism cannot
handle it. A reference cycle means that an object refers to itself directly or indirectly,
which leads to an incorrect calculation of the referenced counting number.

The scene graph shown in the following image contains two kinds of reference cycles, which
are both invalid. The node Child 1.1 directly adds itself as the child node and will form a
dead cycle while traversing to its children, because it is the child of itself, too! The node
Child 2.2, which also makes a reference cycle indirectly, will cause the same problem while
running:

Now let's have a better grasp of the basic concepts of memory management, through a very
simple example.

Creating Your First OSG Program

[52]

Tracing the managed entities
The main point that we are interested in is how osg::ref_ptr<> binds and handles an
osg::Referenced object, and when the managed object will be destroyed. What we have
already learnt is: the managed object will be automatically destroyed when it is no longer
referenced by any smart pointers, or when its referrer is out of the declaration scope. Now
let's see how this is performed in practice.

Time for action – monitoring counted objects
We will first declare a customized class that is derived from osg::Referenced. This can
benefit from the garbage collecting system by using the smart pointer. After that, let's take
a look at the initialization and cleanup procedures of our referenced objects.

1. Include the necessary headers:

#include <osg/ref_ptr>
#include <osg/Referenced>
#include <iostream>

2. Define the customized MonitoringTarget class with a unique name, _id. We will
simply use the standard output to print out verbose information when constructing
and destructing:

class MonitoringTarget : public osg::Referenced
{
public:
 MonitoringTarget(int id) : _id(id)
 { std::cout << "Constructing target " << _id << std::endl; }

protected:
 virtual ~MonitoringTarget()
 { std::cout << "Destroying target " << _id << std::endl; }

 int _id;
};

3. In the main function, we will first create a new MonitoringTarget object, and
assign it to two different smart pointers, target and anotherTarget, and see if
the referenced count changed:

osg::ref_ptr<MonitoringTarget> target = new MonitoringTarget(0);
std::cout << "Referenced count before referring: "
 << target->referenceCount() << std::endl;
osg::ref_ptr<MonitoringTarget> anotherTarget = target;
std::cout << "Referenced count after referring: "
 << target->referenceCount() << std::endl;

Chapter 3

[53]

4.	 A second experiment is to create new objects in a cycle, but never delete them.
Do you think this will cause memory leaks or not?

for (unsigned int i=1; i<5; ++i)
{
 osg::ref_ptr<MonitoringTarget> subTarget =
 new MonitoringTarget(i);
}

5.	 The result is printed as shown in the following screenshot. As the construction
and destruction processes both write to the standard output, a list of texts will
be produced in the console.

What just happened?
A new MonitoringTarget object was created with the ID 0 and assigned to the smart
pointer target. Another smart pointer, anotherTarget, immediately refers to the
target and thus increases the referenced count of the MonitoringTarget object to 2,
which means that the object is referenced by two smart pointers at the same time. It
won't be deleted until all referrers are redirected or destroyed, as illustrated:

Creating Your First OSG Program

[54]

After that, we were going to try constructing MonitoringTarget objects with the ID 1
to 4 in a cycle. Every time, the allocated object was set to an osg::ref_ptr<> pointer,
but without any explicit deletion. You will notice that the MonitoringTarget object was
automatically deleted at the end of each loop, and would never cause memory leaks.

Another interesting issue is to decide the best time to actually delete an unreferenced
object. Most osg::Referenced-based classes define their destructors as protected
members, so the C++ delete operator can't be used directly in user programs. The deletion
process will be performed internally when the reference count decreases to 0. But this
may still cause serious problems if some other threads are working on the object at the
same time when it is being deleted. That is to say, the garbage collecting system may not be
thread-safe for massive use!

Fortunately, OSG has already provided an object deletion scheduler in response to the
problem. This deletion scheduler, named osg::DeleteHandler, will not perform the
deleting operation at once, but defer it for a while. All objects to be deleted will be stored
temporarily, until it is a safe time to release them. The osg::DeleteHandler class is
managed by the OSG rendering backend. User applications should always pay little attention
to this class, unless you have to implement another deletion handler yourselves, some day.

Have a go hero – returning from a function
We have already mentioned that there is a release() method that can be used when
returning from a function. The following code will tell more about its usage:

MonitoringTarget* createMonitoringTarget(unsigned int id)
{
osg::ref_ptr<MonitoringTarget> target = new
 MonitoringTarget(i);
return target.release();
}

Try replacing the new MonitoringTarget(i) statements in the last example with this
function. It is for the purpose of returning from a function and has no side effects.

Pop quiz – release a smart pointer
The release() method of osg::ref_ptr<> will prevent the smart pointer from
managing the memory that it points to. In the function mentioned in the Have a go hero
section, release() will first decrease the reference count to 0. After that, instead of
deleting the memory, it directly returns the actual pointer. As long as the calling code stores
the returned pointer in another osg::ref_ptr<>, there will be no memory leaks.

Chapter 3

[55]

So, what will happen if the function returns target.get() instead of target.release()?
Can you figure out why release() is always preferred for returning the allocated address in a
function?

Parsing command-line arguments
Command-line arguments to the main function define different parameters for user
applications. The main function declaration always looks like this:

int main(int argc, char** argv);

The argc and argv arguments form a string array containing the application name and
other necessary arguments. OSG provides a fast and safe osg::ArgumentParser to read
and make use of them.

Time for action – reading the model filename from the
command line

The most common public method of osg::ArgumentParser is the overloaded read()
function. In this example, we are going to read command-line arguments with a special
format and apply the parsing result to the osgDB::readNodeFile() function.

1.	 Include the necessary headers:

#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2.	 In the main function, try reading --model and the filename from the
input arguments:

osg::ArgumentParser arguments(&argc, argv);
std::string filename;
arguments.read("--model", filename);

3.	 Read Node from the specified file and initialize the viewer. This is very similar to
some previous examples except that it replaces the const string "Cessna.osg"
with a std::string variable:

osg::ref_ptr<osg::Node> root = osgDB::readNodeFile(filename);
osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

Creating Your First OSG Program

[56]

4.	 Build and start this example! Assuming that your executable file is MyProject.exe,
type the following command in the prompt:

	 # MyProject.exe --model dumptruck.osg

5.	 We will see more than a Cessna model now. It is a dump truck loaded from the
disk! Please be aware that you should have the OSG sample data installed, and
the environment variable OSG_FILE_PATH set.

What just happened?
The dump truck model is loaded and rendered on the screen. Here, the most important
point is that the filename dumptruck.osg is obtained from the command-line argument.
The read() function, which consists of a format string parameter and a result parameter,
helps to successfully find the first occurrence of the user-defined option --model and the
filename argument that follows.

The read() function of the osg::ArgumentParser class is overloaded. You may obtain
integers, float and double values, and even mathematical vectors, in addition to strings,
from its parameters. For instance, to read a customized option --size with a single
precision value from the command line, just use the following code:

float size = 0.0f;
arguments.read("--size", size);

The initial value of size will not be changed if there is no such argument, --size.

Chapter 3

[57]

Tracing with the notifier
The OSG notifier mechanism provides a novel method of outputting verbose debugging
messages, either from the OSG rendering backend or from the user level. It is really an
important and time-honored method for tracing and debugging programs. In addition, the
notifier is also used throughout the OSG core functionalities and plugins to show errors,
warning messages, or information about the work in progress. Developers may simply
insert debugging print functions liberally in the source code files. The print function,
osg::notify(), is designed to accept different levels of messages and send them to the
console or user-defined controllers.

The osg::notify() function can be used as the standard output stream std::cout. It
requires a NotifySeverity argument to indicate the message level, which can be ALWAYS,
FATAL, WARN, NOTICE, INFO, DEBUG_INFO, and DEBUG_FP, sorted from the most severity
to the least. For instance:

osg::notify(osg::WARN) << "Some warn message." << std::endl;

This will print out a line of the warning message by default. Here osg::WARN is used to
indicate the notify level to the OSG notifier system.

A series of macro definitions, such as OSG_FATAL, OSG_WARN, and OSG_NOTICE, will do the
same work as the osg::notify() function, with different severity levels.

Redirecting the notifier
The OSG output message always includes important information about the running
state, graphics system extensions, and possible problems in the OSG backend and user
applications. This is also important as a reference source for debugging OSG-based programs.

In some cases, there is no console output in an application, which prevents us from
reading notifier messages and finding possible bugs. However, the osg::NotifyHandler
derived class can be used to redirect the notifier to another output stream, such as files
or GUI widgets.

Creating Your First OSG Program

[58]

Time for action – saving the log file
We will make use of the std::ofstream class to redirect the OSG internal notify messages
to an external log file. The virtual function notify() of the osg::NotifyHandler derived
class should be overridden to apply standard file stream operations, and a global function
osg::setNotifyHandler() is called before everything starts as well.

1.	 Include the necessary headers:

#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
#include <fstream>

2.	 Implement the derived class LogFileHandler, which will redirect notify messages
to the file stream:

class LogFileHandler : public osg::NotifyHandler
{
public:
 LogFileHandler(const std::string& file)
 { _log.open(file.c_str()); }
 virtual ~LogFileHandler() { _log.close(); }

 virtual void notify(osg::NotifySeverity severity,
 const char* msg)
 { _log << msg; }

protected:
 std::ofstream _log;
};

3.	 Now set a new notify handler to the entire OSG system, and work under the INFO
level to see more verbose messages. The function osgDB::readNodeFiles here
directly reads all usable filenames from the command line and merges them into
the root node. We also add an OSG_FATAL macro to check if there is no scene graph
data loaded:

int main(int argc, char** argv)
{
 osg::setNotifyLevel(osg::INFO);
 osg::setNotifyHandler(new LogFileHandler("output.txt"));

 osg::ArgumentParser arguments(&argc, argv);
 osg::ref_ptr<osg::Node> root = osgDB::readNodeFiles(
 arguments);
 if (!root)

Chapter 3

[59]

 {
 OSG_FATAL << arguments.getApplicationName()
 <<": No data loaded." << std::endl;
 return -1;
 }

 osgViewer::Viewer viewer;
 viewer.setSceneData(root.get());
 return viewer.run();
}

4.	 Build and start the example. All information will be saved in the log file
output.txt, which is also indicated in the example. Try the command line
with the newly-generated executable MyProject.exe this time:

MyProject.exe dumptruck.osg

5.	 Press the Esc key to quit, and then open the resulting log file in the working
directory with notepad (on Windows) or any text editor:

6.	 Don't be discouraged if you can't read and understand all of the information listed
here. It only shows how OSG is starting and getting every part to work properly. It
will be of great help in future development.

Creating Your First OSG Program

[60]

What just happened?
By default, OSG will send messages to the standard output stream std::cout and error
stream std::cerr. However, these messages can be easily redirected to other streams and
even the GUI text windows. A log file here is friendly to end users and helps them a lot, while
sending feedbacks.

Besides, setting the osg::setNotifyLevel() function will make the notify level reset to
the specified level or a higher level. The notifier system then ignores statements from lower
levels and prints nothing to the output stream. For instance, assuming that you have the
following lines in your application:

osg::setNotifyLevel(osg::FATAL);
…
osg::notify(osg::WARN) << "Some warn message." << std::endl;

The message with the notifier level lower than FATAL will not be printed any more.

The environment variable OSG_NOTIFY_LEVEL, which was mentioned in the previous
chapter, can be used to control the displayed message level, too, for any OSG-based
applications.

Summary
This chapter provided a simple guide to creating your own simple OSG program with the
CMake tool, and introduced some practical utilities. OSG uses smart pointers heavily for
efficient manipulation of operating system resources allocated for each scene graph node
at run time, which is crucial to the performance of these safety-critical programs. To help
understand the working principle of smart pointers, we spent much of the chapter explaining
the use of osg::ref_ptr<> and how to calculate the referenced count, and discussing
various situations that may occur when managing OSG scene elements.

In this chapter, we specifically covered:

�� How to write a simple CMake script file and make it work with your own source
code and OSG dependencies

�� The principle of smart pointers and the garbage collection mechanism of OSG

�� Advantages and notes on using the native smart pointers with scene graph objects

�� Some other useful classes and functions for parsing command-line arguments, and
tracing and debugging your source code

4
Building Geometry Models

The basic operation of OpenGL's graphical pipeline is to accept vertex data
(points, lines, triangles, and polygons) and pixel data (graphical image
data), convert them into fragments and store them in the frame buffer.
The frame buffer serves as a major interface between developers and the
computer display, which maps each frame of graphic contents into memory
space for read-write operation. OSG encapsulates the whole OpenGL vertex
transformation and primitive assembly operations in order to manage and
send vertex data to the OpenGL pipeline, as well as some data transmission
optimizations and additional polygonal techniques for improving rendering
performance.

In this chapter, we just focus on how to draw and render geometry models through a fast
path, and will cover the following topics:

�� How to quickly draw basic objects with a few necessary parameters

�� How to set vertices and vertex attribute arrays to construct a geometry object

�� The reason and methods of indexing vertex data with primitives

�� How to make use of different polygon techniques to optimize rendering

�� How to get access to geometry attributes and primitives

�� Integrate OpenGL drawing calls into your OSG-based applications

Building Geometry Models

[62]

How OpenGL draws objects
OpenGL uses geometry primitives to draw different objects in the 3D world. A geometry
primitive, which may be a set of points, lines, triangles, or polygonal faces, determines how
OpenGL sorts and renders its associated vertex data. The easiest way to render a primitive
is to specify a list of vertices between the glBegin() and glEnd() pair, which is called
immediate mode, but it is inefficient in most cases.

The vertex data, including vertex coordinates, normals, colors, and texture coordinates, can
also be stored in various arrays. Primitives will be formed by dereferencing and indexing the
array elements. This method, named vertex array, reduces redundant shared vertices and
thus performs better than immediate mode.

Display lists also significantly improve application performance, because all vertex and pixel
data are compiled and copied into the graphics memory. The prepared primitives can be
reused repeatedly, without transmitting data over and over again. It helps a lot in drawing
static geometries.

The vertex buffer object (VBO) mechanism allows vertex array data to be stored in
high-performance memory. This provides a more efficient solution for transferring
dynamic data.

By default, OSG uses vertex arrays and display lists to manage and render geometries.
However, this may change depending on different data types and rendering strategies.

We would like to also call attention to the removal of immediate mode and display lists
in OpenGL ES and OpenGL 3.x, for the purpose of producing a more lightweight interface.
Of course OpenGL 3.x and further versions will keep these deprecated APIs for backward
compatibility. However, they are not recommended to be used in new code.

Geode and Drawable classes
The osg::Geode class corresponds to the leaf node of a scene graph. It has no child
nodes, but always contains geometry information for rendering. Its name Geode is short
for geometry node.

The geometry data to be drawn are stored in a set of osg::Drawable objects managed
by osg::Geode. The non-instantiatable osg::Drawable class is defined as a pure virtual
class. It has several subclasses for rendering models, images, and texts to the OpenGL
pipeline. These renderable elements are collectively called drawables.

Chapter 4

[63]

The osg::Geode class provides a few methods to attach and detach drawables, as well as
collect information about them:

1.	 The public method addDrawable() takes an osg::Drawable pointer as its
parameter and attaches a drawable to the osg::Geode instance. All drawables
added are internally managed by the osg::ref_ptr<> smart pointer.

2.	 The public methods removeDrawable() and removeDrawables() will detach
one or more drawables from the current osg::Geode object, and decrease their
referenced counting number as well. The removeDrawable() method uses an
osg::Drawable pointer as the only parameter, and removeDrawables() accepts
two parameters: the zero-based index of the start element, and number of elements
to be removed.

3.	 The getDrawable() method returns the osg::Drawable object stored at the
specified zero-based index.

4.	 The getNumDrawables() method returns the total number of attached
drawables. Developers are then able to traverse each drawable in a cycle with
the getDrawable() method, or remove all drawables at once by using the
following code:

geode->removeDrawables(0, geode->getNumDrawables());

Rendering basic shapes
OSG provides an osg::ShapeDrawable class, which inherits from the osg::Drawable
base class, to render basic geometry shapes quickly with plain parameters. An
osg::ShapeDrawable instance always includes an osg::Shape object to indicate the
specified geometry's type and properties.

The setShape() method is usually used to allocate and set a shape. For example:

shapeDrawable->setShape(new osg::Box(osg::Vec3(1.0f, 0.0f, 0.0f),
 10.0f, 10.0f, 5.0f));

It will assign a box with a center point at (1.0, 0.0, 0.0) in its local coordinate space, width
and height of 10, and depth of 5. Here, the class osg::Vec3 represents a three-element
vector in OSG. Other predefined classes such as osg::Vec2 and osg::Vec4 will also help
when defining vertices, colors, normals, and texture coordinates.

Note that osg::Vec3 means a float type vector, and osg::Vec3d means a double type
one, as do osg::Vec2 and osg::Vec2d, osg::Vec4 and osg::Vec4d, and so on.

The most frequently used basic shapes defined in OSG are: osg::Box, osg::Capsule,
osg::Cone, osg::Cylinder, and osg::Sphere. Their appearances can be well defined
by passing parameters directly to constructors.

Building Geometry Models

[64]

Time for action – quickly creating simple objects
It is easy to create simple objects by using an osg::Shape subclass. We will take three
typical shapes as examples: a box with different width, height, and depth values, a sphere
with a radius value, and a cone with a radius and a height.

1.	 Include necessary headers:

#include <osg/ShapeDrawable>

#include <osg/Geode>

#include <osgViewer/Viewer>

2.	 Add three osg::ShapeDrawable objects successively, each with a type of basic
shape. We set these shapes to different positions to make them visible to viewers
at the same time, and for the reason of distinguishing them from each other, we
color the latter two shapes green and respectively, blue by using the setColor()
method of osg::ShapeDrawable:

osg::ref_ptr<osg::ShapeDrawable> shape1 = new osg::ShapeDrawable;

shape1->setShape(new osg::Box(osg::Vec3(-3.0f, 0.0f, 0.0f),

 2.0f, 2.0f, 1.0f));

osg::ref_ptr<osg::ShapeDrawable> shape2 = new osg::ShapeDrawable;

shape2->setShape(new osg::Sphere(osg::Vec3(3.0f, 0.0f, 0.0f),

 1.0f));

shape2->setColor(osg::Vec4(0.0f, 0.0f, 1.0f, 1.0f));

osg::ref_ptr<osg::ShapeDrawable> shape3 = new osg::ShapeDrawable;

shape3->setShape(new osg::Cone(osg::Vec3(0.0f, 0.0f, 0.0f),

 1.0f, 1.0f));

shape3->setColor(osg::Vec4(0.0f, 1.0f, 0.0f, 1.0f));

3.	 An osg::Geode object is created, and all the drawables are added to it.
Note that the drawables and the geometry node are all managed by the
osg::ref_ptr<> smart pointer here. The osg::Geode object is finally
used as the scene root of the viewer:

osg::ref_ptr<osg::Geode> root = new osg::Geode;

root->addDrawable(shape1.get());

root->addDrawable(shape2.get());

root->addDrawable(shape3.get());

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

Chapter 4

[65]

4. Now it's time to see if these shapes are rendered properly. We don't have to
care about the actual drawing work of vertex positions, normals, and colors
here, which brings convenience for debugging and quick shape viewing:

What just happened?
The osg::ShapeDrawable class is useful for quick display, but it is not an efficient
way of drawing geometry primitives. It should only be used for quick prototyping and
debugging when you develop 3D applications. To create geometries with high performance
computation and visualization requirements, the osg::Geometry class, which is going to be
introduced, is always a better choice.

OSG has an internal osg::GLBeginEndAdapter class that is used to perform basic shape
drawing operations. This class enables the use of vertex arrays in the style of a glBegin()
and glEnd() pair, which makes the implementation of basic shapes easy to understand
and extend.

To get and use an initialized osg::GLBeginEndAdapter object, you should
define a class derived from the osg::Drawable base class and re-implement its
drawImplementation() method, and start programming as if you are writing the classic
OpenGL 1.0 drawing calls:

void drawImplementation(osg::RenderInfo& renderInfo) const
{
 osg::GLBeginEndAdapter& gl =
 renderInfo.getState()->getGLBeginEndAdapter();
 gl.Begin(…);
 gl.Vertex3fv(…);
 gl.End();
}

More information about re-implementing the osg::Drawable class can be found in the
Implementing your own drawables section of this chapter.

Building Geometry Models

[66]

Storing array data
As already mentioned in earlier chapters, OSG supports vertex arrays and VBO to speed
up the rendering process. To manage the vertex data used in these two mechanisms, OSG
defines a basic osg::Array class and a few derived classes for commonly used array and
index array types.

The osg::Array class can't be instantiated, but it declares interfaces to exchange
with OpenGL calls and buffer data modifiers. Its subclasses (osg::Vec2Array,
osg::Vec3Array, osg::UIntArray, etc.) inherit the characteristics of the Standard
Template Library vector class, and can thus make use of all of the std::vector members,
including push_back(), pop_back(), size(), and STL algorithms and iterators.

The following code will add a three-element vector to an existing osg::Vec3Array object
named vertices:

vertices->push_back(osg::Vec3(1.0f, 0.0f, 0.0f));

The OSG built-in array classes should be allocated from heap and managed by smart
pointers. However, it is not necessary for the array elements such as osg::Vec2 and
osg::Vec3 to follow this rule, as they are very basic data types.

The osg::Geometry class acts as the high-level wrapper of the OpenGL vertex array
functionality. It records different types of arrays and manages a geometry primitive set to
render these vertex data in an orderly manner. It is derived from osg::Drawable class and
can be added to an osg::Geode object at any time. This class accepts arrays as basic data
carriers and uses them to produce simple or complex geometry models.

Vertices and vertex attributes
The Vertex is the atomic element of geometry primitives. It uses several numeric attributes
to describe a point in 2D or 3D spaces, including vertex position, color, normal and texture
coordinates, fog coordinate, and so on. The position value is always required, and other
attributes will help to define the nature of the point. OpenGL accepts up to 16 generic
attributes to be specified per vertex, and can create different arrays in which to store
each of them. All attribute arrays are supported by the osg::Geometry class with the
corresponding set*Array() methods.

Chapter 4

[67]

A table of built-in vertex attributes in OpenGL is listed below:

Attribute Suggested
data type

osg::Geometry method Equivalent OpenGL call

Position 3D vectors setVertexArray() glVertexPointer()

Normal 3D vectors
normalized
to the range
[0, 1]

setNormalArray() glNormalPointer()

Color 4D vectors
normalized
to the range
[0, 1]

setColorArray() glColorPointer()

Secondary
color

4D vectors
normalized
to the range
[0, 1]

setSecondaryColorArray() glSecondaryColor
PointerEXT()

Fog
coordinate

Float values setFogCoordArray() glFogCoordPointerEXT()

Texture
coordinates

2D or 3D
vectors

setTexCoordArray() glTexCoordPointer()

Other
general
attributes

User-defined
values

setVertexAttribArray() glVertexAttrib
PointerARB()

A vertex usually contains eight texture coordinates and three general attributes in current
OpenGL graphics systems. In principle, each vertex should set all of its attributes to certain
values, and form a set of arrays with exactly the same size; otherwise the undefined ones
may cause unexpected problems. OSG provides binding methods to make the work more
convenient. For instance, developers may call the public method setColorBinding() of
an osg::Geometry object geom, and take an enumerate as the parameter:

geom->setColorBinding(osg::Geometry::BIND_PER_VERTEX);

This indicates that the color and the vertex are put into a one-to-one relationship. However,
see the following code:

geom->setColorBinding(osg::Geometry::BIND_OVERALL);

It will apply a single color value to the entire geometry. There are setNormalBinding(),
setSecondaryColorBinding(), setFogCoordBinding(), and
setVertexAttribBinding(), which do the similar work for other attribute types.

Building Geometry Models

[68]

Specifying drawing types
The next step after setting vertex attribute arrays is to tell the osg::Geometry object
how to render them. The virtual base class osg::PrimitiveSet is used to manage a
geometry primitive set which records the rendering order information of vertices. The
osg::Geometry provides a few public methods to operate on one or more primitive sets:

1.	 The addPrimitiveSet() method takes an osg::PrimitiveSet pointer
as the parameter and attaches a primitive set to the osg::Geometry object.

2.	 The removePrimitiveSet() requires a zero-based index parameter and
the number of primitive sets to remove. It will remove one or more attached
primitive sets.

3.	 The getPrimitiveSet() returns the osg::PrimitiveSet pointer at the
specified index.

4.	 The getNumPrimitiveSets() returns the total number of primitive sets.

The osg::PrimitiveSet class is unable to be instantiated directly, but it brings
out a few subclasses that are used to encapsulate OpenGL's glDrawArrays()
and glDrawElements() entries, for example osg::DrawArrays and
osg::DrawElementsUInt.

The osg::DrawArrays class uses a number of sequential elements from vertex arrays
to construct a sequence of geometry primitives. It can be created and attached to an
osg::Geometry object geom via the following declaration:

geom->addPrimitiveSet(new osg::DrawArrays(mode, first, count));

The first parameter mode specifies what kind of primitives to render. Like the OpenGL
glDrawArrays() entry, osg::DrawArrays usually accepts ten kinds of primitives:
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_
TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON.

The second and third parameters indicate that the primitive set begins at index first and
has count elements altogether. Developers should make sure that there are at least first +
count elements in the vertex array. OSG won't audit if the total number of vertices meets
the requirement of the primitive set, which could cause crashes.

Time for action – drawing a colored quad
Let's work on a common shape in order to see the steps to complete a renderable geometry
model. We will create a quadrangle with only four vertices as the four corners, and use
 GL_QUADS mode to draw these vertices. The GL_QUADS mode tells OpenGL to combine
the first four coordinates in the vertex array as one quad, the second four as the second
quad, and so on.

Chapter 4

[69]

1.	 Include the necessary headers:

#include <osg/Geometry>

#include <osg/Geode>

#include <osgViewer/Viewer>

2.	 Create the vertex array and push the four corner points to the back of the array
by using std::vector like operations:

osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array;

vertices->push_back(osg::Vec3(0.0f, 0.0f, 0.0f));

vertices->push_back(osg::Vec3(1.0f, 0.0f, 0.0f));

vertices->push_back(osg::Vec3(1.0f, 0.0f, 1.0f));

vertices->push_back(osg::Vec3(0.0f, 0.0f, 1.0f));

3.	 We have to indicate the normal of each vertex; otherwise OpenGL will use a default
(0, 0, 1) normal vector and the lighting equation calculation may be incorrect. The
four vertices actually face the same direction, so a single normal vector is enough.
We will also set the setNormalBinding() method to BIND_OVERALL later.

osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;

normals->push_back(osg::Vec3(0.0f,-1.0f, 0.0f));

4.	 We will indicate a unique color value to each vertex and make them colored. By
default, OpenGL will use smooth coloring and blend colors at each vertex together:

osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array;

colors->push_back(osg::Vec4(1.0f, 0.0f, 0.0f, 1.0f));

colors->push_back(osg::Vec4(0.0f, 1.0f, 0.0f, 1.0f));

colors->push_back(osg::Vec4(0.0f, 0.0f, 1.0f, 1.0f));

colors->push_back(osg::Vec4(1.0f, 1.0f, 1.0f, 1.0f));

5.	 Next, we create the osg::Geometry object and set the prepared vertex, normal,
and color arrays to it. We also indicate that the single normal should be bound
to the entire geometry and that the colors should be bound per vertex:

osg::ref_ptr<osg::Geometry> quad = new osg::Geometry;

quad->setVertexArray(vertices.get());

quad->setNormalArray(normals.get());

quad->setNormalBinding(osg::Geometry::BIND_OVERALL);

quad->setColorArray(colors.get());

quad->setColorBinding(osg::Geometry::BIND_PER_VERTEX);

Building Geometry Models

[70]

6.	 The last step required to finish a geometry and add it to the scene graph
is to specify the primitive set. A newly allocated osg::DrawArrays
instance with the drawing mode set to GL_QUADS is used here, in order to
render the four vertices as quad corners in a counter-clockwise order:

quad->addPrimitiveSet(new osg::DrawArrays(GL_QUADS, 0, 4));

7.	 Add the geometry to an osg::Geode object and render it in the scene viewer:

osg::ref_ptr<osg::Geode> root = new osg::Geode;

root->addDrawable(quad.get());

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

8.	 Our program finally results in a nice colored quad, as shown in the
following screenshot:

Chapter 4

[71]

What just happened?
We assume that you are familiar with the following OpenGL code snippets:

static const GLfloat vertices[][3] = { … };
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(4, GL_FLOAT, 0, vertices);
glDrawArrays(GL_QUADS, 0, 4);

The array variable vertices is used to define the coordinates to be rendered. The OpenGL
function glDrawArrays() will draw the geometry primitive of the mode GL_QUADS with
four sequential elements in the array, that is, a quadrangle in the 3D space.

The osg::Geometry class encapsulates the entire process mentioned above, mainly
by using the setVertexArray() and addPrimitiveSet() methods. Actually, these
vertex data and primitive sets settings are not performed as soon as a user application calls
these methods, but will be applied when the geometry is reached during the next drawing
traversal of the scene graph. This makes it possible to use most osg::Geometry methods
like properties, which can be read and modified without forcing the scene to render back
and forth.

Pop quiz – results of different primitive types
In the previous example, we defined the mode, start, and count parameters of the primitive
and generated a quad as the result. It is important for you to understand how geometry
vertices are interpreted by one or more primitive sets. Can you list the ten mode symbols
(GL_TRIANGLES, GL_QUADS, and so on) and their major behaviors in a table? For example,
do you know how each mode treats vertices and indices, and what shape is going to be
drawn in the final stage?

Building Geometry Models

[72]

Indexing primitives
The osg::DrawArrays works fine when reading vertex data straight through the arrays,
without any skipping and hopping. However, it tends to be a little inefficient if there are lots
of shared vertices. For example, in order to make osg::DrawArrays draw a cube with eight
vertices in the GL_TRIANGLES mode, the vertex array should repeat each vertex a couple of
times and should increase the array size to 36 (12 triangle faces) at last:

The osg::DrawElementsUInt class, as well as osg::DrawElementsUByte and
osg::DrawElementsUShort classes, are used as index arrays in order to solve the
above problem. They all derive from osg::PrimitiveSet and encapsulate OpenGL's
glDrawElements() function, with different data types. The index array saves indices of
vertex array elements. In this case, the cube's vertex array is able to be resized to eight, with
an associated indexing primitive set.

The osg::DrawElements* classes are designed to work just like std::vector, so any
vector-related methods are compatible for use. For instance, to add indices to a newly
allocated osg::DrawElementsUInt object, we could code like following:

osg::ref_ptr<osg::DrawElementsUInt> de =
 new osg::DrawElementsUInt(GL_TRIANGLES);
de->push_back(0); de->push_back(1); de->push_back(2);
de->push_back(3); de->push_back(0); de->push_back(2);

This will specify the front face of our cube shown in the last image.

Chapter 4

[73]

Time for action – drawing an octahedron
An octahedron is a polyhedron having eight triangle faces. It is really a nice example to show
why primitive indexing is important. We will first sketch the octahedron structure, as shown
in the following image:

The octahedron has six vertices, each shared by four triangles. We would have to create
a vertex array with 24 elements to render all eight faces when using osg::DrawArrays.
However, with the help of an index array and the osg::DrawElementsUInt class, we
can allocate a vertex array with only six elements and thus improve the efficiency of drawing
the geometry.

1.	 Include the necessary headers:

#include <osg/Geometry>

#include <osg/Geode>

#include <osgUtil/SmoothingVisitor>

#include <osgViewer/Viewer>

2.	 As we have discussed before, the osg::Vec3Array class inherits
the characteristics of std::vector and can construct using a
predetermined size parameter and work with operator[] directly.

osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array(6);

(*vertices)[0].set(0.0f, 0.0f, 1.0f);

(*vertices)[1].set(-0.5f,-0.5f, 0.0f);

(*vertices)[2].set(0.5f,-0.5f, 0.0f);

(*vertices)[3].set(0.5f, 0.5f, 0.0f);

(*vertices)[4].set(-0.5f, 0.5f, 0.0f);

(*vertices)[5].set(0.0f, 0.0f,-1.0f);

Building Geometry Models

[74]

3.	 The osg::DrawElementsUInt accepts a size parameter besides
the drawing mode parameter, too. After that, we will specify the
indices of vertices to describe all eight triangle faces.

osg::ref_ptr<osg::DrawElementsUInt> indices =

 new osg::DrawElementsUInt(GL_TRIANGLES, 24);

(*indices)[0] = 0; (*indices)[1] = 1; (*indices)[2] = 2;

(*indices)[3] = 0; (*indices)[4] = 2; (*indices)[5] = 3;

(*indices)[6] = 0; (*indices)[7] = 3; (*indices)[8] = 4;

(*indices)[9] = 0; (*indices)[10]= 4; (*indices)[11]= 1;

(*indices)[12]= 5; (*indices)[13]= 2; (*indices)[14]= 1;

(*indices)[15]= 5; (*indices)[16]= 3; (*indices)[17]= 2;

(*indices)[18]= 5; (*indices)[19]= 4; (*indices)[20]= 3;

(*indices)[21]= 5; (*indices)[22]= 1; (*indices)[23]= 4;

4.	 In order to create a geometry with a default white color, we will only set
the vertex array and the osg::DrawElementsUInt primitive set. The
normal array is also required but is not easy to compute manually. We will
use a smoothed normal calculator to automatically obtain it. This calculator
will be described in the next section, Using polygonal techniques.

osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;

geom->setVertexArray(vertices.get());

geom->addPrimitiveSet(indices.get());

osgUtil::SmoothingVisitor::smooth(*geom);

5.	 Add the geometry to an osg::Geode object and make it the scene root:

osg::ref_ptr<osg::Geode> root = new osg::Geode;

root->addDrawable(geom.get());

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

6.	 The generated octahedron is illustrated as shown in the following screenshot:

Chapter 4

[75]

What just happened?
The vertex array mechanism reduces the number of OpenGL function calls. It stores vertex
data in the application memory, which is called the client side. The OpenGL pipeline on the
server side gets access to different vertex arrays.

As can be seen from the following image, OpenGL obtains data from the vertex buffer on
the client side and assembles primitive data in an orderly manner.

Building Geometry Models

[76]

The vertex buffer here is used to manage data specified by set*Array() methods of the
osg::Geometry class. osg::DrawArrays marches straight through these arrays and
draw them.

However, osg::DrawElements* classes also provide an index array in order to reduce
the number of vertices to transfer. The index array then allows a new vertex cache on the
server side for temporary storage. OpenGL will fetch vertices from the cache directly, rather
than read from the vertex buffer, which is on the client side. This will largely increase the
performance.

Pop quiz – optimizing indexed geometries
The octahedron that we just drew is made up of only six vertices. Can you figure out how
many vertices will be actually used if we are not going to index the geometry any more?

In many situations, you will find that triangle strips can provide better performance in
rendering continuous pieces of mesh faces. Assuming that we choose GL_TRIANGLE_
STRIPS instead of GL_TRIANGLES in the previous example, how could we construct
the index array this time?

Have a go hero – challenges with cubes and pyramids
Now it is your turn to draw some other polyhedrons, for example, a cube or a pyramid.
The structure of a cube is discussed at the beginning of the section Indexing primitives.
It contains six vertices and 12 triangle faces, which is a good demonstration of indexing
vertices.

A pyramid usually has one polygon base and several triangle faces meeting at an "apex".
Take the square pyramid as an example: it contains five vertices and six triangle faces (the
square base consists of two triangles). Each vertex is shared by three or four triangles:

Chapter 4

[77]

Create a new osg::Geometry object and add vertices and normals as arrays. The
osgUtil::SmoothingVisitor will also calculate smoothed normals. Specify an
osg::DrawElementsUInt primitive set with the GL_TRIANGLES drawing mode.
For advanced study, you may even add multiple primitive sets with different drawing
modes, for instance, rendering the pyramid base with GL_QUADS, and triangle faces
with GL_TRIANGLE_FAN.

Using polygonal techniques
OSG supports various polygonal techniques for manipulating the geometry objects. These
pre-processing methods, such as polygon reduction and tessellation, are often used to
create and improve polygonal models for rendering at a later time. They are designed to
have a simple interface and be easy to use, but may perform complex calculations backstage.
They are not suggested to be used on-the-fly because of possibly massive computations.

A few polygonal technique implementations in OSG are listed as follows:

1.	 osgUtil::Simplifier: This reduces the number of triangles in geometries.
The public method simplify() can be used to simply enter a geometry object.

2.	 osgUtil::SmoothingVisitor: This calculates normals for any geometries
containing primitives, for instance, the octahedron that we have just seen. The
public static method smooth() can be used to generate smoothed normals of a
geometry, instead of reallocating and setting the normal array yourselves.

3.	 osgUtil::TangentSpaceGenerator: This generates arrays containing the
tangent-space basis vectors for geometry vertices. It passes the geometry
object as a parameter to the generate() method and saves the results in
getTangentArray(), getNormalArray(), and getBinormalArray().
The results can be used as varying vertex attributes in GLSL.

4.	 osgUtil::Tessellator: This uses the OpenGL Utility (glu) tessellation
routines to break complex primitives into simple ones. It provides a
retessellatePolygons() method to change the primitive sets of the input
geometry to tessellated ones.

5.	 osgUtil::TriStripVisitor: This converts geometry surface primitives into
triangle strips, which allows faster rendering and more efficient memory usage.
The public method stripify() is used to convert primitives in the input
geometry into GL_TRIANGLE_STRIP types.

Building Geometry Models

[78]

All of the methods introduced can be used with an osg::Geometry& reference parameter,
such as:

osgUtil::TriStripVisitor tsv;
tsv. stripify(*geom);

Here geom means an osg::Geometry object managed by the smart pointer.

The osgUtil::Simplifier, osgUtil::SmoothingVisitor, and
osgUtil::TriStripVisitor classes are also accepted by scene graph nodes.
For example:

osgUtil::TriStripVisitor tsv;
node->accept(tsv);

The variable node represents an osg::Node object. The accept() operation will traverse
the node's children until all leaf nodes are reached, and find out and process all of the
geometries stored in these osg::Geode nodes.

Time for action – tessellating a polygon
Complex primitives will not be rendered correctly by the OpenGL API directly. This includes
concave polygons, self-intersecting polygons, and polygons with holes. Only after being
subdivided into convex polygons, these non-convex polygons can be accepted by the OpenGL
rendering pipeline. The osgUtil::Tessellator class can be used for the tessellation
work in this case.

1.	 Include necessary headers:

#include <osg/Geometry>

#include <osg/Geode>

#include <osgUtil/Tessellator>

#include <osgViewer/Viewer>

2.	 We will create a concave polygon by using the osg::Geometry class. A simple
polygon is concave if any of its internal edge angles is greater than 180 degrees.
Here, the example geometry represents a quad with a cave on the right-hand side.
It is drawn as a GL_POLYGON primitive.

osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array;

vertices->push_back(osg::Vec3(0.0f, 0.0f, 0.0f));

vertices->push_back(osg::Vec3(2.0f, 0.0f, 0.0f));

vertices->push_back(osg::Vec3(2.0f, 0.0f, 1.0f));

vertices->push_back(osg::Vec3(1.0f, 0.0f, 1.0f));

vertices->push_back(osg::Vec3(1.0f, 0.0f, 2.0f));

vertices->push_back(osg::Vec3(2.0f, 0.0f, 2.0f));

Chapter 4

[79]

vertices->push_back(osg::Vec3(2.0f, 0.0f, 3.0f));

vertices->push_back(osg::Vec3(0.0f, 0.0f, 3.0f));

osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;

normals->push_back(osg::Vec3(0.0f,-1.0f, 0.0f));

osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;

geom->setVertexArray(vertices.get());

geom->setNormalArray(normals.get());

geom->setNormalBinding(osg::Geometry::BIND_OVERALL);

geom->addPrimitiveSet(new osg::DrawArrays(GL_POLYGON, 0, 8));

3.	 If we immediately add the geom variable to an osg::Geode object and
view it with osgViewer::Viewer, we will get an incorrect result, as shown
in the following screenshot:

4.	 To render the concave polygon correctly, we should use an
osgUtil::Tessellator to re-tessellate it:

osgUtil::Tessellator tessellator;

tessellator.retessellatePolygons(*geom);

Building Geometry Models

[80]

5.	 Now the geom variable is already modified. Add it to a geometry node again and
start the scene viewer:

osg::ref_ptr<osg::Geode> root = new osg::Geode;

root->addDrawable(geom.get());

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

6.	 This time we have got a nice result:

What just happened?
A concave polygon without any tessellations will not be rendered as we expect in most cases.
In order to optimize performance, OpenGL will treat them as simple polygons or just ignore
them, and this always generates unexpected results.

The osgUtil::Tessellator uses OpenGL tessellation routines to process concave
polygons saved in osg::Geoemtry objects. It decides on the most efficient primitive type
while performing tessellation. For the previous case, it will use GL_TRIANGLE_STRIP to
triangulate the original polygon, that is, to separate it into a few triangles.

Chapter 4

[81]

Like the OpenGL tessellation routines, the osgUtil::Tessellator class also handles
polygons with holes and self-intersecting polygons. Its public method setWindingType()
accepts different winding rules , such as GLU_TESS_WINDING_ODD and GLU_TESS_
WINDING_NONZERO, which determine the inside and outside regions of a complex polygon.

Rereading geometry attributes
The osg::Geometry manages lots of vertex data by using vertex arrays, and renders these
vertices and vertex attributes with ordered primitive sets. However, an osg::Geometry
object doesn't have any topological elements, such as faces, edges, and their relationships.
This sometimes prevents it from implementing complex polygonal techniques and being
edited freely (dragging a certain face or edge to manipulate the model, and so on).

OSG doesn't support algorithmic topology functionalities at present, probably because it
seems a little weird for a rendering API to implement this. But OSG has already implemented
a series of functors to reread geometry attributes and primitives from any existing
drawables, and make use of them for the purpose of topological mesh modeling and so on.

A functor is always realized as a class but executed like a function. The functor can mimic
some known interface with the same return-type and calling parameters, but all attributes
passed to the functor will be captured and handled in a customized way.

The osg::Drawable class accepts four kinds of functors:

1.	 osg::Drawable::AttributeFunctor reads vertex attributes as array pointers. It
has a number of virtual methods to apply to vertex attributes of different data types.
To make use of this functor, you should inherit the class and re-implement one or
more of the virtual methods, and do something that you want inside:

virtual void apply(osg::Drawable::AttributeType type,

 unsigned int size, osg::Vec3* ptr)

{

Building Geometry Models

[82]

 // Read 3-elements vectors with the ptr and size parameters.

 // The first parameter determines the attribute type,

 // for example, osg::Drawable::VERTICES.

 …

}

2.	 osg::Drawable::ConstAttributeFunctor is a read-only version of
osg::Drawable::AttributeFunctor. The only difference is that it uses
constant array pointers as parameters of virtual apply() methods.

3.	 osg::PrimitiveFunctor mimics the OpenGL drawing routines, such
as glDrawArrays(), glDrawElements(), and the immediate mode. It
will pretend that the drawable is rendered, but call the functor methods
instead. osg::PrimitiveFunctor has two important template subclasses:
osg::TemplatePrimitiveFunctor<> and osg::TriangleFunctor<>,
which can be put into actual usage. These two classes receive result drawn
vertices per primitive and send them to user-defined operator() methods.

4.	 osg::PrimitiveIndexFunctor mimics the OpenGL drawing routines, too.
Its subclass, osg::TriangleIndexFunctor<>, will receive vertex indices per
primitive and make use of them.

The osg::Drawable derived classes, such as osg::ShapeDrawable and
osg::Geometry, have the accept() method to accept different functors.

Customizing a primitive functor
It is abstract to conceive a scenario using a functor with the previous information. We
will take the collection of triangle faces as an example. Although we use vertex arrays
and primitive sets to manage rendering data of osg::Geometry, we still would like to
collect all of its triangle faces and face points. We can thus maintain incidence information
of the geometry vertices, edges, and faces and build the geometry data structure by using
the collector.

Time for action – collecting triangle faces
The osg::TriangleFunctor<> functor class is ideal for collecting information on triangle
faces. It will convert primitive sets of an osg::Drawable object to triangles whenever
possible. The template argument must implement an operator() with three const
osg::Vec3& parameters and a bool parameter, which will be called for every triangle when
the functor is applied.

Chapter 4

[83]

1.	 We will implement the template argument as a structure including an operator().
The first three 3D vector parameters represent the triangle vertices, and the last
one indicates whether these vertices come from a temporary vertex array or not:

struct FaceCollector

{

 void operator()(const osg::Vec3& v1, const osg::Vec3& v2,

 const osg::Vec3& v3, bool)

 {

 std::cout << "Face vertices: " << v1 << "; " << v2 << "; "

 << v3 << std::endl;

 }

};

2.	 We will create a wall-like object by using GL_QUAD_STRIP, which means that the
geometry was not originally formed by triangles. This object includes eight vertices
and four quad faces:

osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array;

vertices->push_back(osg::Vec3(0.0f, 0.0f, 0.0f));

vertices->push_back(osg::Vec3(0.0f, 0.0f, 1.0f));

vertices->push_back(osg::Vec3(1.0f, 0.0f, 0.0f));

vertices->push_back(osg::Vec3(1.0f, 0.0f, 1.5f));

vertices->push_back(osg::Vec3(2.0f, 0.0f, 0.0f));

vertices->push_back(osg::Vec3(2.0f, 0.0f, 1.0f));

vertices->push_back(osg::Vec3(3.0f, 0.0f, 0.0f));

vertices->push_back(osg::Vec3(3.0f, 0.0f, 1.5f));

vertices->push_back(osg::Vec3(4.0f, 0.0f, 0.0f));

vertices->push_back(osg::Vec3(4.0f, 0.0f, 1.0f));

osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;

normals->push_back(osg::Vec3(0.0f,-1.0f, 0.0f));

osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;

geom->setVertexArray(vertices.get());

geom->setNormalArray(normals.get());

geom->setNormalBinding(osg::Geometry::BIND_OVERALL);

geom->addPrimitiveSet(new osg::DrawArrays(GL_QUAD_STRIP, 0, 10)
);

Building Geometry Models

[84]

3.	 You may first view the object by using an osg::Geode scene root and the
osgViewer::Viewer. It is nothing special when compared to previous geometries:

osg::ref_ptr<osg::Geode> root = new osg::Geode;

root->addDrawable(geom.get());

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

viewer.run();

The screenshot is as follows:

4.	 Now, add the user-defined FaceCollector structure as the template argument
of osg::TriangleFunctor<>, and apply it to the osg::Geometry object:

osg::TriangleFunctor<FaceCollector> functor;

geom->accept(functor);

5.	 Start the program in the console, and you will see a list of face vertices printed at
the command-line prompt:

Chapter 4

[85]

What just happened?
The functor simply mimics the OpenGL calls in the accept() implementation of
osg::Geometry. It reads vertex data and primitive sets by using setVertexArray()
and drawArrays() methods, which have the same input parameters as OpenGL's
glVertexPointer() and glDrawArrays() functions. However, the drawArrays()
method doesn't actually draw objects in the 3D world. It will call a member method of
the template class or structure in which we can perform different kinds of customized
operations, such as collecting vertex data.

The osg::TemplatePrimitiveFunctor<T> not only collects triangle faces of a certain
drawable; it also has interfaces for obtaining a point, a line, and a quadrangle. It requires
implementations of these operators in the template argument:

void operator()(const osg::Vec3&, bool);
void operator()(const osg::Vec3&, const osg::Vec3&, bool);
void operator()(const osg::Vec3&, const osg::Vec3&,
 const osg::Vec3&, bool);
void operator()(const osg::Vec3&, const osg::Vec3&,
 const osg::Vec3&, const osg::Vec3&, bool);

Building Geometry Models

[86]

Have a go hero – analyzing topology of a geometry
Have you figured out how to analyze the topology of a geometry? You may need a shared list
of vertices and a list of faces storing these vertices, or a list of edges, each with information
of the two vertices touched and the two faces bordered.

The functor will help you to get all of this information while collecting the triangle faces of
any drawables. The only question is what data structure you will prefer to use in order to
construct a topological polygon mesh; and it is your decision now.

Implementing your own drawables
There are two very important virtual methods in the osg::Drawable pure class:

�� The computeBound() constant method computes the bounding box around
the geometry, which will be used in the view frustum culling process to decide
whether to cull the geometry or not

�� The drawImplementation() constant method actually draws the geometry
with OSG and OpenGL calls

To customize a user-defined drawable class, you have to re-implement these two methods
and add your own drawing code at the appropriate place.

The computeBound() constant method returns an osg::BoundingBox value as the
geometry's bounding box. The simplest way to create a bounding box is to set its minimum
and maximum extents, both of which are three-element vectors. A bounding box from
(0, 0, 0) to (1, 1, 1) can be defined like this:

osg::BoundingBox bb(osg::Vec3(0, 0, 0), osg::Vec3(1, 1, 1));

Note that osg::BoundingBox is not managed by the smart pointer, and neither is
the bounding sphere class osg::BoundingSphere which will be introduced in the
next chapter.

The drawImplementation() constant method is the actual implementation of different
drawing calls. It has an input osg::RenderInfo& parameter, which stores the current
rendering information for the OSG rendering backend. This method is called internally by
the draw() method of osg::Drawable. The latter will automatically save OpenGL calls in
drawImplementation() in order to a display list, and reuse it repeatedly in the following
frames. This means that the drawImplementation() method of an osg::Drawable
instance will be invoked only once!

Chapter 4

[87]

To avoid using display lists, you can turn off related options while allocating a new drawable:

drawable->setUseDisplayList(false);

The customized OpenGL calls will be executed every time after that. This is useful if there are
geometry morphing actions or animations in the drawImplementation() method.

Using OpenGL drawing calls
You can add any OpenGL functions in the implementation of drawImplementation().
The rendering context is created and the OpenGL make current operation is already
complete before entering this method. Don't release the OpenGL rendering context,
because it may be used by other drawables soon.

Time for action – creating the famous OpenGL teapot
The GLUT library has the ability to render a solid teapot model directly. Both the teapot
surface normals and texture coordinates are automatically generated. And the teapot is
generated by using OpenGL evaluators as well.

You may want to download the GLUT library first, which is designed as a third-party project
of OpenGL. The source code can be found at either of the following websites:

�� http://www.opengl.org/resources/libraries/glut/

�� http://www.xmission.com/~nate/glut.html

The prebuilt binaries, header files, and libraries can also be downloaded, which include
everything you need to get started with GLUT.

1.	 We have to modify the CMake script file to find GLUT and add it as a dependency
of our OSG-based project:

find_package(glut)

add_executable(MyProject teapot.cpp)

config_project(MyProject OPENTHREADS)

config_project(MyProject OSG)

config_project(MyProject OSGDB)

config_project(MyProject OSGUTIL)

config_project(MyProject GLUT)

Building Geometry Models

[88]

2.	 The CMake system is able to search for the GLUT library directly by using a
find_package() macro, but sometimes it may come away empty-handed.
You should set the GLUT_INCLUDE_DIR to the parent directory of gl/glut.h
and GLUT_glut_LIBRARY to the GLUT static-link library, for example,
glut32.lib on Windows. Click on Configure and Generate in order to generate
your solution or makefile after that.

3.	 Include the necessary headers. At this time, remember to add the GLUT header
as well:

#include <gl/glut.h>

#include <osg/Drawable>

#include <osg/Geode>

#include <osgViewer/Viewer>

4.	 We declare a complete new class named TeapotDrawable, which is derived from
the osg::Drawable class. To make sure that it compiles, we have to use an OSG
macro definition META_Object to implement some basic properties of the class.
A copy constructor is also created to help instantiate our TeapotDrawable class.

class TeapotDrawable : public osg::Drawable

{

public:

 TeapotDrawable(float size=1.0f) : _size(size) {}

 TeapotDrawable(const TeapotDrawable& copy,
 const osg::CopyOp&
 copyop=osg::CopyOp::SHALLOW_COPY)

 : osg::Drawable(copy, copyop), _size(copy._size) {}

 META_Object(osg, TeapotDrawable);

 virtual osg::BoundingBox computeBound() const;

 virtual void drawImplementation(osg::RenderInfo&) const;

protected:

 float _size;

};

Chapter 4

[89]

5.	 To implement the computeBound() method in a simple way, we can use the
member variable _size, which represents the relative size of teapot, in order
to construct a large enough bounding box. A box from the minimum point
(-_size, -_size, -_size) to the maximum point (_size, _size, _size)
should always contain the teapot surface:

osg::BoundingBox TeapotDrawable::computeBound() const

{

 osg::Vec3 min(-_size,-_size,-_size), max(_size, _size, _size);

 return osg::BoundingBox(min, max);

}

6.	 The implementation of drawImplementation() is uncomplicated, too. For the
purpose of face culling, we render the GLUT teapot with its front-facing polygon
vertices winding clockwise, which will benefit from OpenGL's default back face
culling mechanism:

void TeapotDrawable::drawImplementation(osg::RenderInfo&
renderInfo) const

{

 glFrontFace(GL_CW);

 glutSolidTeapot(_size);

 glFrontFace(GL_CCW);

}

7.	 The TeapotDrawable object can be added to an osg::Geode node and
then viewed by the viewer, which has already been done many times:

osg::ref_ptr<osg::Geode> root = new osg::Geode;

root->addDrawable(new TeapotDrawable(1.0f));

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

Building Geometry Models

[90]

8.	 Now build and start the application. Press and hold the left mouse button to rotate
your scene to a suitable position, and have a look at the fine teapot model:

What just happened?
Here, the copy constructor is used to create a new TeapotDrawable as a copy of an existing
one. It is not needed in the previous example, but is required by any osg::Drawable
derived classes.

Another macro definition META_Object is also necessary for implementing a customized
drawable. It has two parameters which indicate the library name is osg, and the class type
and name is TeapotDrawable. You can always fetch the two string values by using the
following methods:

const char* lib = obj->libraryName();
const char* name = obj->className();

OSG classes with the META_Object macro will re-implement these two methods, including
almost all scene-related classes.

User-defined drawables should always have a copy constructor and the META_Object
macro, and should also override the computeBound() and drawImplementation()
methods, otherwise it may cause compiling errors instead.

Chapter 4

[91]

Summary
This chapter explained how to create geometry entities simply with vertices and the drawing
primitives defined with OSG. These geometries are stored in osg::Geode objects, which are
recognized as the leaf nodes of a scene graph. All scene managements and updates in the 3D
world serve the purpose of modifying geometry behaviors and transmitting vertex data and
geometry primitives, in order to gain different rendering results.

In this chapter, we specially covered:

�� The basic concepts of OpenGL immediate mode, display lists, and vertex arrays,
and their implementations in OSG.

�� How to render simple shapes for quick tests by using the osg::ShapeDrawable
class.

�� How to create and render various shapes in a more efficient way by using the
osg::Geometry class.

�� How to operate on vertex attribute's arrays, index arrays, and geometry
primitive sets.

�� How to use functors to retrieve vertex properties, primitives, and index data, and,
through inheritance and rewriting of the member function, realize the customization
of vertex data.

�� A feasible way to integrate OpenGL calls into customized osg::Drawable derived
classes, which will help OSG and other OpenGL-based libraries work together.

5
Managing Scene Graph

Scene graph is a hierarchy graph of nodes representing the spatial layout
of graphic and state objects. It encapsulates the lowest-level graphics primitives
and state combined to visualize anything that can be created through a
low-level graphical API. OpenSceneGraph has leveraged the strength of scene
graph and developed optimized mechanisms to manage and render 3D scenes,
thus allowing the developers to use simple but powerful code in a standard
way, in order to realize things such as object assembling, traversal, transform
stack, culling of the scene, level-of-detail management, and other basic or
advanced graphics characteristics.

In this chapter, we will cover the following topics:

�� Understanding the concept of group nodes and leaf nodes

�� How to handle parent and child node interfaces

�� Making use of various nodes, including the transformation node, switch node,
level-of-detail node, and proxy node

�� How to derive your own nodes from the basic node class

�� How to traverse the scene graph structure of a loaded model

Managing Scene Graph

[94]

The Group interface
The osg::Group type represents the group nodes of an OSG scene graph. It can have
any number of child nodes, including the osg::Geode leaf nodes and other osg::Group
nodes. It is the most commonly-used base class of the various NodeKits—that is, nodes with
various functionalities.

The osg::Group class derives from osg::Node, and thus indirectly derives from
osg::Referenced. The osg::Group class contains a children list with each child node
managed by the smart pointer osg::ref_ptr<>. This ensures that there will be no
memory leaks whenever deleting a set of cascading nodes in the scene graph.

The osg::Group class provides a set of public methods for defining interfaces for handling
children. These are very similar to the drawable managing methods of osg::Geode, but
most of the input parameters are osg::Node pointers.

1.	 The public method addChild() attaches a node to the end of the children
list. Meanwhile, there is an insertChild() method for inserting nodes to
osg::Group at a specific location, which accepts an integer index and a node
pointer as parameters.

2.	 The public methods removeChild() and removeChildren() will remove one
or more child nodes from the current osg::Group object. The latter uses two
parameters: the zero-based index of the start element, and the number of elements
to be removed.

3.	 The getChild() returns the osg::Node pointer stored at a specified
zero-based index.

4.	 The getNumChildren() returns the total number of children.

You will be able to handle the child interface of osg::Group with ease because of your
previous experience of handling osg::Geode and drawables.

Managing parent nodes
We have already learnt that osg::Group is used as the group node, and osg::Geode as
the leaf node of a scene graph. Their methods were introduced in the last chapter, and are
also used in this chapter. Additionally, both classes should have an interface for managing
parent nodes.

OSG allows a node to have multiple parents, as will be explained later. In this section, we will
first have a glimpse of parent management methods, which are declared in the osg::Node
class directly:

1.	 The method getParent() returns an osg::Group pointer as the parent node. It
requires an integer parameter that indicates the index in the parent's list.

Chapter 5

[95]

2.	 The method getNumParents() returns the total number of parents. If the node
has a single parent, this method will return 1, and only getParent(0) is available
at this time.

3.	 The method getParentalNodePaths() returns all possible paths from the root
node of the scene to the current node (but excluding the current node). It returns
a list of osg::NodePath variables.

The osg::NodePath is actually a std::vector object of node pointers, for example,
assuming we have a graphical scene:

The following code snippet will find the only path from the scene root to the node child3:

osg::NodePath& nodePath = child3->getParentalNodePaths()[0];
for (unsigned int i=0; i<nodePath.size(); ++i)
{
 osg::Node* node = nodePath[i];
 // Do something...
}

You will successively receive the nodes Root, Child1, and Child2 in the loop.

We don't need to use the memory management system to reference a node's parents.
When a parent node is deleted, it will be automatically removed from its child nodes'
records as well.

A node without any parents can only be considered as the root node of the scene graph.
In that case, the getNumParents() method will return 0 and no parent node can be
retrieved.

Managing Scene Graph

[96]

Time for action – adding models to the scene graph
In the past examples, we always loaded a single model, like the Cessna, by using the
osgDB::readNodeFile() function. This time we will try to import and manage multiple
models. Each model will be assigned to a node pointer and then added to a group node. The
group node, which is defined as the scene root, is going to be used by the program to render
the whole scene graph at last:

1.	 Include the necessary headers:

#include <osg/Group>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2.	 In the main function, we will first load two different models and assign them to
osg::Node pointers. A loaded model is also a sub-scene graph constructed with
group and leaf nodes. The osg::Node class is able to represent any kind of sub
graphs, and if necessary, it can be converted to osg::Group or osg::Geode with
either the C++ dynamic_cast<> operator, or convenient conversion methods like
asGroup() and asGeode(), which are less time-costly than dynamic_cast<>.

osg::ref_ptr<osg::Node> model1 = osgDB::readNodeFile(
 "cessna.osg");
osg::ref_ptr<osg::Node> model2 = osgDB::readNodeFile("cow.osg");

3.	 Add the two models to an osg::Group node by using the addChild() method:

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(model1.get());
root->addChild(model2.get());

4.	 Initialize and start the viewer:

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

5.	 Now you will see a cow getting stuck in the Cessna model! It is a little incredible
to see that in reality, but in a virtual world, these two models just belong to
uncorrelated child nodes managed by a group node, and then rendered separately
by the scene viewer.

Chapter 5

[97]

What just happened?
Both osg::Group and osg::Geode are derived from the osg::Node base class.
The osg::Group class allows the addition of any types of child nodes, including the
osg::Group itself. However, the osg::Geode class contains no group or leaf nodes.
It only accepts drawables for rendering purposes.

It is convenient if we can find out whether the type of a certain node is osg::Group,
osg::Geode, or other derived type especially those read from files and managed by
ambiguous osg::Node classes, such as:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile("cessna.osg");

Both the dynamic_cast<> operator and the conversion methods like asGroup(),
asGeode(), among others, will help to convert from one pointer or reference type
to another. Firstly, we take the dynamic_cast<> operator as an example. This can
be used to perform downcast conversions of the class inheritance hierarchy, such as:

osg::ref_ptr<osg::Group> model =
 dynamic_cast<osg::Group*>(osgDB::readNodeFile("cessna.osg"));

The return value of the osgDB::readNodeFile() function is always osg::Node*, but
we can also try to manage it with an osg::Group pointer. If, the root node of the Cessna
sub graph is a group node, then the conversion will succeed, otherwise it will fail and the
variable model will be NULL.

You may also perform an upcast conversion, which is actually an implicit conversion:

osg::ref_ptr<osg::Group> group = ...;
osg::Node* node1 = dynamic_cast<osg::Node*>(group.get());
osg::Node* node2 = group.get();

On most compilers, both node1 and node2 will compile and work fine.

Managing Scene Graph

[98]

The conversion methods will do a similar job. Actually, it is preferable to use those
methods instead of dynamic_cast<> if one exists for the type you need, especially
in a performance-critical section of code:

// Assumes the Cessna's root node is a group node.
osg::ref_ptr<osg::Node> model = osgDB::readNodeFile("cessna.osg");
osg::Group* convModel1 = model->asGroup(); // OK!
osg::Geode* convModel2 = model->asGeode(); // Returns NULL.

Pop quiz – fast dynamic casting
In C++ programs, the dynamic_cast<> can perform typecasts with a safety at runtime
check, which requires the run-time type information (RTTI) to be enabled. It is sometimes
not recommended to compare with the osg::Node class's converting methods, which
have been overridden by subclasses like osg::Group and osg::Geode. Can you tell the
reason? When would you prefer to use asGroup() and asGeode(), and when would you
use the dynamic_cast<>?

Traversing the scene graph
A typical traversal consists of the following steps:

1. First, start at an arbitrary node (for example, the root node).

2. Move down (or sometimes up) the scene graph recursively to the child nodes,
until a leaf node is reached, or a node with no children is reached.

3. Backtrack to the most recent node that doesn't finish exploring, and repeat the
above steps. This can be called a depth-first search of a scene graph.

Different updating and rendering operations will be applied to all scene nodes during
traversals, which makes traversing a key feature of scene graphs. There are several types
of traversals, with different purposes:

1. An event traversal firstly processes mouse and keyboard inputs, and other user
events, while traversing the nodes.

2. An update traversal (or application traversal) allows the user application to modify
the scene graph, such as setting node and geometry properties, applying node
functionalities, executing callbacks, and so on.

3. A cull traversal tests whether a node is within the viewport and worthy of being
rendered. It culls invisible and unavailable nodes, and outputs the optimized scene
graph to an internal rendering list.

Chapter 5

[99]

4.	 A draw traversal (or rendering traversal) issues low-level OpenGL API calls to
actually render the scene. Note that it has no correlation with the scene graph,
but only works on the rendering list generated by the cull traversal.

In the common sense, these traversals should be executed per frame, one after another.
But for systems with multiple processors and graphics cards, OSG can process them in
parallel and therefore improve the rendering efficiency.

The visitor pattern can be used to implement traversals. It will be discussed later in
this chapter.

Transformation nodes
The osg::Group nodes do nothing except for traversing down to their children. However,
OSG also supports the osg::Transform family of classes, which is created during the
traversal-concatenated transformations to be applied to geometry. The osg::Transform
class is derived from osg::Group. It can't be instantiated directly. Instead, it provides a set
of subclasses for implementing different transformation interfaces.

When traversing down the scene graph hierarchy, the osg::Transform node always
adds its own transformation to the current transformation matrix, that is, the OpenGL
model-view matrix. It is equivalent to concatenating OpenGL matrix commands such as
glMultMatrix(), for instance:

This example scene graph can be translated into following OpenGL code:

glPushMatrix();
 glMultMatrix(matrixOfTransform1);
 renderGeode1(); // Assume this will render Geode1

 glPushMatrix();
 glMultMatrix(matrixOfTransform2);
 renderGeode2(); // Assume this will render Geode2

Managing Scene Graph

[100]

 glPopMatrix();
glPopMatrix();

To describe the procedure using the concept of coordinate frame, we could say that Geode1
and Transform2 are under the relative reference frame of Transform1, and Geode2
is under the relative frame of Transform2. However, OSG also allows the setting of an
absolute reference frame instead, which will result in the behavior equivalent to the OpenGL
command glLoadMatrix():

transformNode->setReferenceFrame(osg::Transform::ABSOLUTE_RF);

And to switch back to the default coordinate frame:

transformNode->setReferenceFrame(osg::Transform::RELATIVE_RF);

Understanding the matrix
The osg::Matrix is a basic OSG data type which needs not be managed by smart pointers.
It supports an interface for 4x4 matrix transformations, such as translate, rotate, scale, and
projection operations. It can be set explicitly:

osg::Matrix mat(1.0f, 0.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f, 0.0f,
 0.0f, 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 0.0f, 1.0f); // Just an identity matrix

Other methods and operators include:

1.	 The public methods postMult() and operator*() post multiply the current
matrix object with an input matrix or vector parameter. And the method
preMult() performs pre-multiplications.

2.	 The makeTranslate(), makeRotate(), and makeScale() methods reset the
current matrix and create a 4x4 translation, rotation, or scale matrix. Their static
versions, translate(), rotate(), and scale(), can be used to allocate a new
matrix object with specified parameters.

3.	 The public method invert() inverts the matrix. Its static version inverse()
requires a matrix parameter and returns a new inversed osg::Matrix object.

You will notice that OSG uses row-major matrix to indicate transformations. It means that
OSG will treat vectors as rows and pre-multiply matrices with row vectors. Thus, the way to
apply a transformation matrix mat to a coordinate vec is:

osg::Matrix mat = …;
osg::Vec3 vec = …;
osg::Vec3 resultVec = vec * mat;

Chapter 5

[101]

The order of OSG row-major matrix operations is also easy to understand when
concatenating matrices, for example:

osg::Matrix mat1 = osg::Matrix::scale(sx, sy, sz);
osg::Matrix mat2 = osg::Matrix::translate(x, y, z);
osg::Matrix resultMat = mat1 * mat2;

Developers can always read the transformation process from left to right, that is, the
resultMat means to first scale a vector with mat1, and then translate it with mat2.
This explanation always sounds clear and comfortable.

The osg::Matrixf class represents a 4x4 float type matrix. It can be converted by using
osg::Matrix using overloaded set() methods directly.

The MatrixTransform class
The osg::MatrixTransform class is derived from osg::Transform. It uses an
osg::Matrix variable internally to apply 4x4 double type matrix transformations. The
public methods setMatrix() and getMatrix() will assign an osg::Matrix parameter
onto the member variable of osg::MatrixTransform.

Time for action – performing translations of child nodes
Now we are going to make use of the transformation node. The osg::MatrixTransform
node, which multiplies the current model-view matrix with a specified one directly, will help
to transfer our model to different places in the viewing space.

1.	 Include the necessary headers:

#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2.	 Load the Cessna model first:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile(
 "cessna.osg");

3.	 The osg::MatrixTransform class is derived from osg::Group, so it can use the
addChild() method to add more children. All child nodes will be affected by the
osg::MatrixTransform node and be transformed according to the presetting
matrix. Here, we will transform the loaded model twice, in order to obtain two
instances displayed separately at the same time:

osg::ref_ptr<osg::MatrixTransform> transformation1 = new
osg::MatrixTransform;

Managing Scene Graph

[102]

transform1->setMatrix(osg::Matrix::translate(
 -25.0f, 0.0f, 0.0f));
transform1->addChild(model.get());

osg::ref_ptr<osg::MatrixTransform> transform2 = new
osg::MatrixTransform;
transform2->setMatrix(osg::Matrix::translate(
 25.0f, 0.0f, 0.0f));
transform2->addChild(model.get());

4.	 Add the two transformation nodes to the root node and start the viewer:

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(transformation1.get());
root->addChild(transformation2.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

5.	 The Cessna model, which is initially placed at the axis origin, is duplicated and
shown at different positions. One is transformed to the coordinate (-25.0, 0.0, 0.0),
and the other to (25.0, 0.0, 0.0):

What just happened?
You may be puzzled by the scene graph structure because the model pointer is attached
to two parent nodes. In a typical tree structure, a node should have at most one parent, so
sharing child nodes is impossible. However, OSG supports the object sharing mechanism,
that is, a child node (the model pointer), can be instantiated by different ancestors
(transform1 and transform2). Then there will be multiple paths leading from the root
node to the instantiated node while traversing and rendering scene graph, which causes the
instanced node to be displayed more than one time.

Chapter 5

[103]

This is extremely useful for reducing the scene memory, because the application will keep
only one copy of the shared data and simply call the implementation method (for instance,
drawImplementation() of osg::Drawable derived classes) many times in different
contexts managed by its multiple parents.

Each parent of a shared child node keeps its own osg::ref_ptr<> pointer to the child.
In that case, the referenced counting number will not decrease to 0 and the child will not
be released until all of its parents unreference it. You will find that the getParent() and
getNumParents() methods are helpful in managing multiple parents of a node.

It is suggested that we share leaf nodes, geometries, textures, and OpenGL rendering states
in one application as much as possible.

Pop quiz – matrix multiplications
As we have discussed, OSG uses row vectors and row-major matrices to perform pre-
multiplications (vector * matrix) under the right-hand rule. However, OpenGL is said to
use column-major matrices and column vectors to perform post-multiplications (matrix *
vector). So, what do you think is important when converting OpenGL transformations to
OSG ones?

Managing Scene Graph

[104]

Have a go hero – making use of the PositionAttitudeTransform class
The osg::MatrixTransform class performs like the OpenGL glMultMatrix() or
glLoadMatrix() functions, which can realize almost all kinds of space transformations,
but is not easy to use. The osg::PositionAttitudeTransform class, however, works
like an integration of the OpenGL glTranslate(), glScale(), and glRotate()
functions. It provides public methods to transform child nodes in the 3D world, including
setPosition(), setScale(), and setAttitude(). The first two both require the
osg::Vec3 input value, and setAttitude() uses an osg::Quat variable as the
parameter. The osg::Quat is a quaternion class, which is used to represent an orientation.
Its constructor can apply a float angle and an osg::Vec3 vector as the parameters.
Euler rotations (rotating about three fixed axes) is also acceptable, using the osg::Quat
overloaded constructor:

osg::Quat quat(xAngle, osg::X_AXIS,
 yAngle, osg::Y_AXIS,
 zangle, osg::Z_AXIS); // Angles should be radians!

Now, let's rewrite the last example to replace the osg::MatrixTransform nodes
with osg::PositionAttitudeTransform ones. Use setPosition() to specify
the translation, and setRotate() to specify the rotation of child models, and see if it
is more convenient to you in some cases.

Switch nodes
The osg::Switch node is able to render or skip specific children conditionally. It inherits
the methods of osg::Group super class and attaches a Boolean value to each child node. It
has a few useful public methods:

1.	 The overloaded addChild() method is able to have a Boolean parameter in
addition to the osg::Node pointer. When the Boolean parameter is set to false,
the added node will be invisible to the viewer.

2.	 The setValue() method will set the visibility value of the child node at the
specified index. It has two parameters: the zero-based index and the Boolean
value. And getValue() can get the value of child node at the input index.

3.	 The setNewChildDefaultValue() method sets the default visibility for new
children. If a child is simply added without specifying a value, its value will be
decided by setNewChildDefaultValue(), for instance:

switchNode->setNewChildDefaultValue(false);
switchNode->addChild(childNode); // Turned off by default now!

Chapter 5

[105]

Time for action – switching between the normal and
damaged Cessna

We are going to construct a scene with the osg::Switch node. It can even be used to
implement state-switching animations and more complicated work, but at present we
will only demonstrate how to predefine the visibilities of child nodes before the scene
viewer starts.

1.	 Include the necessary headers:

#include <osg/Switch>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2.	 We will read two models from files and use a switch to control them. We can find a
normal Cessna and a damaged one in the OSG sample data directory. They are good
for simulating different states (normal/damaged) of an aircraft:

osg::ref_ptr<osg::Node> model1= osgDB::readNodeFile("cessna.osg");
osg::ref_ptr<osg::Node> model2= osgDB::readNodeFile("cessnafire.
osg");

3.	 The osg::Switch node is able to display one or more children and hide others.
It does not work like the osg::Group parent class, which always displays all of
its children while rendering the scene. This functionality will be quite useful if we
are going to develop a flight game, and would like to manage some aircraft objects
which may be destroyed at any time. The following code will set model2 (the
damaged Cessna) to visible when adding it to root, and hide model1 (the normal
one) at the same time:

osg::ref_ptr<osg::Switch> root = new osg::Switch;
root->addChild(model1.get(), false);
root->addChild(model2.get(), true);

4.	 Start the viewer:

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

Managing Scene Graph

[106]

5.	 Now you will see an afire Cessna instead of the normal one:

What just happened?
The osg::Switch class adds a switch value list, in addition to the children list managed by
its super class osg::Group. The two lists have the same size, and each element of one list
is put into a one-to-one relationship with the element of another list. Thus, any changes in
the switch value list will take effects on the related children nodes, turning their visibilities
on or off.

The switch value changes that are triggered by addChild() or setValue() will be saved
as properties and performed in the next rendering frame, while the OSG backend traverses
the scene graph and applies different NodeKit's functionalities. In the following code
fragment, only the last switch values of child nodes at index 0 and 1 will be put into
actual operation:

Chapter 5

[107]

switchNode->setValue(0, false);
switchNode->setValue(0, true);
switchNode->setValue(1, true);
switchNode->setValue(1, false);

Redundant calls of setValue() methods will simply be overwritten and will not affect the
scene graph.

Level-of-detail nodes
The level-of-detail technique creates levels of detail or complexity for a given object, and
provides certain hints to automatically choose the appropriate level of the object, for
instance, according to the distance from the viewer. It decreases the complexity of the
object's representation in the 3D world, and often has an unnoticeable quality loss on a
distant object's appearance.

The osg::LOD node is derived from osg::Group and will use child nodes to represent the
same object at varying levels of detail, ordered from the highest level to the lowest. Each
level requires the minimum and maximum visible ranges to specify the ideal opportunity to
switch with adjacent levels. The result of an osg::LOD node is a discrete amount of children
as levels, which can also be named discrete LOD.

The osg::LOD class can either specify ranges along with the addition of children, or make
use of the setRange() method on existing child nodes:

osg::ref_ptr<osg::LOD> lodNode = new osg::LOD;
lodNode->addChild(node2, 500.0f, FLT_MAX);
lodNode->addChild(node1);
...
lodNode->setRange(1, 0.0f, 500.0f);

In the previous code snippet, we first add a node, node2, which will be displayed when the
distance to the eye is greater than 500 units. After that, we add a high-resolution model,
node1, and reset its visible range for close observation by using setRange().

Managing Scene Graph

[108]

Time for action – constructing a LOD Cessna
We will create a discrete LOD node with a set of predefined objects to represent the
same model. These objects are used as child nodes of the osg::LOD node and displayed
at different distances. We will use the internal polygon reduction technique class
osgUtil::Simplifier to generate various detailed objects from an original model. You
may also read low-polygon and high-polygon models from disk files.

1.	 Include the necessary headers:

#include <osg/LOD>
#include <osgDB/ReadFile>
#include <osgUtil/Simplifier>
#include <osgViewer/Viewer>

2.	 We would like to build three levels of model details. First, we need to create three
copies of the original model. It is OK to read the Cessna from the file three times,
but here a clone() method is called to duplicate the loaded model for immediate
uses:

osg::ref_ptr<osg::Node> modelL3 = osgDB::readNodeFile("cessna.
osg");
osg::ref_ptr<osg::Node> modelL2 = dynamic_cast<osg::Node*>(
 modelL3->clone(osg::CopyOp::DEEP_COPY_ALL));
osg::ref_ptr<osg::Node> modelL1 = dynamic_cast<osg::Node*>(
 modelL3->clone(osg::CopyOp::DEEP_COPY_ALL));

3.	 We hope that level three will be the original Cessna, which has the maximum
number of polygons for close-up viewing. Level two has fewer polygons to show,
and level one will be the least detailed, which is displayed only at a very far distance.
The osgUtil::Simplifier class is used here to reduce the vertices and faces.
We apply the setSampleRatio() method to the level 1 and level 2 models with
different values, which results in different simplifying rates:

osgUtil::Simplifier simplifier;
simplifier.setSampleRatio(0.5);
modelL2->accept(simplifier);

simplifier.setSampleRatio(0.1);
modelL1->accept(simplifier);

4.	 Add level models to the LOD node and set their visible range in descending order.
Don't make overlapping ranges when you are configuring minimum and maximum
range values with the addChild() or setRange() method, otherwise there
will be more than one level of model shown at the same position, which results
in incorrect behaviors:

Chapter 5

[109]

osg::ref_ptr<osg::LOD> root = new osg::LOD;
root->addChild(modelL1.get(), 200.0f, FLT_MAX);
root->addChild(modelL2.get(), 50.0f, 200.0f);
root->addChild(modelL3.get(), 0.0f, 50.0f);

5.	 Start the viewer. The application will need a little more time to compute and reduce
model faces this time:

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

6.	 The Cessna model comes out again. Try pressing and holding the right mouse button
to zoom in and out. You will find that the model is still well-represented when
looking close, as shown in the left part of the following image. However, the model
is slightly simpler when viewing from far distances, as in the right two parts of the
image. This difference will not affect the rendering result a lot, but will enhance the
system's efficiency if properly used.

What just happened?
Have you noticed that the Cessna model should be copied twice to prepare for different level
polygons? The modelL3 pointer can't be shared here, because the simplifier will directly
work on the geometric data in application memory, which will affect all pointers sharing the
same memory. In fact, this is called a shallow copy.

In this example, we introduce a clone() method, which can be used by all scene nodes,
drawables, and objects. It is able to perform a deep copy, that is, to make copies of all
dynamically-allocated memory used by the source object. The modelL2 and modelL1
pointers thus manage newly-allocated memories, which are filled with the same data as
modelL3.

Managing Scene Graph

[110]

The osgUtil::Simplifier class then starts to simplify the model for decreasing the
workload on the graphics pipeline. To apply the simplifier, we have to call the accept()
method of a node. In the Visiting scene graph structures section, you will learn more of
it and the visitor pattern.

Proxy and paging nodes
The proxy node osg::ProxyNode, and the paging node osg::PagedLOD are provided
for scene load balancing. Both of them are derived from the osg::Group class directly or
indirectly.

The osg::ProxyNode node will reduce the start time of the viewer if there are huge
numbers of models to be loaded and displayed in the scene graph. It is able to function
as the interface of external files, help applications to start up as soon as possible, and then
read those waiting models by using an independent data thread. It uses setFileName()
rather than addChild() to set a model file and dynamically load it as a child.

The osg::PagedLOD node also inherits methods of osg::LOD, but dynamically loads and
unloads levels of detail in order to avoid overloading the graphics pipeline and keep the
rendering process as smooth as possible.

Time for action – loading a model at runtime
We are going to demonstrate the loading of a model file by using the osg::ProxyNode. The
proxy will record the filename of the original model, and defer loading it until the viewer is
running and sending corresponding requests.

1.	 Include the necessary headers:

#include <osg/ProxyNode>
#include <osgViewer/Viewer>

2.	 Instead of just loading model files as child nodes, we will set a filename to the
specified index of children. This is similar to the insertChild() method, which
puts a node into the specified position of the children list, but the list will not be
filled until the dynamic loading process has finished.

osg::ref_ptr<osg::ProxyNode> root = new osg::ProxyNode;
root->setFileName(0, "cow.osg");

3.	 Start the viewer:

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

Chapter 5

[111]

4.	 The model seems to be loaded as usual, but you may have noticed that it came
out a little suddenly, and the view point is not adjusted to a better position. That is
because the proxy node, which is invisible, is used as if it contains no child at the
start of rendering. Then the cow model will be loaded from the presetting file at
runtime, and automatically added and rendered as the child node of the proxy then:

What just happened?
The osg::ProxyNode and osg::PagedLOD are pretty tiny themselves; they mainly just
work as containers. OSG's internal data loading manager osgDB::DatabasePager will
actually do the work of sending requests and loading the scene graph when new filenames
or levels of detail are available, or falling back to the next available children.

The database pager works in several background threads and drives the loading of both
static database (data generated files organized by proxy and paged nodes) and dynamic
database data (paged nodes generated and added at runtime).

The database pager automatically recycles paged nodes that don't appear in the current
view port, and removes them from the scene graph when the rendering backend is nearly
overloaded, which is when it needs to support multi-threaded paging of massive rendering
data. However, this doesn't affect osg::ProxyNode nodes.

Managing Scene Graph

[112]

Have a go hero – working with the PagedLOD class
Like the proxy node, the osg::PagedLOD class also has a setFileName() method to set
the filename to load to the specified child position. However, as a LOD node, it should also
set the minimum and maximum visible ranges of each dynamic loading child. Assuming that
we have the cessna.osg file and a low-polygon version modelL1, we can organize a paged
node like this:

osg::ref_ptr<osg::PagedLOD> pagedLOD = new osg::PagedLOD;
pagedLOD->addChild(modelL1, 200.0f, FLT_MAX);
pagedLOD->setFileName(1, "cessna.osg");
pagedLOD->setRange(1, 0.0f, 200.0f);

Note that the modelL1 pointer will never be unloaded from memory, because it is a direct
child and not a proxy to a file.

You will see no difference between using osg::LOD and osg::PagedLOD if displaying
only one level-of-detail model. A better idea is to try using osg::MatrixTransform to
construct a huge cluster of Cessnas. For example, you may use an independent function to
build a transformable LOD Cessna:

osg::Node* createLODNode(const osg::Vec3& pos)
{
 osg::ref_ptr<osg::PagedLOD> pagedLOD = new osg::PagedLOD;
 …
 osg::ref_ptr<osg::MatrixTransform> mt = new osg::MatrixTransform;
 mt->setMatrix(osg::Matrix::translate(pos));
 mt->addChild(pagedLOD.get());
 return mt.release();
}

Set different position parameters and add multiple createLODNode() nodes to the scene
root. See how paged nodes are rendered. Switch to use osg::LOD instead and have a look
at the difference in performance and memory usage.

Customizing your own NodeKits
The most important step in customizing a node and extending new features is to override
the virtual method traverse(). This method is called every frame by the OSG rendering
backend. The traverse() method has an input parameter, osg::NodeVisitor&, which
actually indicates the type of traversals (update, event, or cull). Most OSG NodeKits override
traverse() to implement their own functionalities, along with some other exclusive
attributes and methods.

Chapter 5

[113]

Note that overriding the traverse() method is a bit dangerous sometimes, because it affects
the traversing process and may lead to the incorrect rendering of results if developers are not
careful enough. It is also a little awkward if you want to add the same new feature to multiple
node types by extending each node type to a new customized class. In these cases, consider
using node callbacks instead, which will be discussed in Chapter 8, Animating Scene Objects.

Time for action – animating the switch node
The osg::Switch class can display specified child nodes while hiding others. It could
be used to represent the animation states of various objects, for instance, traffic lights.
However, a typical osg::Switch node is not able to automatically switch between children
at different times. Based on this idea, we will develop a new AnimatingSwitch node,
which will display its children at one time, and reverse the switch states according to a
user-defined internal counter.

1.	 Include the necessary headers:

#include <osg/Switch>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2.	 Declare the AnimatingSwitch class. This will be derived from the osg::Switch
class to take advantage of the setValue() method. We also make use of an
OSG macro definition, META_Node, which is a little similar to the META_Object
introduced in the last chapter, to define basic properties (library and class name)
of a node:

class AnimatingSwitch : public osg::Switch
{
public:
 AnimatingSwitch() : osg::Switch(), _count(0) {}
 AnimatingSwitch(const AnimatingSwitch& copy,
 const osg::CopyOp& copyop=osg::CopyOp::SHALLOW_COPY)
 : osg::Switch(copy, copyop), _count(copy._count) {}
 META_Node(osg, AnimatingSwitch);

 virtual void traverse(osg::NodeVisitor& nv);

protected:
 unsigned int _count;
};

Managing Scene Graph

[114]

3.	 In the traverse() implementation, we will increase the internal counter and see
if it reaches a multiple of 60, and reverse the states of the first and second child
nodes:

void AnimatingSwitch::traverse(osg::NodeVisitor& nv)
{
 if (!((++_count)%60))
 {
 setValue(0, !getValue(0));
 setValue(1, !getValue(1));
 }
 osg::Switch::traverse(nv);
}

4.	 Read the Cessna model and the afire model again and add them to the customized
AnimatingSwitch instance:

osg::ref_ptr<osg::Node> model1= osgDB::readNodeFile("cessna.osg");
osg::ref_ptr<osg::Node> model2= osgDB::readNodeFile("cessnafire.
osg");

osg::ref_ptr<AnimatingSwitch> root = new AnimatingSwitch;
root->addChild(model1.get(), true);
root->addChild(model2.get(), false);

5.	 Start the viewer:

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

6.	 Because the hardware refresh rate is often at 60 Hz, the if condition in
traverse() will become true once per second, which achieves the animation.
Then you will see the Cessna is intact in the first second, and afire and smoking
in the next, acting in cycles:

Chapter 5

[115]

What just happened?
Because the traverse() method is widely re-implemented to extend different node types,
it should involve a mechanism for reading transformation matrices and rendering states for
actual use. For example, the osg::LOD node must calculate the distance from a child node's
center to the viewer's eye point, which will be used as the visibility range for switching
between levels.

The input parameter osg::NodeVisitor& is the key to various kinds of node operations.
It indicates the type of traversals visiting this node, such as the update, the event, and the
cull traversal. The first two are associated with callbacks and will be introduced in detail in
Chapter 8, Animating Scene Objects.

The cull traversal, named osgUtil::CullVisitor, can be retrieved from the
osg::NodeVisitor& parameter with following code snippet:

osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(&nv);
if (cv)
{
 // Do something
}

Managing Scene Graph

[116]

You should include the <osgUtil/CullVisitor> header at the beginning of your
program. The cull visitor class is able to obtain lots of scene states with different methods,
and even change the structure and order of the internal rendering list. The concept and
usage of osgUtil::CullVisitor is beyond the scope of this beginner's book, but is still
worth understanding and learning from the source code of OSG NodeKits.

Have a go hero – creating a tracker node
Have you ever thought of implementing a tracker node, which will follow up the position of
another node at all times? The trailer had better be an osg::MatrixTransform derived
subclass. It can use a smart pointer member to record the node to be tracked and obtain
the position in the 3D world in the traverse() override method. Then the tracker will use
the setMatrix() method to set itself to a relative position, in order to realize the tracking
operation.

You can compute a vertex in the absolute coordinate frame by using the
osg::computeLocalToWorld() function:

osg::Vec3 posInWorld = node->getBound().center() *
 osg::computeLocalToWorld(node->getParentalNodePaths()[0]);

The getBound()method here will return an osg::BoundingSphere object. The
osg::BoundingSphere class represents the bounding sphere of a node, which is used
to decide if the node is invisible and cullable in the view frustum culling process. It has two
main methods: the center() method simply reads the center point of the bounding sphere
in the local coordinate; and the radius() method returns the radius.

Using the getParentalNodePaths() method mentioned in the Managing parent nodes
section, we can get the parent node path and compute the transformation matrix from the
node's relative reference frame to the world reference frame.

The visitor design pattern
The visitor pattern is used to represent a user operation to be performed on elements of a
graph structure, without modifying classes of these elements. The visitor class implements all
of the appropriate virtual functions to be applied to various element types, and archive the
goal through the mechanism of double dispatch, that is, the dispatch of certain virtual function
calls, depending on the runtime types of both the receiver element and the visitor itself.

Based on the theory of double dispatch, developers can customize their visitors with special
operation requests, and bind the visitor to different types of elements at runtime without
changing the element interfaces. This is a great way to extend element functionalities
without defining many new element subclasses.

Chapter 5

[117]

OSG supports osg::NodeVisitor class to implement the visitor pattern. In essence, an
osg::NodeVisitor derived class traverses a scene graph, visits each node, and applies
user-defined operations to them. It is the basic class of implementations of the update,
event, and cull traversals (for example, osgUtil::CullVisitor), as well as some other
scene graph utilities, including osgUtil::SmoothingVisitor, osgUtil::Simplifier,
and osgUtil::TriStripVisitor, all of which will traverse the given sub-scene graph and
apply polygon modifications to geometries found in osg::Geode nodes.

Visiting scene graph structures
To create a visitor subclass, we have to re-implement one or several apply() virtual
overloaded methods declared in the osg::NodeVisitor base class. These methods are
designed for most major OSG node types. The visitor will automatically call the appropriate
apply() method for each node it visits during the traversal. User customized visitor classes
should override only the apply() methods for required node types.

In the implementation of an apply() method, developers have to call the traverse()
method of osg::NodeVisitor at the appropriate time. It will instruct the visitor to
traverse to the next node, maybe a child, or a sibling node if the current node has no
children to visit. Not calling the traverse() method means to stop the traversal at
once, and the rest of the scene graph is ignored without performing any operations.

The apply() methods have the unified formats of:

virtual void apply(osg::Node&);
virtual void apply(osg::Geode&);
virtual void apply(osg::Group&);
virtual void apply(osg::Transform&);

To traverse a specified node's sub-scene graph and call these methods, we first need to
select a traversal mode for the visitor object. Take an assumed ExampleVisitor class
as an example; there are two steps to initialize and start this visitor on a certain node:

ExampleVisitor visitor;
visitor->setTraversalMode(osg::NodeVisitor::TRAVERSE_ALL_CHILDREN);
node->accept(visitor);

The enumerate or TRAVERSE_ALL_CHILDREN means to traverse all of the node's children.
There are two other options: TRAVERSE_PARENTS, which backtracks from current node
until arriving at the root node, and TRAVERSE_ACTIVE_CHILDREN , which only visits active
child nodes, for instance, the visible children of an osg::Switch node.

Managing Scene Graph

[118]

Time for action – analyzing the Cessna structure
User applications may always search the loaded scene graph for nodes of interest after
loading a model file. For example, we might like to take charge of the transformation or
visibility of the loaded model if the root node is osg::Transform or osg::Switch. We
might also be interested in collecting all transformation nodes at the joints of a skeleton,
which can be used to perform character animations later.

The analysis of the loaded model structure is important in that case. We will implement an
information printing visitor here, which prints the basic information of visited nodes and
arranges them in a tree structure.

1.	 Include the necessary headers:

#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
#include <iostream>

2.	 Declare the InfoVisitor class, and define the necessary virtual methods. We only
handle leaf nodes and common osg::Node objects. The inline function spaces()
is used for printing spaces before node information, to indicate its level in the tree
structure:

class InfoVisitor : public osg::NodeVisitor
{
public:
 InfoVisitor() : _level(0)
 { setTraversalMode(osg::NodeVisitor::TRAVERSE_ALL_CHILDREN); }

 std::string spaces()
 { return std::string(_level*2, ' '); }

 Virtual void apply(osg::Node& node);
 virtual void apply(osg::Geode& geode);

protected:
 unsigned int _level;
};

3.	 We will introduce two methods className() and libraryName(), both of
which return const char* values, for instance, "Node" as the class name and "osg"
as the library name. There is no trick in re-implementing these two methods for
different classes. The META_Object and META_Node macro definitions will do the
work internally:

Chapter 5

[119]

void InfoVisitor::apply(osg::Node& node)
{
 std::cout << spaces() << node.libraryName() << "::"
 << node.className() << std::endl;

 _level++;
 traverse(node);
 _level--;
}

4.	 The implementation of the apply() overloaded method with the osg::Geode&
parameter is slightly different from the previous one. It iterates all attached
drawables of the osg::Geode node and prints their information, too. Be aware of
the calling time of traverse() here, which ensures that the level of each node in
the tree is correct.

void apply(osg::Geode& geode)
{
 std::cout << spaces() << geode.libraryName() << "::"
 << geode.className() << std::endl;

 _level++;
 for (unsigned int i=0; i<geode.getNumDrawables(); ++i)
 {
 osg::Drawable* drawable = geode.getDrawable(i);
 std::cout << spaces() << drawable->libraryName() << "::"
 << drawable->className() << std::endl;
 }

 traverse(geode);
 _level--;
}

5.	 In the main function, use osgDB::readNodeFiles() to read a file from command
line arguments:

osg::ArgumentParser arguments(&argc, argv);
osg::ref_ptr<osg::Node> root = osgDB::readNodeFiles(arguments);
if (!root)
{
 OSG_FATAL << arguments.getApplicationName() <<": No data
 loaded." << std::endl;
 return -1;
}

Managing Scene Graph

[120]

6.	 Use the customized InfoVisitor to visit the loaded model now. You will have
noticed that the setTraversalMode() method is called in the constructor of the
visitor in order to enable the traversal of all of its children:

InfoVisitor infoVisitor;
root->accept(infoVisitor);

7.	 Start the viewer or not. This depends on your opinion, because our visitor has
already finished its mission:

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

8.	 Assuming that your executable file is MyProject.exe, in the prompt, type:

	 # MyProject.exe cessnafire.osg

9.	 You may get following information on the console:

What just happened?
You can easily draw the structure of the input afire Cessna model now. It explicitly includes
an osg::Geode node with a geometry object, which contains the geometric data of the
Cessna. The geometry node can be transformed by its parent osg::MatrixTransform
node. The whole model is managed under an osg::Group node, which is returned by the
osgDB::readNodeFile() or osgDB::readNodeFiles() functions.

Other classes with the prefix osgParticle may still seem confusing at present.
They actually represent the smoke and fire particle effects of the Cessna, which will be
introduced in Chapter 8, Animating Scene Objects.

Chapter 5

[121]

Now we are able to modify the primitive sets of the model, or control the particle system,
based on the results of visiting the scene graph. To archive this purpose, now let's just save
the specified node pointer to a member variable of your own visitor class, and reuse it in
future code.

Summary
This chapters taught how to implement a typical scene graph by using OSG, which shows
the usage of various types of scene graph nodes, with a special focus on the assembly of
the graph tree and how to add state objects like the commonly used osg::Transform,
osg::Switch, osg::LOD, and osg::ProxyNode classes. We specifically covered:

�� How to utilize various osg::Group and osg::Geode nodes to assemble a basic
hierarchy graph and handle parent and children nodes

�� How to realize the spatial transform by using osg::Transform, based on
the understanding of the concept of matrix and its implementation—the
osg::Matrix variables

�� How to use the osg::Switch node to shift the rendering status of scene nodes

�� How to decide upon the detail of rendering complexity for scene nodes, by using
the osg::LOD class

�� Using the osg::ProxyNode and osg::PagedLOD classes to balance the
runtime scene load

�� How to customize a node and enhance its features

�� The basic concept of the visitor design pattern and its implementation in OSG

�� Traversing a node and its sub-scene graph with the osg::NodeVisitor
derived classes

6
Creating Realistic
Rendering Effects

Any geometry model in a 3D scene is composed of vertices, texture, lighting,
and shading information. Rendering is, in the graphics pipeline, the last major
step, generating the image from the defined model with a number of visible
features, for example, the brightness, color, and detail of the surface that
the viewer sees. OSG has encapsulated almost all of the OpenGL's rendering
interfaces, including lighting, material, texture, alpha test, image blending,
fog effect, as well as the implementation of vertex, geometry, and fragment
shaders in OpenGL Shading Language.

This chapter will give a detailed introduction to

�� Understanding the concept of a state machine and the encapsulation of it in OSG

�� How to set up different rendering attributes and modes for scene objects

�� How to inherit rendering states in the scene graph

�� Realizing various fixed-function rendering effects in OSG

�� How to control the scene lights, which is a positional state

�� How to add in textures and set texture coordinates of geometries

�� Controlling the rendering order for drawing transparent and translucent objects

�� Working with the vertex, geometry, and fragment shaders, with uniform variables

Creating Realistic Rendering Effects

[124]

Encapsulating the OpenGL state machine
Typically, OpenGL employs a state machine to keep track of all rendering related states. The
rendering states are collections of state attributes like scene lights, materials, textures and
texture environments, and state modes, which can be switched on or off using the OpenGL
functions glEnable() or glDisable().

When a rendering state is set, it will remain in effect until some other function changes it.
The OpenGL pipeline internally maintains a state stack to save or restore rendering states
at any time.

The state machine gives developers exact control over current and saved rendering states.
However, it may not be suitable for direct use in a scene graph structure. For this reason,
OSG uses the osg::StateSet class to encapsulate the OpenGL state machine, and
manages the push and pop operations of various rendering state sets in the culling and
rendering traversals of a scene graph.

An osg::StateSet instance contains a subset of different OpenGL states, and can be
applied to an osg::Node or osg::Drawable object by using the setStateSet()
method. For example, you may add a newly-allocated state set to a node variable:

osg::StateSet* stateset = new osg::StateSet;
node->setStateSet(stateset);

A safer way is to use the getOrCreateStateSet() method, which ensures that a valid
state set is always returned and automatically attached to the node or drawable object if
necessary:

osg::StateSet* stateset = node->getOrCreateStateSet();

The osg::Node or osg::Drawable class manages the osg::StateSet member variable
with the smart pointer osg::ref_ptr<>. It means that the state set can be shared by
multiple scene objects, and will be destroyed when no longer used by any of them.

Attributes and modes
OSG defines an osg::StateAttribute class for recording rendering state attributes. It is a
virtual base class which can be inherited to implement different rendering attributes such as
lights, materials, and fogs.

Chapter 6

[125]

Rendering modes perform like switches that can be enabled or disabled. Besides, it contains
an enumeration parameter that is used to indicate the type of the OpenGL mode. Because
of the simplicity, it is unnecessary to design a StateMode base class for rendering modes.
Note that sometimes a rendering mode is associated with an attribute, for instance, the
mode GL_LIGHTING enables light variables to be sent to the OpenGL pipeline when set to
on, and disables scene lighting contrariwise.

The osg::StateSet class divides attributes and modes into two groups: texture and
non-texture. It has several member methods to add non-texture attributes and modes
to the state set itself:

1.	 The public method setAttribute() adds an osg::StateAttribute derived
object to the state set. Attributes of the same type cannot coexist in one state set.
The previous set one will just be overwritten by the new one.

2.	 The public method setMode() attaches a mode enumeration to the state set and
sets its value to osg::StateAttribute::ON or osg::StateAttribute::OFF,
which means to enable or disable the mode.

3.	 The public method setAttributeAndModes() attaches a rendering attribute and
its associated mode to the state set, and sets the switch value (ON by default) at the
same time. Be aware that not every attribute has a corresponding mode, but you
can always make use of this method without being indecisive.

To attach an attribute attr and its associated mode to the stateset variable, type the
following code:

stateset->setAttributeAndModes(attr, osg::StateAttribute::ON);

Texture attributes and modes have to assign an extra unit parameter to specify the texture
mapping unit to be applied to, so osg::StateSet provides a few more public methods,
each with a Texture infix, including setTextureAttribute(), setTextureMode(), and
setTextureAttributeAndModes(). In order to attach a texture attribute texattr and
its associated mode to the stateset variable, and specify the texture unit 0, just type:

stateset->setTextureAttributeAndModes(
 0, texattr, osg::StateAttribute::ON);

Creating Realistic Rendering Effects

[126]

Time for action – setting polygon modes of different nodes
We are going to select the polygon rasterization mode of a loaded model. The
osg::PolygonMode class, which is derived from the osg::StateAttribute base class,
will be used to achieve this goal. It simply encapsulates OpenGL's glPolygonMode()
function and implements interfaces for specifying face and drawing mode parameters, and
thus changes the final rasterization of the attached node.

1. Include the necessary headers:

#include <osg/PolygonMode>

#include <osg/MatrixTransform>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

2. We will work on the basis of the transformation example in the last chapter. We
create two osg::MatrixTransform nodes and make them share the same
loaded Cessna model. The two transformation nodes are placed at different
positions in the 3D world, which will display two Cessna models as the result:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile(
 "cessna.osg");

osg::ref_ptr<osg::MatrixTransform> transformation1 = new
osg::MatrixTransform;

transformation1->setMatrix(osg::Matrix::translate(-
25.0f,0.0f,0.0f));

transformation1->addChild(model.get());

osg::ref_ptr<osg::MatrixTransform> transformation2 = new
osg::MatrixTransform;

transformation2->setMatrix(osg::Matrix::translate(25.0f,0.0f,0.
0f));

transformation2->addChild(model.get());

3. Now, we will add an osg::PolygonMode rendering attribute to the associated
state set of the node transformation1. It has a setMode() method which
accepts two parameters: the face that the mode applied to, and the mode should
be in which polygons will be rasterized:

osg::ref_ptr<osg::PolygonMode> pm = new osg::PolygonMode;

pm->setMode(osg::PolygonMode::FRONT_AND_BACK,
osg::PolygonMode::LINE);

transformation1->getOrCreateStateSet()->setAttribute(pm.get());

Chapter 6

[127]

4.	 The next step is familiar. Now we can add the nodes to a root node, and start the
viewer to see if anything has changed:

osg::ref_ptr<osg::Group> root = new osg::Group;

root->addChild(transformation1.get());

root->addChild(transformation2.get());

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

5.	 The Cessna model at the position (-25.09, 0.0, 0.0), or on the left of the
initial display window, is drawn with outlined front and back facing polygons.
On the contrary, the model on the right is still fully filled as usual:

What just happened?
With prior knowledge of the OpenGL polygon mode, we can easily imagine the parameters
required by the setMode() method of the osg::PolygonMode class. The first parameter
can be one of osg::PolygonMode::FRONT, BACK, and FRONT_AND_BACK, corresponding
to the OpenGL enumerations GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK. The second
parameter can be one of osg::PolygonMode::POINT, LINE, and FILL, which correspond
to GL_POINT, GL_LINE, and GL_FILL. OSG needs no more tricks when encapsulating
OpenGL rendering states!

The polygon mode doesn't have an associated mode, that is, it doesn't require calling
the OpenGL glEnable()/glDisable() functions, nor making use of OSG state set's
setMode() method.

The setAttributeAndModes() method can also work properly here, but the switch value
(ON/OFF) is of no avail in this case.

Creating Realistic Rendering Effects

[128]

Inheriting render states
The state set of a node will affect the current node and its children. For example, the
osg::PolygonMode attribute set to node transformation1 will make all of its children
display as outlined. However, a child node's state set can override its parent's, that is, the
rendering states will be inherited from the parent node unless a child node changes the
behavior. The following image shows how different polygon mode states are traversed an
imaginary scene graph:

Sometimes you may want different behaviors. For example, in common 3D editor software,
users can load multiple models from files and render all of them as textured, wireframe, or
solid, no matter what the previous state of each model is. In other word, all children models
in the editor should inherit a unified attribute regardless of what they have set before. This
can be implemented in OSG by using an osg::StateAttribute::OVERRIDE flag, such as:

stateset->setAttribute(attr, osg::StateAttribute::OVERRIDE);

For setting rendering modes, or attribute and modes, use the bitwise OR operator:

stateset->setAttributeAndModes(attr,
 osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE);

Returning to the topic of 3D editor software. Imagine that you select a model by using
the mouse pointer; there will be a wireframe bounding box displayed to indicate that the
model is selected. The selection box will never be affected by the textured/wireframe/solid
states, that is, the attribute or mode is immune from it's parent's override. OSG uses an
osg::StateAttribute::PROTECTED flag to support this.

Chapter 6

[129]

OSG has a third flag, osg::StateAttribute::INHERIT, which is used to indicate that the
current attribute or mode should be inherited from the parent node's state set. The applied
attribute or mode will not actually be used in this situation.

Time for action – lighting the glider or not
We will show the usage of the OVERRIDE and PROTECTED flags in the following short
example. The root node will be set to OVERRIDE, in order to force all children to inherit
its attribute or mode. Meanwhile, the children will try to change their inheritance with or
without a PROTECTED flag, which will lead to different results.

1.	 Include the necessary headers:

#include <osg/PolygonMode>

#include <osg/MatrixTransform>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

2.	 Create two osg::MatrixTransform nodes and make them both share a glider
model. After all, we don't want to use the well-known Cessna all the time. The glider
is small in size, so only a small distance is required for the setMatrix() method:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile(
 "glider.osg");

osg::ref_ptr<osg::MatrixTransform> transformation1 = new
osg::MatrixTransform;

transformation1->setMatrix(osg::Matrix::translate(
 -0.5f, 0.0f, 0.0f));

transformation1->addChild(model.get());

osg::ref_ptr<osg::MatrixTransform> transformation2 = new
 osg::MatrixTransform;

transformation2->setMatrix(osg::Matrix::translate(
 0.5f, 0.0f, 0.0f));

transformation2->addChild(model.get());

3.	 Add the two transformation nodes to the root:

osg::ref_ptr<osg::Group> root = new osg::Group;

root->addChild(transformation1.get());

root->addChild(transformation2.get());

Creating Realistic Rendering Effects

[130]

4.	 Now we are going to set the rendering mode of each node's state set. The
GL_LIGHTING mode is a famous OpenGL enumeration which can be used to
enable or disable global lighting of the scene. Note that the OVERRIDE and
PROTECTED flags are set to root and transformation2 separately, along
with an ON or OFF switch value:

transformation1->getOrCreateStateSet()->setMode(GL_LIGHTING,

 osg::StateAttribute::OFF);

transformation2->getOrCreateStateSet()->setMode(GL_LIGHTING,

 osg::StateAttribute::OFF|osg::StateAttribute::PROTECTED);

root->getOrCreateStateSet()->setMode(GL_LIGHTING,

 osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE);

5.	 Start the viewer:

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

6.	 The node transformation1 is placed on the left side of the screen, without
any obvious changes. However, transformation2 is completely different,
even though it shares the same loaded model with transformation1:

Chapter 6

[131]

What just happened?
You can first find out what a normal lighted glider looks like with the following command:

osgviewer glider.osg

In this example, we are trying to change the GL_LIGHTING modes of transformation1
and transformation2 to disable lights on them. Meanwhile, we have turned on the
lighting mode for the root node, and used an OVERRIDE flag for all children to follow to
retain their lighting states.

The node transformation1, as shown in the previous image, remains lighted in spite of
its own setting. However, transformation2 uses a PROTECTED flag to prevent itself from
being affected by the root. It becomes a little brighter as a result of "turning off" the light on
its surfaces. This is simply because the geometries are now directly colored according to the
original color arrays, without any more reaction to the lights.

Changing the filename of osgDB::readNodeFile() to cessna.osg will produce two
lighted models in this example, because the Cessna model turns on the GL_LIGHTING mode
inside its sub-scene graph, in order to override any previous states. Can you figure out how
to disable the lights of transformation2 node this time?

Playing with fixed-function effects
OSG supports almost all kinds of OpenGL rendering attributes and modes by using the
osg::StateAttribute derived classes. The following table is part of over 40 OSG
components that encapsulate major OpenGL fixed-function states:

Type ID Class name Associated
mode

Related OpenGL functions

ALPHAFUNC osg::AlphaFunc GL_
ALPHA_
TEST

glAlphaFunc()

BLENDFUNC osg::BlendFunc GL_BLEND glBlendFunc()
and
glBlendFuncSeparate()

CLIPPLANE osg::ClipPlane GL_CLIP_
PLANEi (i
ranges from
0 to 5)

glClipPlane()

COLORMASK osg::ColorMask - glColorMask()

Creating Realistic Rendering Effects

[132]

Type ID Class name Associated
mode

Related OpenGL functions

CULLFACE osg::CullFace GL_
CULLFACE

glCullFace()

DEPTH osg::Depth GL_
DEPTH_
TEST

glDepthFunc(),
glDepthRange(),
and glDepthMask()

FOG osg::Fog GL_FOG glFog()

FRONTFACE osg::FrontFace - glFrontFace()

LIGHT osg::Light GL_
LIGHTi (i
ranges from
0 to 7)

glLight()

LIGHTMODEL osg::LightModel - glLightModel()

LINESTIPPLE osg::LineStipple GL_LINE_
STIPPLE

glLineStipple()

LINEWIDTH osg::LineWidth - glLineWidth()

LOGICOP osg::LogicOp GL_
COLOR_
LOGIC_OP

glLogicOp()

MATERIAL osg::Material - glMaterial() and
glColorMaterial()

POINT osg::Point GL_
POINT_
SMOOTH

glPointParameter()

POINTSPRITE osg::PointSprite GL_
POINT_
SPRITE_
ARB

OpenGL point sprite
functions

POLYGONMODE osg::PolygonMode - glPolygonMode()

POLYGONOFFSET osg::PolygonOffset GL_
POLYGON_
OFFSET_
POINT,
and so on

glPolygonOffset()

POLYGONS
TIPPLE

osg::PolygonStipple GL_
POLYGON_
STIPPLE

glPolygonStipple()

SCISSOR osg::Scissor GL_
SCISSOR_
TEST

glScissor()

Chapter 6

[133]

Type ID Class name Associated
mode

Related OpenGL functions

SHADEMODEL osg::ShadeModel - glShadeModel()

STENCIL osg::Stencil GL_
STENCIL_
TEST

glStencilFunc(),
glStencilOp(), and
glStencilMask()

TEXENV osg::TexEnv - glTexEnv()

TEXGEN osg::TexGen GL_
TEXTURE_
GEN_S,
and so on

glTexGen()

The Type ID column will retrieve specific attributes from a state set. It is used as the
parameter of the method getAttribute(), for instance:

osg::PolygonMode* pm = dynamic_cast<osg::PolygonMode*>(
 stateset->getAttribute(osg::StateAttribute::POLYGONMODE));

A valid pointer will be retrieved if you have set the polygon mode attribute to the stateset
variable before. Otherwise, getAttribute() will return NULL.

The Associated mode column of the table shows how OSG calls OpenGL modes when using
setAttributeAndModes(). You may also check to see if a mode is turned on or off by
using the getMode() method:

osg::StateAttribute::GLModeValue value =
 stateset->getMode(GL_LIGHTING);

Here the enumeration GL_LIGHTING is used to enable or disable lighting in the
whole scene.

The Related OpenGL functions column identifies which OpenGL functions are encapsulated in
an OSG attribute class. An OSG attribute class will always have a series of methods to specify
related function parameters—OpenGL developers can thus migrate from their applications
to OSG without too many modifications.

Creating Realistic Rendering Effects

[134]

Time for action – applying simple fog to models
We will take the fog effect as an ideal example of working with various rendering attributes
and modes. OpenGL accepts one linear and two exponential fog equations, which are
supported by the osg::Fog class as well.

1.	 Include the necessary headers:

#include <osg/Fog>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

2.	 We would like to first create the fog attribute. Using the linear mode, we have to
set the near and far distances by using setStart() and setEnd() methods.
We will also set the fog color, in order to generate a dust fog-like effect:

osg::ref_ptr<osg::Fog> fog = new osg::Fog;

fog->setMode(osg::Fog::LINEAR);

fog->setStart(500.0f);

fog->setEnd(2500.0f);

fog->setColor(osg::Vec4(1.0f, 1.0f, 0.0f, 1.0f));

3.	 We are going to load an example terrain model named lz.osg, which can
be located in the data directory indicated by the environment variable
OSG_FILE_PATH. The only work to do is to set the fog attribute and the
associated mode to the node's state set.

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile("lz.osg");

model->getOrCreateStateSet()->setAttributeAndModes(fog.get());

4.	 Start the viewer and manipulate the scene, in order to make the terrain and
the fog have a better appearance:

osgViewer::Viewer viewer;

viewer.setSceneData(model.get());

return viewer.run();

5.	 As you scale the scene by using the right mouse button, the terrain model
will fade in and out of the fog in a smooth progression. This is a very basic
environment effect, but the result can still be fantastic sometimes:

Chapter 6

[135]

What just happened?
The OpenGL glFog() function supports the setting of parameters of various modes such as
GL_FOG_MODE, GL_FOG_DENSITY, GL_FOG_START, and GL_FOG_END. These are redefined
in OSG as the setMode(), setDensity(), setStart(), and setEnd() methods, each of
which has a paired get*() method.

Here is an additional trick about implementing the fog effect: developers may set the fog
coordinate of each vertex of geometry and use it as a distance value in the computation.
This can be done by using the setFogCoordArray() and setFogCoordBinding()
methods of the osg::Geometry class, in addition to specifying the fog coordinate source:

fog->setFogCoordinateSource(GL_FOG_COORD);

The current fragment depth will be used in the fog color computation instead, if the
method's parameter is set to GL_FRAGMENT_DEPTH.

Have a go hero – searching for more effects
There are more OSG rendering attribute classes that have encapsulated OpenGL functions
and parameters into public class methods. For details, you may read the API documentation
included in the prebuilt packages, or look for declarations in the header files in order to learn
how to make use of them.

Some easy-to-read and easy-to-use rendering attributes are osg::ColorMask,
osg::LineWidth, and osg::ShadeModel. They have intuitive methods for setting mask,
width, and mode parameters, and can immediately make effects when attaching to state
sets of nodes and drawables. Have a try of these rendering attributes and see if you can
master them with only the API manuals and class declarations.

Creating Realistic Rendering Effects

[136]

Lights and light sources
Like OpenGL, OSG only supports up to eight fixed-function light sources for directly
illuminating the 3D scene, and won't be able to automatically generate and cast shadows are
on objects. Light rays commonly originate from certain light sources, travel in straight lines,
reflected on or scattered off scene objects, and are finally perceived by the viewer's eye. The
light source properties, the surface material properties, and normals of geometries are all
necessary to implement complete lighting effects.

The osg::Light class provides neat methods for operating on properties of a light source,
including setLightNum() and getLightNum() for handling the OpenGL light number,
setAmbient() and getAmbient() for the ambient component, setDiffuse() and
getDiffuse() for the diffuse component of the light, and so on.

OSG also provides an osg::LightSource class for adding lights to the scene graph. It has
a setLight() method and should be used as a leaf node with a single light attribute. All
other nodes in the scene graph will be affected by the light source node if the corresponding
GL_LIGHTi mode is set. For instance:

osg::ref_ptr<osg::Light> light = new osg::Light;
light->setLightNum(1); // Specify light number 1
...
osg::ref_ptr<osg::LightSource> lightSource = new osg::LightSource;
lightSource->setLight(light.get()); // Add to a light source node
...
// Add the source node to the scene root and enable rendering mode GL_
LIGHT1 to fit the light's set!
root->addChild(lightSource.get());
root->getOrCreateStateSet()->setMode(GL_LIGHT1,
 osg::StateAttribute::ON);

Another more convenient solution for enabling specified light is the setStateSetModes()
method, with which the light source will automatically attach the light number with the
scene root:

root->addChild(lightSource.get());
lightSource->setStateSetModes(root->getOrCreateStateSet(),
osg::StateAttribute::ON);

Sometimes you may add children to an osg::LightSource node, but this doesn't mean
that you will light sub-graphs based on the hierarchical relationship to the node. It can be
treated as a geometry representing the physical shape of the light source.

Chapter 6

[137]

The osg::LightSource nodes can be placed under an osg::Transform node. Then
a point light can be translated according to the current transformation matrix. You may
disable this feature by setting the reference frame of osg::LightSource, such as:

lightSource->setReferenceFrame(osg::LightSource::ABSOLUTE_RF);

Its meaning is similar to the setReferenceFrame() method of the osg::Transform class.

Time for action – creating light sources in the scene
By default, OSG automatically turns on the first light (GL_LIGHT0) and gives the scene a soft,
directional light. However, this time we will create multiple lights by ourselves, and move
them with transformation parent nodes. Be aware: only positional lights can be translated.
A directional light has no origin and cannot be placed anywhere.

OpenGL and OSG both use the fourth component of the position parameter to decide if
a light is a point light. That is to say, if the fourth component is 0, the light is treated as a
directional source; otherwise it is positional.

1.	 Include the necessary headers:

#include <osg/MatrixTransform>

#include <osg/LightSource>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

2.	 We create a function to create light sources for the scene graph. A light source
should have a number (ranging from 0 to 7), a translation position, and a color
parameter. A point light is created because the fourth part of the position vector
is 1.0. After that, we assign the light to a newly-created osg::LightSource
node, and add the light source to a translated osg::MatrixTransform node,
which is then returned:

osg::Node* createLightSource(unsigned int num,

 const osg::Vec3& trans,

 const osg::Vec4& color)

{

 osg::ref_ptr<osg::Light> light = new osg::Light;

 light->setLightNum(num);

 light->setDiffuse(color);

 light->setPosition(osg::Vec4(0.0f, 0.0f, 0.0f, 1.0f));

 osg::ref_ptr<osg::LightSource> lightSource = new
 osg::LightSource;

 lightSource->setLight(light);

Creating Realistic Rendering Effects

[138]

 osg::ref_ptr<osg::MatrixTransform> sourceTrans =

 new osg::MatrixTransform;

 sourceTrans->setMatrix(osg::Matrix::translate(trans));

 sourceTrans->addChild(lightSource.get());

 return sourceTrans.release();

}

3.	 The Cessna model is going to be lighted by our customized lights. We will load
it from file before creating the light sources:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile(
 "cessna.osg");

osg::ref_ptr<osg::Group> root = new osg::Group;

root->addChild(model.get());

4.	 Now it's time to construct two light source nodes and put them at different
positions in the scene:

osg::Node* light0 = createLightSource(

 0, osg::Vec3(-20.0f,0.0f,0.0f), osg::Vec4(
 1.0f,1.0f,0.0f,1.0f));

osg::Node* light1 = createLightSource(

 1, osg::Vec3(0.0f,-20.0f,0.0f), osg::Vec4(0.0f,1.0f,1.0f,1.0f)
);

5.	 The light numbers 0 and 1 are used here. So we will turn on modes GL_LIGHT0
and GL_LIGHT1 of the root node, which means that all nodes in the scene graph
could benefit from the two warm light sources:

root->getOrCreateStateSet()->setMode(GL_LIGHT0,

 osg::StateAttribute::ON);

root->getOrCreateStateSet()->setMode(GL_LIGHT1,

 osg::StateAttribute::ON);

root->addChild(light0);

root->addChild(light1);

6.	 Now let's start the viewer:

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

7.	 You will figure out that one side of the Cessna is lighted in yellow, and its front is
caught by a cyan light. That is exactly what we want in the example source code!

Chapter 6

[139]

What just happened?
The osg::LightSource class is a node of special kind, which affects all nodes that enable
its associated rendering mode, no matter whether these nodes are placed as children of the
light source or not. This is sometimes confusing, but can be explained through the concept of
positional states. That is, rendering states using the current model-view matrix to position
themselves.

Typical positional states in OpenGL include the glLight() function (point light),
glClipPlane() function, and glTexGen() function (GL_EYE_LINEAR mode). These
states should be anchored during the space transformation; otherwise their appearances
will vary widely according to different model-view matrices applied every time.

OSG uses three osg::Group derived nodes: osg::LightSource, osg::ClipNode, and
osg::TexGenNode, to bind these special states. They all have a setReferenceFrame()
method to use the absolute reference frame, and can be added to the transformation
node to be located in space. The only difference is that osg::LightSource and
osg::TexGenNode have influence over all nodes enabling related modes, but
osg::ClipNode only clips children with specific clipping planes.

Creating Realistic Rendering Effects

[140]

Pop quiz – lights without sources
We can treat osg::Light as a normal rendering attribute, too. For example, applying a
light object to the root node will also affect its sub-graph. However, there will be an obvious
difference if we don't make use of light sources. What do you think is the difference? When
will the light act like a headlight (or skylight)?

The Image class
In the last chapter, we have already learnt how to create a quad and fill it with color.
However, another idea is to apply it with a texture map (often a bitmap or raster image).
This does not affect the vertices of a surface, but only changes final pixel data, which is
more efficient and suitable for representing object details in most cases.

OSG provides several texture attributes and modes for texture mapping operations, which
will be introduced in the next section. Before that, we will have to discuss the osg::Image
class, which stores image data for OpenGL texture objects to upload and use.

The best way to load an image from a disk file is to use the osgDB::readImageFile()
function. This is very similar to the osgDB::readNodeFile() function, which loads models
as scene nodes. Assuming we have a bitmap file named picture.bmp, the following code
will load it as an image object for texture mapping usage:

osg::ref_ptr<osg::Image> image =
 osgDB::readImageFile("picture.bmp");

If the image is loaded correctly, that is, the image pointer is valid, then we are able to read
the image's properties by using some public methods:

�� The public methods s(), t(), and r() return the width, height, and depth of the
image.

�� The public method data() returns the raw image data as an unsigned char*
pointer. You may operate on the pointer directly in order to read or modify image
pixel data.

The meaning of each unsigned char element in the data() pointer is
associated with the image's pixel format and data type, which can be read from
getPixelFormat() and getDataType(). These two values have the same
significance as the format and type parameters of the OpenGL glTexImage*()
functions. For example, an image object with the pixel format GL_RGB and the
data type GL_UNSIGNED_BYTE will use three separated unsigned char elements
to represent each of the RGB components, which form a complete pixel, as the
following image shows:

Chapter 6

[141]

You may also allocate a new image object and put your own image data into this object:

osg::ref_ptr<osg::Image> image = new osg::Image;
image->allocateImage(s, t, r, GL_RGB, GL_UNSIGNED_BYTE);
unsigned char* ptr = image->data();
... // Operate on the ptr variable directly!

Here s, t, and r indicate the size of the image, and GL_RGB and GL_UNSIGNED_BYTE are
used as example settings of pixel format and data type. The internal buffer data will be
allocated after calling the allocateImage() method, and automatically destroyed when
the image is no longer referenced by any texture objects.

You can try a few more image files, such as .jpg, .png, .tif, and so on. OSG manages to
handle most image formats via file I/O plugins, but some of them require third-party libraries
as dependencies, and thus are unusable if you are building OSG from source code with the
default settings. You may learn more about building and using file reader/writer plugins in
detail in Chapter 10, Saving and Loading Files.

The basis of texture mapping
To perform basic texture mapping in your applications, you have to follow these steps:

1.	 Set the texture coordinates of specified geometries

2.	 Create a texture attribute object for a 1D, 2D, 3D or cube map texture
mapping operation

3.	 Specify one or more images for the texture attribute

4.	 Attach the appropriate texture attribute and modes to a state set, which
will be applied to related nodes and drawables

Creating Realistic Rendering Effects

[142]

OSG defines the osg::Texture class to encapsulate all kinds of textures. It has subclasses
osg::Texture1D, osg::Texture2D, osg::Texture3D, and osg::TextureCubeMap,
which can represent different OpenGL texture mapping techniques.

The most common method of the osg::Texture class is setImage(). This simply sets an
allocated image to the texture object. For instance:

osg::ref_ptr<osg::Image> image =
 osgDB::readImageFile("picture.bmp");
osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
texture->setImage(image.get());

Otherwise, you may pass the image object to the constructor directly:

osg::ref_ptr<osg::Image> image =
 osgDB::readImageFile("picture.bmp");
osg::ref_ptr<osg::Texture2D> texture =
 new osg::Texture2D(image.get());

The image variable is managed by the smart pointer inside the texture object. You may read
it back from the texture object by using the getImage() method.

Another important thing is to set the texture coordinates for each vertex of osg::Geometry
objects. You should apply an osg::Vec2Array or osg::Vec3Array to the geometry
by using the setTexCoordArray() method, in order to make up all fragments with the
corresponding texels in current 2D or a volume texture.

When specifying texture coordinates, we must also set a texture mapping unit for
multi-texture implementation. To use a single texture on a model, we can simply specify
the texture unit 0. For instance, the following code sets the texture coordinates array in
unit 0 of the geometry variable geom:

osg::ref_ptr<osg::Vec2Array> texcoord = new osg::Vec2Array;
texcoord->push_back(osg::Vec2(...));
...
geom->setTexCoordArray(0, texcoord.get());

After that, we can add the texture attribute to a state set, automatically switch on the
related mode (GL_TEXTURE_2D), and apply the attribute to the geometry itself, or a
node containing it:

geom->getOrCreateStateSet()->setTextureAttributeAndModes(
 texture.get());

Chapter 6

[143]

Note that OpenGL manages image data in the graphics memory (video card memory), but
an osg::Image object will save loaded data in the system memory. The result will be two
copies of the same image data, one owned by OpenGL and one stored in the osg::Image
object. If the image is not shared among multiple texture attributes, it is possible to delete
the image object and the system memory it occupies after applying it to the OpenGL
pipeline. The osg::Texture class provides a setUnRefImageDataAfterApply()
method to do this:

texture->setUnRefImageDataAfterApply(true);

Once the OpenGL texture object is created, the internally managed image will be
released and getImage() will return an invalid pointer. This will make the viewer
run more efficiently.

Time for action – loading and applying 2D textures
The most common texture mapping technique is 2D texture mapping. This accepts a 2D image
as the texture and maps it onto one or more geometry surfaces. The osg::Texture2D class is
used here as a texture attribute of a specific texture mapping unit.

1.	 Include the necessary headers:

#include <osg/Texture2D>

#include <osg/Geometry>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

2.	 We will quickly create a quad and call the setTexCoordArray() method to
bind texture coordinates per vertex. The texture coordinate array only affects the
texture unit 0 in this example, but it is always possible to share arrays among units:

osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array;

vertices->push_back(osg::Vec3(-0.5f, 0.0f,-0.5f));

vertices->push_back(osg::Vec3(0.5f, 0.0f,-0.5f));

vertices->push_back(osg::Vec3(0.5f, 0.0f, 0.5f));

vertices->push_back(osg::Vec3(-0.5f, 0.0f, 0.5f));

osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;

normals->push_back(osg::Vec3(0.0f,-1.0f, 0.0f));

osg::ref_ptr<osg::Vec2Array> texcoords = new osg::Vec2Array;

texcoords->push_back(osg::Vec2(0.0f, 0.0f));

texcoords->push_back(osg::Vec2(0.0f, 1.0f));

texcoords->push_back(osg::Vec2(1.0f, 1.0f));

texcoords->push_back(osg::Vec2(1.0f, 0.0f));

Creating Realistic Rendering Effects

[144]

osg::ref_ptr<osg::Geometry> quad = new osg::Geometry;

quad->setVertexArray(vertices.get());

quad->setNormalArray(normals.get());

quad->setNormalBinding(osg::Geometry::BIND_OVERALL);

quad->setTexCoordArray(0, texcoords.get());

quad->addPrimitiveSet(new osg::DrawArrays(GL_QUADS, 0, 4));

3.	 We will load an image from the disk and assign it to the 2D texture object. The file
format .rgb is developed by SGI and is commonly used for storing 2D textures:

osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;

osg::ref_ptr<osg::Image> image =

 osgDB::readImageFile("Images/lz.rgb");

texture->setImage(image.get());

4.	 Add the quad to an osg::Geode node, and then add the texture attribute to the
state set. Be careful to set the attribute to the same texture mapping unit as the
texture coordinate array:

osg::ref_ptr<osg::Geode> root = new osg::Geode;

root->addDrawable(quad.get());

root->getOrCreateStateSet()->setTextureAttributeAndModes(

 0, texture.get());

5.	 Start the viewer and see what happened:

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

6.	 Now we have a quad geometry with a regular texture applied to it. Try using
another image file to see if we could build a more colorful world in the 3D space:

Chapter 6

[145]

What just happened?
A 2D texture is a two-dimensional array of color values. Each value is called a texel (texture
element), which has a unique address formed by a column and a row number. The row is
labeled as the s axis and the column as the t axis, relative to the location (0,0) in the texture.
The address, named a texture coordinate, should be mapped into object coordinates
according to a unique vertex it is assigned to. That is why we should set the texture
coordinate array of geometry and ensure that it has the same size as the vertex array.

The osg::Geometry class can have multiple texture coordinate arrays in different texture
mapping units. To make all of them available, you have to set osg::Texture attributes for
each unit by using the setTextureAttributeAndModes() method.

Creating Realistic Rendering Effects

[146]

The osg::Texture2D class requires the texture coordinates normalized to [0, 1], otherwise
it uses texture wrapping to handle extra parts. It checks if the dimensions of a texture are
both power-of-two in size, for instance, 64x64 or 256x512, and will automatically scale non
power-of-two images by default, using the OpenGL's gluScaleImage() function internally,
which is convenient for reading arbitrary images, but spends more system time and leads
to larger result size in graphics memory. There is also a setResizeNonPowerOfTwoHint()
method that defines whether we have to force the resizing of images. Note that non
power-of-two images are directly supported by some graphics cards.

The osg::TextureRectangle class supports 2D textures without requiring power-of-two
dimensions. Re-sampling is thus avoided, and less graphics memory will be used to store
image data. However, it doesn't have mipmaps for texture filtering, and texture coordinates
must be dimension-dependent.

Have a go hero – making use of filters and wrapping modes
OpenGL has already designed perfect mechanisms for handling texture wrapping and
filtering. The osg::Texture class also includes methods to encapsulate them.

The setWrap() method requires two parameters: the texture coordinate axis to apply and
the wrap mode to use. We can then define the texture's wrapping behavior, such as:

texture->setWrap(osg::Texture::WRAP_S, osg::Texture::REPEAT);
texture->setWrap(osg::Texture::WRAP_R, osg::Texture::REPEAT);

This will cause the texture to be tiled if the texture coordinate on axes s and t is out of range
[0, 1].

Similarly, the setFilter() method is used to define the minification and magnification
filters of a texture object. Now, can you find out the usage and appearance of the
setWrap() and setFilter() methods in comparison with same functionalities in
OpenGL? The OpenGL online documentation and the red-book (The OpenGL Programming
Guide) would be nice for understanding these topics.

Handling rendering order
Before starting to explain how to handle rendering order in OSG, we'd better understand
what rendering order is and how it works in OpenGL.

OpenGL stores vertex and primitive data in various buffers, such as the color buffer, depth
buffer, stencil buffer, and so on. Apart from this, it doesn't record vertices and triangles
already sent to it in any other form. Therefore, OpenGL always renders new geometry
primitives regardless of tracing old ones, which means that the order in which these
primitives are rendered is significant.

Chapter 6

[147]

With the help of depth buffer, opaque objects can be rendered correctly and the rendering
order of these objects doesn't matter in simple cases, because the default depth test passes
the incoming data if this is less than the stored one.

However, when using the OpenGL blending mechanism, for instance, to implement
transparent and translucent effects, a special operation will be performed in order to update
the color buffer. Instead of just overriding, the new and old pixels are mixed, taking into
account the alpha value (which is always the fourth component of the color vector) or other
factors. This leads to the problem that rendering order will affect the final results, as shown
in the following diagram:

The setRenderingHint() method of the osg::StateSet class will tell OSG to control
the rendering order of nodes and drawables if necessary. It simply indicates whether a state
set is opaque or transparent, and ensures that objects associated with transparent states
should be rendered after opaque ones, and these transparent objects should be sorted by
the length from every object's center to the eye position (that is, from a distance to nearby).

In order to hint that a node or drawable is opaque (this is actually the default), just type:

node->getOrCreateStateSet()->setRenderingHint(

 osg::StateSet::OPAQUE_BIN);

And for a transparent node or drawable:

node->getOrCreateStateSet()->setRenderingHint(

 osg::StateSet::TRANSPARENT_BIN);

Creating Realistic Rendering Effects

[148]

Time for action – achieving the translucent effect
We are going to implement a common translucent effect that treats a model as glass. Any
other scene objects can be displayed through the glass object. This can be done with the
OpenGL blending mechanism, but it is important to calculate the correct rendering order of
scene objects in this case.

1.	 Include the necessary headers:

#include <osg/BlendFunc>

#include <osg/Texture2D>

#include <osg/Geometry>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

2.	 We will continue using the quad geometry with a predefined texture coordinate
array. It should be treated as a translucent object and the blending attribute
and modes should be applied later:

osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array;

vertices->push_back(osg::Vec3(-0.5f, 0.0f,-0.5f));

vertices->push_back(osg::Vec3(0.5f, 0.0f,-0.5f));

vertices->push_back(osg::Vec3(0.5f, 0.0f, 0.5f));

vertices->push_back(osg::Vec3(-0.5f, 0.0f, 0.5f));

osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;

normals->push_back(osg::Vec3(0.0f,-1.0f, 0.0f));

osg::ref_ptr<osg::Vec2Array> texcoords = new osg::Vec2Array;

texcoords->push_back(osg::Vec2(0.0f, 0.0f));

texcoords->push_back(osg::Vec2(0.0f, 1.0f));

texcoords->push_back(osg::Vec2(1.0f, 1.0f));

texcoords->push_back(osg::Vec2(1.0f, 0.0f));

3.	 Be careful to set the color array of the quad. To blend it with other scene
objects, we have to set the alpha component to a value of less than 1.0 here:

osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array;

colors->push_back(osg::Vec4(1.0f, 1.0f, 1.0f, 0.5f));

4.	 Create the quad geometry again:

osg::ref_ptr<osg::Geometry> quad = new osg::Geometry;

quad->setVertexArray(vertices.get());

quad->setNormalArray(normals.get());

quad->setNormalBinding(osg::Geometry::BIND_OVERALL);

quad->setColorArray(colors.get());

quad->setColorBinding(osg::Geometry::BIND_OVERALL);

Chapter 6

[149]

quad->setTexCoordArray(0, texcoords.get());

quad->addPrimitiveSet(new osg::DrawArrays(GL_QUADS, 0, 4));

osg::ref_ptr<osg::Geode> geode = new osg::Geode;

geode->addDrawable(quad.get());

6.	 Apply a texture to the quad, as we have already done in the last example:

osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;

osg::ref_ptr<osg::Image> image =

 osgDB::readImageFile("Images/lz.rgb");

texture->setImage(image.get());

7.	 Use the osg::BlendFunc class to implement the blending effect.
It works exactly the same as OpenGL's glBlendFunc():

osg::ref_ptr<osg::BlendFunc> blendFunc = new osg::BlendFunc;

blendFunc->setFunction(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

8.	 Add the blend function attribute and the texture attribute to the state set:

osg::StateSet* stateset = geode->getOrCreateStateSet();

stateset->setTextureAttributeAndModes(0, texture.get());

stateset->setAttributeAndModes(blendFunc);

9.	 Now we can't wait to see if the scene is rendering correctly. Try adding the
geometry node and a loaded glider model to the scene graph, and see what
will happen in the next second.

osg::ref_ptr<osg::Group> root = new osg::Group;

root->addChild(geode.get());

root->addChild(osgDB::readNodeFile("glider.osg"));

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

Creating Realistic Rendering Effects

[150]

10.	 The quad is of course translucent now, in comparison with its appearance in the
last example. However, there is something unreasonable in the scene view. The
glider, which is cut into half by the quad, lost one of its wings behind the translucent
face! This is because of wrong rendering order of the quad and the glider. The
latter is hence rendered incorrectly because of the depth test in OpenGL:

11.	 Have you remembered the setRenderingHint() method, which could solve
this wacky problem? Now let's add a line in step 7 to indicate that the quad
geometry is transparent, and allow OSG to sort and render it in a proper way:

stateset->setRenderingHint(osg::StateSet::TRANSPARENT_BIN);

12.	 Everything works fine now:

Chapter 6

[151]

What just happened?
During the drawing traversal, the GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA
enumerations determine the blended color values by using the following equations:

R = srcR * srcA + dstR * (1 - srcA)
G = srcG * srcA + dstG * (1 - srcA)
B = srcB * srcA + dstB * (1 - srcA)

Here, [srcR, srcG, srcB] is a color value of the translucent quad being rendered, and
[dstR, dstG, dstB] is the screen color value to be overridden, which was actually filled
by the opaque glider model just now. The resultant color [R, G, B] is computed according
to the alpha factor srcA of the quad's color vector, and hence mixed by the incoming and
previous color values to generate the translucent effect.

Creating Realistic Rendering Effects

[152]

The setRenderingHint() method controls the rendering order nicely, but it is not
efficient to overuse it. Sorting all transparent objects by depth in each frame requires more
system time, and will cause huge resource consumption if there is massive data to be sorted.
It is the developers who should consider keeping the balance at any time.

Understanding graphics shaders
The OpenGL shading language (GLSL) was originally introduced as an extension to OpenGL
1.4, to allow for programmability in the rendering pipeline at the vertex and fragment level.
Now the GLSL is formally included into the OpenGL 2.0, which provides developers the ability
to develop graphics shaders (blocks of graphics software instructions) to calculate more
realistic rendering effects, rather than only using the fixed-function states.

It is impossible to introduce the details of GLSL and its implementations in OpenGL in this
book. However, there are a few steps to follow if you have an interest in designing different
shaders and applying them to the scene graph.

First, write your own shaders, like C programs. These are treated as a set of strings passed
to the hardware, so just create them on the fly, or read them as text files.

You may specify no more than a vertex shader, a geometry shader, and a fragment shader
(each stage has only one main() function) to be processed in the OpenGL pipeline. These
will totally replace fixed functionalities such as the fog, lighting, and texture mapping, which
have to be re-implemented in your shader source code.

Shaders require the OpenGL API to compile and execute them. Vertex shaders can apply
transformations to each vertex; fragment shaders calculate the color of individual pixels
coming from the rasterizer; and geometry shaders re-generate geometries from existing
vertices and primitive data.

OSG uses the osg::Shader class to define a shader object containing source code
strings. The method setShaderSource() is used to specify the source code text from a
std::string variable, and loadShaderSourceFromFile() will read a source file from
the disk. Besides that, developers can directly construct a shader object from an existing
string vertText as follows:

osg::ref_ptr<osg::Shader> vertShader =
 new osg::Shader(osg::Shader::VERTEX, vertText);

The input parameter osg::Shader::VERTEX represents the vertex shader. You may also
use the enumerations GEOMETRY or FRAGMENT instead, in order to specify a geometry
shader or fragment shader. For example:

osg::ref_ptr<osg::Shader> fragShader = new osg::Shader(
osg::Shader::FRAGMENT, fragText);

Chapter 6

[153]

osg::ref_ptr<osg::Shader> geomShader = new osg::Shader(
 osg::Shader::GEOMETRY);
geomShader->loadShaderSourceFromFile("source.geom");

Here we assume that the file source.geom is loaded and contains our geometry shader.

The osgDB::readShaderFile() function may be even better for reading from files,
because it can automatically check shader types according to file extensions (.vert, .frag,
or .geom). It will return a completely formed osg::Shader instance of the correct type and
data, for instance:

osg::Shader* fragShader = osgDB::readShaderFile("source.frag");

After all shaders are set and are ready to be used, we can use the osg::Program class and
addShader() method to include them and set the GLSL rendering attribute and modes to
a state set. Note that most other fixed-function states will become invalid after the shaders
make effects, including the lights, materials, fog, texture mapping, texture coordinate
generation, and texture environment.

The following code snippet adds all of the above shaders to an osg::Program object and
attaches it to the state set of an existing node:

osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader(vertShader.get());
program->addShader(fragShader.get());
program->addShader(geomShader.get());
node->getOrCreateStateSet()->setAttributeAndModes(program.get());

Using uniforms
There are three types of inputs and outputs in a typical shader: uniforms, vertex attributes,
and varyings. Uniforms and vertex attributes are read-only during the shader's execution,
but can be set by host OpenGL or OSG applications. They are actually global GLSL variables
used for interactions between shaders and user applications.

Varyings are used for passing data from one shader to the next one. They are invisible to
external programs.

OSG uses the osg::Uniform class to define a GLSL uniform variable. Its constructor has a
name and an initial value parameter, which should match the definition in the shader source
code, for instance:

float length = 1.0f;
osg::ref_ptr<osg::Uniform> uniform =
 new osg::Uniform("length", length);

Creating Realistic Rendering Effects

[154]

You may add this uniform object to the state set, which has already attached an
osg::Program object by using the addUniform() method:

stateset->addUniform(uniform.get());

Meanwhile, there should be a variable defined in one of the shader sources, such as:

uniform float length;

Otherwise, the uniform variable will not be available in either OSG programs or shaders.

Uniforms can be any basic type, or any aggregation of types, such as Boolean, float, integer,
2D/3D/4D vector, matrix, and various texture samplers. The osg::Uniform class accepts all
kinds of basic types with the constructor and the set() method. It also provides some more
data types, such as osg::Matrix2 and osg::Matrix3 to support 2x2 and 3x3 matrices. In
order to bind texture samplers, which are used in shaders to represent a particular texture,
the only work for the osg::Uniform object is to specify the texture mapping unit by using
an unsigned int value, such as:

osg::ref_ptr<osg::Uniform> uniform = new osg::Uniform(
 "texture", 0);

Of course, you should have already had an osg::Texture object at unit 0, as well as a
sampler uniform in the shader source:

uniform sampler2D texture;

Here we assume that it is a 2D texture that will be used to change the shader's executing
behavior.

Time for action – implementing a cartoon cow
The cartoon shading is a simple non-photorealistic effect which changes abruptly between
tones. To archive a cartoon shader, we only have to transform the vertex to built-in
gl_Position variables in the vertex shader, and then calculate and select a tone by
using the normal and light direction in the fragment shader. After that, we may apply it
to a loaded model, for instance, a pretty cow.

1.	 Include the necessary headers:

#include <osg/Program>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

Chapter 6

[155]

2. We'd like to write the vertex shader source using strings. It passes a normal
varying variable to the fragment shader, besides setting the gl_Position:

static const char* vertSource = {

 "varying vec3 normal;\n"

 "void main()\n"

 "{\n"

 " normal = normalize(gl_NormalMatrix * gl_Normal);\n"

 " gl_Position = ftransform();\n"

 "}\n"

};

3. The fragment shader uses four color uniforms to represent tones in cartoon
shading. It calculates the cosine angle between the normal variation and the
light position due to the geometric interpretation of dot product. Be aware that
the fixed-function lighting state loses its effect when using the shaders, but light
properties are still available and can be read from built-in GLSL uniforms:

static const char* fragSource = {

 "uniform vec4 color1;\n"

 "uniform vec4 color2;\n"

 "uniform vec4 color3;\n"

 "uniform vec4 color4;\n"

 "varying vec3 normal;\n"

 "void main()\n"

 "{\n"

 " float intensity = dot(vec3(gl_LightSource[0].position),
 normal);\n"

 " if (intensity > 0.95) gl_FragColor = color1;\n"

 " else if (intensity > 0.5) gl_FragColor = color2;\n"

 " else if (intensity > 0.25) gl_FragColor = color3;\n"

 " else gl_FragColor = color4;\n"

 "}\n"

};

4. We will create two shader objects and add them to a program attribute:

osg::ref_ptr<osg::Shader> vertShader =

 new osg::Shader(osg::Shader::VERTEX, vertSource);

osg::ref_ptr<osg::Shader> fragShader =

 new osg::Shader(osg::Shader::FRAGMENT, fragSource);

osg::ref_ptr<osg::Program> program = new osg::Program;

program->addShader(vertShader.get());

program->addShader(fragShader.get());

Creating Realistic Rendering Effects

[156]

4.	 Read a cow model, and apply the attribute and modes to its state set. There are
four uniform variables to be defined in the user application, so we must use the
addUniform() method four times in order to bind values to uniforms here:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile("cow.osg");

osg::StateSet* stateset = model->getOrCreateStateSet();

stateset->setAttributeAndModes(program.get());

stateset->addUniform(

 new osg::Uniform("color1", osg::Vec4(
 1.0f, 0.5f, 0.5f, 1.0f)));

stateset->addUniform(

 new osg::Uniform("color2", osg::Vec4(
 0.5f, 0.2f, 0.2f, 1.0f)));

stateset->addUniform(

 new osg::Uniform("color3", osg::Vec4(
 0.2f, 0.1f, 0.1f, 1.0f)));

stateset->addUniform(

 new osg::Uniform("color4", osg::Vec4(
 0.1f, 0.05f, 0.05f, 1.0f)));

5.	 That is all! Start the viewer now:

osgViewer::Viewer viewer;

viewer.setSceneData(model.get());

return viewer.run();

6.	 You will see a completely different cow model this time. It seems to be painted by
a child or a comic artist. This technique is widely used in computer games and
animation movies:

Chapter 6

[157]

What just happened?
The basic algorithm for cartoon shading is: If we have a normal that is close to the light
direction, the brightest tone (color1) is used. As the angle between the surface normal and
the light direction is increasing, a number of darker tones (color2, color3, and color4)
will be used, which in fact provides an intensity value for selecting tones.

The shader source code is adapted from a nice GLSL tutorial available on the following
website: http://www.lighthouse3d.com.

All four tones are declared as uniform 4D vectors in the fragment shader, and passed to
osg::Uniform objects as osg::Vec4 variables in the user application.

Pop quiz – replacements of built-in uniforms
From the OpenGL 3.x releases, built-in uniforms like gl_LightSource are not going to track
states automatically, that is, they work like user-defined uniforms and will have no value
unless the user sets them.

This situation will force us to replace all built-in variables with those managed by OSG
someday. So why not have some tests before that day comes? For example, can you figure
out how to replace gl_LightSource with user uniforms that record OSG light attributes?

Have a go hero – setting vertex attributes to shaders
The osg::Geometry class uses the setVertexAttribArray() and
setVertexAttribBinding() methods to bind vertex attributes to shaders. They should
be provided per vertex. GLSL's built-in vertex attributes include the gl_Position, gl_
Normal, and gl_MultiTexCoord* variables. However, you may still specify your own
vertex attributes, such as tangents or vertex weights.

Try declaring an attribute in the vertex shader and make use of the osg::Geometry's vertex
attribute arrays. Another important task that you need to perform is to bind the external
attribute array and the GLSL attribute, with the help of the addBindAttribLocation()
method of osg::Program. It has a name and an index parameter, the first of which
indicates the attribute name in the shader source code, and the second should correspond
to the input index value of setVertexAttribArray().

Creating Realistic Rendering Effects

[158]

Working with the geometry shader
The geometry shader is included into the OpenGL 3.2 core, and in lower versions it is used
as an extension, GL_EXT_geometry_shader4, which should be declared in the shader
source code.

The geometry shader introduces some new adjacency primitives, which can be used as
arguments of osg::PrimitiveSet derived classes. It also requires setting a few more
parameters in order to manipulate the operations of the shader, including:

1.	 GL_GEOMETRY_VERTICES_OUT_EXT: Number of vertices that the shader will emit

2.	 GL_GEOMETRY_INPUT_TYPE_EXT: The primitive type to be sent to the shader

3.	 GL_GEOMETRY_OUTPUT_TYPE_EXT: The primitive type to be emitted from
the shader

The osg::Program class uses the setParameter() method to set values for these
parameters. For example, to indicate that 100 vertices will be emitted from the shader to
the primitive assembly processor in the rendering pipeline, we use:

program->setParameter(GL_GEOMETRY_VERTICES_OUT_EXT, 100);

Time for action – generating a Bezier curve
OpenGL has provided functions to generate Bezier and NURBS curves and surfaces for
years, but they are not as good as we wish. Today's geometry shader can do the same work
in a more convenient and efficient way. Take the generation of a Cubic Bezier curve as an
example. Given two endpoints, and two control points to the shader, it will then produce a
smooth curve, with specific segments, that begins and ends at two different endpoints, and
be pulled away towards the control points.

1.	 Include the necessary headers. We'd like to change the output line width, so the
osg::LineWidth class is used here, too:

#include <osg/Program>

#include <osg/LineWidth>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

2.	 The vertex shader is always required. But this time it only
transforms vertices to successive shaders:

static const char* vertSource = {

 "#version 120\n"

 "#extension GL_EXT_geometry_shader4 : enable\n"

 "void main()\n"

Chapter 6

[159]

 "{ gl_Position = ftransform(); }\n"

};

3.	 The geometry shader source code is the key of this example. It reads endpoints
and controls points from the built-in gl_PositionIn variable, reassembles
them, and emits new vertices with the EmitVertex() function. A uniform
variable segments is used to control the smoothness of the generated curve:

static const char* geomSource = {
 "#version 120\n"
 "#extension GL_EXT_geometry_shader4 : enable\n"
 "uniform int segments;\n"
 "void main(void)\n"
 "{\n"
 " float delta = 1.0 / float(segments);\n"
 " vec4 v;\n"
 " for (int i=0; i<=segments; ++i)\n"
 " {\n"
 " float t = delta * float(i);\n"
 " float t2 = t * t;\n"
 " float one_minus_t = 1.0 - t;\n"
 " float one_minus_t2 = one_minus_t * one_minus_t;\n"
 " v = gl_PositionIn[0] * one_minus_t2 * one_minus_t
 +\n"
 " gl_PositionIn[1] * 3.0 * t * one_minus_t2 +\n"
 " gl_PositionIn[2] * 3.0 * t2 * one_minus_t +\n"
 " gl_PositionIn[3] * t2 * t;\n"
 " gl_Position = v;\n"
 " EmitVertex();\n"
 " }\n"
 " EndPrimitive();\n"
 "}\n"
};

4.	 We will create the input primitive of the geometry shader by using an
osg::Geometry class. It contains a new type of primitive, named
GL_LINES_ADJACENCY_EXT, which gives a dimension of four of the
shader's gl_PositionIn variable:

osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array;

vertices->push_back(osg::Vec3(0.0f, 0.0f, 0.0f));

vertices->push_back(osg::Vec3(1.0f, 1.0f, 1.0f));

vertices->push_back(osg::Vec3(2.0f, 1.0f,-1.0f));

vertices->push_back(osg::Vec3(3.0f, 0.0f, 0.0f));

osg::ref_ptr<osg::Geometry> controlPoints = new osg::Geometry;

Creating Realistic Rendering Effects

[160]

controlPoints->setVertexArray(vertices.get());

controlPoints->addPrimitiveSet(

 new osg::DrawArrays(GL_LINES_ADJACENCY_EXT, 0, 4));

osg::ref_ptr<osg::Geode> geode = new osg::Geode;

geode->addDrawable(controlPoints.get());

5.	 We are going to set parameters of the shader. It has segments+1 vertices
to emit, receives the GL_LINES_ADJACENCY_EXT type, and outputs
the resulting curve as line strips, as shown in the following code:

int segments = 10;

osg::ref_ptr<osg::Program> program = new osg::Program;

program->addShader(

 new osg::Shader(osg::Shader::VERTEX, vertSource));

program->addShader(

 new osg::Shader(osg::Shader::GEOMETRY, geomSource));

program->setParameter(GL_GEOMETRY_VERTICES_OUT_EXT, segments+1);

program->setParameter(GL_GEOMETRY_INPUT_TYPE_EXT,

 GL_LINES_ADJACENCY_EXT);

program->setParameter(GL_GEOMETRY_OUTPUT_TYPE_EXT,
 GL_LINE_STRIP);

6.	 The default line width is 1.0. Setting the line width can help us discern the
output curve:

osg::ref_ptr<osg::LineWidth> lineWidth = new osg::LineWidth;

lineWidth->setWidth(2.0f);

7.	 Set all rendering attributes to the state set, and don't forget to add the
uniform for the shader's use:

osg::StateSet* stateset = geode->getOrCreateStateSet();

stateset->setAttributeAndModes(program.get());

stateset->setAttribute(lineWidth.get());

stateset->setMode(GL_LIGHTING, osg::StateAttribute::OFF);

stateset->addUniform(new osg::Uniform("segments", segments));

8.	 Everything is ready. Now start the viewer:

osgViewer::Viewer viewer;

viewer.setSceneData(geode.get());

return viewer.run();

9.	 You will see a Bezier curve displayed in the scene. Try changing the value of the
uniform segments. A larger number will make the curve smoother and suppler,
but may cause more resource consumption and thus lower rendering efficiency.

Chapter 6

[161]

What just happened?
The geometry shader defines a new primitive type GL_LINE_STRIP_ADJACENCY_EXT
which means a line strip with adjacency. The first and last vertices provide adjacency
information but are not visible as line segments. Thus, we could use these two extra vertices
as the endpoints of a Bezier curve, and the others as control points. That is actually what we
have read from the GLSL variable gl_PositionIn[0] to gl_PositionIn[3].

The Cubic Bezier curve can then be calculated according to the following equation:

P(t) = (1-t)3 *P0 + 3*t*(1-t)2*P1 + 3*t2*(1-t)*P2 + t3*P3

The factor t can be set in the range from 0 to 1.

Have a go hero – having fun with shaders
Some may believe that shaders are omnipotent, and some not. But no one can deny that
shaders make our development much more interesting. There are already successful
implementations of realistic ocean, atmosphere, lighting, character animation, and so on,
using graphics shaders. It is now really a critical task for replacing the use of the fixed-function
pipeline with shaders, which always offers a considerable number of advantages to your
applications.

OSG provides full support of the shading language, even those coming with OpenGL4. It also
supports the NVIDIA Cg through a third-party project named osgNV. Can't wait to have fun
with shaders? Besides your own adventures, there are several great open source projects
that are making good use of shaders for your reference:

�� The osgCompute and osgCUDA projects are used for computing with GPU parallel
streaming processors: http://www.cg.informatik.uni-siegen.de/svt/
osgcompute/

Creating Realistic Rendering Effects

[162]

�� The osgNV project can support the NVIDIA Cg language: http://osgnv.
sourceforge.net/

�� The osgOcean project is used for realistic ocean simulation: http://code.
google.com/p/osgocean/

�� The osgPPU project implements various effects using the post processing technique:
http://projects.tevs.eu/osgppu

Summary
After a wireframed sketch is ready in the pipeline, as you may find out from this chapter, the
graphic rendering is then applied to add lights, textures, bump mapping, or programmable
effects to other objects, with the help of the osg::StateSet class and a set of
osg::StateAttribute subclasses. In this chapter, we introduced in detail the techniques
of manipulating rendering states and attributes, especially the two different ways to realize
realistic rendering effects by using the fixed-function pipeline and with the OpenGL shading
language.

In this chapter, we specifically covered:

�� Controlling and inheriting the rendering attributes and modes stored in
osg::StateSet objects of nodes and drawables.

�� Realizing fixed-function rendering effects by using different OSG rendering state
classes, such as osg::PolygonMode, osg::Fog, and osg::BlendFunc.
The rendering order of state sets should be paid attention to when rendering
transparent and translucent objects.

�� How to create and control osg::Light objects by using the
osg::LightSource nodes.

�� How to realize texture mapping by using osg::Image images and associated
osg::Texture subclasses, especially the osg::Texture2D class, which
manages and renders 2D textures.

�� The basic concept of graphic shaders and their implementer classes:
osg::Shader and osg::Program.

7
Viewing the World

The viewer's observation of the scene graph is the result of transforming the
3D world into a 2D image, which is done by a rendering engine in real-time.
Assuming that a virtual camera is employed for observing and recording the
3D world and its dynamic changes, then its movement, angle, focal distance
variation, and a different lens type will change the rendering results and this is
exactly the way that in which we change the view we can see on the screen.

This chapter will mainly focus on:

�� Understanding the coordinate system defined in OpenGL

�� Alternating the view point and orientation, projection frustum, and final viewport

�� Changing and controlling the rendering order if there exists more than one camera.

�� How to create single and composite viewers

�� How to manage global display settings and generate easy-to-use stereo
visualization effects

�� How to apply the rendered scene as a texture object—so called rendering to
textures (RTT)

Viewing the World

[164]

From world to screen
When drawing a point, a line, or a complex polygon in the 3D world, our final goal is
to display it on the screen. That is, the 3D object that we are going to represent will be
converted to a set of pixels in a 2D window. In this process, three major matrices are used to
determine the transformations between different coordinate systems. These are often called
the model, view, and projection matrices.

The model matrix is used to describe the specific location of an object in the world. It can
transform vertices from an object's local coordinate system into world coordinate system.
Both coordinates are right-handed.

The next step is to transform the entire world into view space, by using the view matrix.
Suppose we have a camera placed at a certain position in the world; the inverse of the
camera's transformation matrix is actually used as the view matrix. In the right-handed view
coordinate system, OpenGL defines that the camera is always located at the origin (0, 0, 0),
and facing towards the negative Z axis. Hence, we can represent the world on our camera's
screen.

Note that, there is no separate model matrix or view matrix in OpenGL. However, it defines
a model-view matrix to transform from the object's local space to view space, which is a
combination of both matrices. Thus, to transform the vertex V in local space to Ve in view
space, we have:

Ve = V * modelViewMatrix

The next important work is to determine how 3D objects are projected onto the screen
(perspective or orthogonal), and calculate the frustum from which objects get rendered.
The projection matrix is used to specify the frustum in the world coordinate system with
six clipping planes: the left, right, bottom, top, near, and far planes. OpenGL also provides
an additional gluPerspective() function to determine a field of view with camera lens
parameters.

The resulting coordinate system (called the normalized device coordinate system) ranges
from -1 to +1 in each of the axes, and is changed to left-handed now. And as a final step, we
project all result data onto the viewport (the window), define the window rectangle in which
the final image is mapped, and the z value of the window coordinates. After that, the 3D
scene is rendered to a rectangular area on your 2D screen. And finally, the screen coordinate
Vs can represent the local vertex V in the 3D world by using the so called MVPW matrix,
that is:

Vs = V * modelViewMatrix * projectionMatrix * windowMatrix

Chapter 7

[165]

The Vs is still a 3D vector that represents a 2D pixel location with a depth value.

By reversing this mapping process, we can get a line in the 3D space from a 2D screen point
(Xs, Ys). That's because the 2D point can actually be treated as two points: one on the near
clipping plane (Zs = 0), and the other on the far plane (Zs = 1).

The inverse matrix of MVPW is used here to obtain the result of the "unproject" work:

V0 = (Xs, Ys, 0) * invMVPW
V1 = (Xs, Ys, 1) * invMVPW

The Camera class
OpenGL developers often love to use glTranslate() and glRotate() to move the
scene, and gluLookAt() to move the camera, although they can all be replaced by
the same glMultMatrix() function. In fact, these functions actually do the same
thing—calculate the model-view matrix for transforming data from world space to view
space. Similarly, OSG provides the osg::Transform class, which can add or set its
own matrix to the current model-view matrix when placed in the scene graph, but we
always intend to operate on model matrix by using the osg::MatrixTransform and
osg::PositionAttitudeTransform subclasses, and handle view matrix with the
osg::Camera subclass.

The osg::Camera class is one of the most important classes in the core OSG libraries. It can
be used as a group node of the scene graph, but it is far more than a common node. Its main
functionalities can be divided into four categories:

Firstly, the osg::Camera class handles the view matrix, projection matrix, and the
viewport, which will affect all its children and project them onto the screen. Related
methods include:

1.	 The public setViewMatrix() and setViewMatrixAsLookAt() methods set the
view matrix by using the osg::Matrix variable or classic eye/center/up variables.

2.	 The public setProjectionMatrix() method accepts an osg::Matrix
parameter in order to specify the projection matrix.

3.	 Other convenient methods, including setProjectionMatrixAsFrustum(),
setProjectionMatrixAsOrtho(), setProjectionMatrixAsOrtho2D(),
and setProjectionMatrixAsPerspective(), are used to set a perspective
or orthographic projection matrix with different frustum parameters. They work
just like the OpenGL projection functions (glOrtho(), gluPerspective(),
and so on).

4.	 The public setViewport() method can define a rectangular window area with an
osg::Viewport object.

Viewing the World

[166]

The following code segments demonstrate how to set the view and projection matrix of a
camera node, and set its viewport to (x, y) - (x+w, y+h):

camera->setViewMatrix(viewMatrix);
camera->setProjectionMatrix(projectionMatrix);
camera->setViewport(new osg::Viewport(x, y, w, h));

You can obtain the current view and projection matrices and viewport of the osg::Camera
object by using the corresponding get*() methods at any time. For example:

osg::Matrix viewMatrix = camera->getViewMatrix();

In order to get the position and orientation of the view matrix, use the following code:

osg::Vec3 eye, center, up;
camera->getViewMatrixAsLookAt(eye, center, up);

Secondly, the osg::Camera encapsulates the OpenGL functions, such as glClear(),
glClearColor(), and glClearDepth(), and clears the frame buffers and presets their
values when redrawing the scene to the window in every frame. Primary methods include:

1.	 The setClearMask() method sets the buffer to be cleared. The default is
GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT.

2.	 The setClearColor() method sets the clear color in RGBA format, by using
an osg::Vec4 variable.

Similarly, there are setClearDepth(), setClearStencil(), and setClearAccum()
methods, as well as corresponding get*() methods to obtain set values from the camera
object.

The third category includes the management of OpenGL graphics context associated with
this camera. We are going to discuss this in Chapter 9, Interacting with Outside Elements.

Finally, a camera can attach a texture object to internal buffer components (color buffer,
depth buffer, and so on), and directly render the sub-scene graph into this texture. The
resultant texture can then be mapped to surfaces of other scenes. This technique is named
render-to-textures, or texture baking, which will be introduced later in this chapter.

Chapter 7

[167]

Rendering order of cameras
There is at least one main camera node in any scene graphs. It is created and managed
by the osgViewer::Viewer class, and can be read via the getCamera() method. It
automatically adds the root node as its child node before starting the simulation. By
default, all other cameras, whether directly or indirectly added to the root node, will share
the graphics context associated with the main camera, and draw their own sub-scenes
successively onto the same rendering window.

The osg::Camera class provides a setRenderOrder() method to precisely control the
rendering order of cameras. It has an order enumeration and an optional order number
parameter. The first enumeration can be PRE_RENDER or POST_RENDER, which indicates
the general rendering order. The second is an integer number for sorting cameras of the
same type in ascending order. It is set to 0 by default.

For example, the following code will force OSG to render camera1 first, and then
camera2 (with a larger number), and camera3 after these two cameras and the main
camera are all finished:

camera1->setRenderOrder(osg::Camera::PRE_RENDER);
camera2->setRenderOrder(osg::Camera::PRE_RENDER, 5);
camera3->setRenderOrder(osg::Camera::POST_RENDER);

If a camera is rendered first (PRE_RENDER), its rendering result in the buffers will be
cleared and covered by the next camera, and the viewer may not be able to see its
sub-scene. This is especially useful in the case of the render-to-textures process, because
we want the sub-scene to be hidden from the screen, and update the attached texture
objects before starting the main scene.

In addition, if a camera is rendered afterwards (POST_RENDER), it may erase the current
color and depth values in the buffers. We can avoid this by calling setClearMask() with
fewer buffer masks. A typical example is the implementation of a head-up display (HUD).

Viewing the World

[168]

Time for action – creating an HUD camera
A head-up display (HUD) can render data without requiring users to look away from their
usual viewpoints. It is widely used in 3D scenes, for displaying important 2D texts, computer
game statistics, and flight and cockpit instruments. This time, we are going to design an
HUD camera, which contains a model that should be placed in front of other scene objects
at any time.

1.	 Include the necessary headers:

#include <osg/Camera>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2.	 Two models are loaded from disk files. lz.osg is used as a demo terrain, and
glider.osg will be put under an HUD camera. That is, it will always be visible to
viewers who are looking ahead; no matter how other parts of the scene graph are
changing:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile("lz.osg");
osg::ref_ptr<osg::Node> hud_model = osgDB::readNodeFile("glider.
osg");

3.	 The HUD camera and its children must be rendered after the regular scene
is finished being drawn on the screen. It will overwrite all present pixel data,
regardless of its location and depth. That is why we use GL_DEPTH_BUFFER_BIT to
clear the depth buffer. The GL_COLOR_BUFFER_BIT is not set here, to ensure that
the color buffer is correctly reserved.

osg::ref_ptr<osg::Camera> camera = new osg::Camera;
camera->setClearMask(GL_DEPTH_BUFFER_BIT);
camera->setRenderOrder(osg::Camera::POST_RENDER);

4.	 The HUD camera should not be affected by the viewer or any other parent nodes,
so it needs to be changed to the absolute reference frame, and be set as a custom
fixed view matrix. The glider is also added to the camera node, used as the content
to be displayed:

camera->setReferenceFrame(osg::Camera::ABSOLUTE_RF);
camera->setViewMatrixAsLookAt(
 osg::Vec3(0.0f,-5.0f,5.0f), osg::Vec3(),
osg::Vec3(0.0f,1.0f,1.0f)
);
camera->addChild(hud_model.get());

Chapter 7

[169]

5.	 We will add the HUD camera, along with a regular loaded model, to the root node:

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(model.get());
root->addCh XE "render-to-textures technique:ild(camera.get());

6.	 Now, start the viewer as usual:

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

7.	 You will see that the demo terrain (regular scene) is rendered and manipulated
under the user's control. However, the glider (post-rendered scene) always stays on
top of all other scene objects, and its position and orientation will never be affected
by the mouse or keyboard inputs.

What just happened?
We have created an additional camera which contains a glider model that is to be rendered
as the sub-scene graph. The render order is set to POST_RENDER, that is, this camera will
come after the main camera has rendered its scene (the terrain). In other words, it will
always draw its sub-scene graph on top of the rendering result (color buffer and depth
buffer) of the main camera.

Viewing the World

[170]

The additional camera's goal is to implement a HUD scene that overlays the main scene. It
clears the depth buffer to ensure that all pixel data drawn by this camera can pass the depth
test. However, the color buffer is not cleared, keeping the uncovered pixel data of the main
scene on the screen. That is why we set it up like this:

camera->setClearMask(GL_DEPTH_BUFFER_BIT); // No color buffer bit

Pop quiz – changing model positions in the HUD camera
The HUD camera we just created uses its own view matrix for configuring its sub-graph's
position and orientation in the view coordinates, but it doesn't have a preset projection
matrix. Do you know what its actual value is? Can you figure out how to fill the entire screen
with the glider model by using the HUD camera's projection matrix? And how can you
display an upside-down model?

Using a single viewer
OSG supports the single viewer class osgViewer::Viewer for holding a view on a single
scene. It uses the setSceneData() method to manage the scene graph's root node, and
run() to start the simulation loop, in which the scene is rendered again and again. The
frame buffer is therefore continuously updated by the result of every rendering cycle, so
called a frame.

Besides that, the viewer also contains an osg::Camera object as the main camera, which
we discussed before. The view matrix of the camera is controlled by the viewer's internal
osgGA::CameraManipulator object. Meanwhile, user input events are also received
and handled by the viewer, via a list of osgGA::GUIEventHandler handlers. The viewer
can even be set up in full screen mode, in a window, and onto a spherical display. We will
gradually begin to explain these concepts in this and the following chapters.

Digging into the simulation loop
The simulation loop defined by the run() method always has three types of tasks to
perform: specify the main camera's manipulator, set up associated graphics contexts,
and render frames in cycles.

The manipulator can read keyboard and mouse events and accordingly adjust
the main camera's view matrix to navigate the scene graph. It is set by using
the setCameraManipulator() method, of which the parameter must be an
osgGA::CameraManipulator subclass. For example:

viewer.setCameraManipulator(new osgGA::TrackballManipulator);

Chapter 7

[171]

This adds a classic trackball (arc ball) manipulator to the viewer object, with free motion
behaviors. Because the camera manipulator is kept as a smart pointer in the viewer, we can
assign a new manipulator by using the setCameraManipulator() method at any time. Some
in-built manipulators defined in the osgGA namespace can be found in the following table:

Manipulator class Description Basic usage

DriveManipulator Drive-like
simulator

Key space: reset the viewer position

Mouse moving: changes the viewer's
orientation

Mouse dragging: the left button
accelerates, the right decelerates, and
the middle stops the navigation

FlightManipulator Flight
simulator

Key space: reset the viewer position

Mouse moving: changes the viewer's
position and orientation

KeySwitchMatrixManipulator A decorator
allowing
different
manipulators
to be
switched

Use addMatrixManipulator()
to add a manipulator and switch to it
by pressing the specified key on the
fly, for instance:

addMatrixManipulator('1',
"trackball", new osgGA::
TrackballManipulator);

NodeTrackerManipulator A manipulator
tracking a
node

Use setTrackNode() to select a
node to track before starting

SphericalManipulator A manipulator
for browsing
spherical
objects

Key space: reset the viewer position

Mouse dragging: the left mouse
button rotates the viewer, the middle
mouse button pans the world, and the
right mouse button scales the world

TerrainManipulator An enhanced
trackball-like
manipulator
for viewing
terrains

Key space: reset the viewer position.

Mouse dragging: the left mouse
button rotates the viewer, the middle
mouse button pans the world, and the
right mouse button scales the world

TrackballManipulator The default
trackball
manipulator

Key space: reset the viewer position.

Mouse dragging: the left mouse
button rotates the viewer, the middle
mouse button pans the world, and the
right mouse button scales the world

Viewing the World

[172]

Be aware here, that to declare and use a manipulator you should add the osgGA library as a
dependence of your project. This can be done either in your own project properties or by
using the CMake scripts.

The graphics contexts of a viewer, as well as possible threads and resources, are all initialized
in the realize() method. It is automatically called before the first frame is rendered.

After that, the viewer enters the loop. Each time it uses the frame() method to render a
frame, and checks if the rendering process should stop and exit with the done() method.
The process can be described with just a few lines of code:

while (!viewer.done())
{
 viewer.frame();
}

This is the default rendering scheme used in the viewer class. The frame rate is synchronized
to the monitor's refresh rate to avoid wasting system energy, if the vsync option of the
graphics card is on. But OSG supports another on-demand rendering scheme. Configure the
viewer variable as follows:

viewer.setRunFrameScheme(osgViewer::Viewer::ON_DEMAND);

Now, the frame() method will only be executed when there are scene graph modifications,
updating processes, or user input events, until the scheme is changed back to the default
value of CONTINUOUS.

As an addition, the osgViewer::Viewer class also contains a setRunMaxFrameRate()
method which uses a frame rate number as the parameter. This can set a maximum frame
rate to control the viewer running to force rendering frames without lots of consumption.

Time for action – customizing the simulation loop
We are already very familiar with the run() method of the osgViewer::Viewer class. It
was used many times to start a default simulation loop that loads the scene graph into the
viewer and performs update, cull, and draw traversals on each frame.

But what does the run() method actually do? Is it possible to add some pre- and
post-frame events for certain purposes? In this example, we are going to customize the
simulation loop with a C++ while statement, as well as display the frame number after
advancing one frame at a time.

Note that, the customized simulation loop cannot benefit from the on-demand rendering
scheme and the maximum frame rate setting. They are only available when using the
run() method.

Chapter 7

[173]

1.	 Include the necessary headers:

#include <osgDB/ReadFile>
#include <osgGA/TrackballManipulator>
#include <osgViewer/Viewer>
#include <iostream>

2.	 Load the model and set it as the scene data of the viewer:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile("lz.osg");

osgViewer::Viewer viewer;
viewer.setSceneData(model.get());

3.	 We have to set a manipulator to the viewer; otherwise we will be unable to
navigate the scene, including zoom, pan, orbit, and other controlling operations.
Here, a new trackball manipulator is set to the viewer. It allows the user to
click and drag a point on the screen, having the object rotate to follow it. The
osgGA::TrackballManipulator is the default manipulator used internally in
the run() method:

viewer.setCameraManipulator(new osgGA::TrackballManipulator);

4.	 We then run the viewer in a while loop. Its condition is tested every time to see if
the viewer is finished, by using the done() method. The body of the loop includes
the frame() method, which executes one frame to update, cull, and render the
scene graph, and a std::cout statement to output the current frame number:

while (!viewer.done())
{
 viewer.frame();
 std::cout << "Frame number: " <<
 viewer.getFrameStamp()->getFrameNumber() << std::endl;
}
return 0;

Viewing the World

[174]

5.	 Start the viewer and have a look at the console output. You will see an increasing list
of strings that indicate the frame number, after executing each frame. Apart from
this, there is no difference between using the run() method and the customized
simulation loop!

What just happened?
Here we propose the concept of pre- and post-frame events, and simply think that they
are sure to be executed before and after the frame() method. This definition is actually
inaccurate.

OSG uses multiple threads to manage user updating, culling, and drawing of different
cameras, especially in the presence of multiple screens, processors, and graphics devices.
The frame() method only starts a new updating/culling/drawing traversal work, but does
not take care of thread synchronization. In this case, the code before and after frame()
will be considered unstable and unsafe, because they may conflict with other process
threads when reading or writing the scene graph. Thus, the approach described here is not
recommended for future development. We are going to introduce some more common used
methods to dynamically modify scene data in the next chapter.

Chapter 7

[175]

Another interesting question is when will viewer.done() return true? Of course,
developers can programmatically set the done flag via the setDone() method of the
viewer. The OSG system will check if all present graphics contexts (for example, the rendering
window) have been closed, or if the Esc key is pressed, which will also change the done flag.
The setKeyEventSetsDone() method can even set which key is going to carry out the
duty, instead of the default Esc (or set this to 0 to turn off the feature).

Have a go hero – viewing in a non-full screen window
The osgViewer::Viewer class can be quickly configured to work in non-full screen mode.
The default full screen display is in fact a window covering the whole screen. To produce a
window with a specific top-left coordinate, width, and height, the setUpViewInWindow()
method is convenient. Another opinion is the environment variable OSG_WINDOW, which can
be defined as follows (under UNIX systems, please use the export command):

set OSG_WINDOW=50 50 800 600

This can have four or five parameters: the first four are the top-left and size of the created
window, and the last one defines the working screen in a multi-screen environment. The
default screen number 0 indicates that the first screen is used to contain the rendering
window. Try some other unsigned integers if you have more than one computer monitor.

Apart from this, the setUpViewOnSingleScreen() method sets up a full-screen window
on other screens by using an integer number parameter. There is demonstrated spherical
display support in OSG as well. Try the setUpViewFor3DSphericalDisplay() method
with given arguments. More details can be found in the API documentation and the
osgVIewer header files.

Using a composite viewer
While the osgViewer::Viewer class manages only one single view on one scene graph,
there is also an osgViewer::CompositeViewer class, which supports multiple views
and multiple scenes. This has the same methods such as run(), frame(), and done() to
manage the rendering process, but also supports adding and removing independent scene
views by using the addView() and removeView() methods, and obtaining a view object
at a specific index by using the getView() method. The view object here is defined by the
osgViewer::View class.

Viewing the World

[176]

The osgViewer::View class is the super class of osgViewer::Viewer. It accepts setting
a root node as the scene data, and adding a camera manipulator and event handlers to
make use of user events as well. The main difference between osgViewer::View and
osgViewer::Viewer is that the former cannot be used as a single viewer directly—that is,
it doesn't have run() or frame() methods.

To add a created view object to the composite viewer, use the following code:

osgViewer::CompositeViewer multiviewer;
multiviewer.addView(view);

Time for action – rendering more scenes at one time
Multi-viewers are practical in representing complex scenes, for instance, to render a
wide area with a main view and an eagle eye view, or to display the front, side, top,
and perspective views of the same scene. Here we will create three separate windows,
containing three different models, each of which can be independently manipulated.

1.	 Include the necessary headers:

#include <osgDB/ReadFile>
#include <osgViewer/CompositeViewer>

2.	 We design a function to create a new osgViewer::View object and apply an
existing node to it. The setUpViewInWindow() method is used here to produce
non-full screen views:

osgViewer::View* createView(int x, int y, int w, int h,
 osg::Node* scene)
{
 osg::ref_ptr<osgViewer::View> view = new osgViewer::View;
 view->setSceneData(scene);
 view->setUpViewInWindow(x, y, w, h);
 return view.release();
}

3.	 Next, read three models from disk files. These will be added to different views,
and rendered in different windows:

osg::ref_ptr<osg::Node> model1 = osgDB::readNodeFile("cessna.
osg");
osg::ref_ptr<osg::Node> model2 = osgDB::readNodeFile("cow.osg");
osg::ref_ptr<osg::Node> model3 = osgDB::readNodeFile("glider.
osg");

Chapter 7

[177]

4.	 Three views are created within small 320x240 windows at specific positions:

osgViewer::View* view1 = createView(50, 50, 320, 240, model1);
osgViewer::View* view2 = createView(370, 50, 320, 240, model2);
osgViewer::View* view3 = createView(185, 310, 320, 240, model3);

5.	 The usage of a composite viewer is simple to understand: add all views to it and
start the simulation as if it is a single viewer. Of course, the while loop is also usable
in this case:

osgViewer::CompositeViewer viewer;
viewer.addView(view1);
viewer.addView(view2);
viewer.addView(view3);
return viewer.run();

6.	 Now we have multiple windows with multiple scenes rendered at a time. Any of
these windows can be closed by clicking the close button on the top-right corner.
And you can also close all windows and quit the application by pressing the Esc
key on the keyboard.

Viewing the World

[178]

What just happened?
There are some similarities between the osgVIewer::CompositeViewer and multiple
cameras. It is possible to create three osg::Camera nodes, add different sub-scenes to
them, and attach them to different graphics contexts (rendering windows) in order to
achieve the same result as the previous image. In a word, every osgViewer::View object
has an osg::Camera node that can be used to manage its subscene and associated window.
It actually works like a container.

However, the osgViewer::View class handles manipulator and user events, too. So in a
composite viewer, each osgViewer::View object holds its own manipulator and event
handlers (this will be discussed in Chapter 9, Interacting with Outside Elements). However, a
set of cameras can hardly interact with user inputs separately. That is why we choose to use
a composite viewer and a few view objects to represent multiple scenes in some cases.

Have a go hero – different views of the same scene
In the last example, we add three different loaded models to the view objects, and they
render different scenes as results. However, it is also possible to add the same root node
to all views in use. For example:

view1->setSceneData(root.get());
view2->setSceneData(root.get());
view3->setSceneData(root.get());
…

After that, if you would like to design the front, side, and top views of the same scene, try
adding a view matrix and a projection matrix to the main camera of each view, and ensure
that the manipulator is disabled, because it will reset your matrices configurations according
to user interface events:

view1->getCamera()->setViewMatrix(…);
view1->getCamera()->setProjectionMatrix(…);
view1->setCameraManipulator(NULL); // Set the manipulator to null!

// Avoid using default manipulator, too!
view1->getCamera()->setAllowEventFocus(false);

Here, the setAllowEventFocus() method indicates whether the camera can receive
user inputs and events, or not. This will be discussed again in Chapter 9, Interacting with
Outside Elements.

Now, can you figure out what the view and projection matrices should be, when designing
the front, side, and top views of the scene? As a reminder, the bounding sphere of the root
node, acquired by the getBound() method, can help a lot in specifying the view point and
projection range.

Chapter 7

[179]

Pop quiz – another way to display the same scene in different views
A different way to display the same scene in three or more views is to use the osg::Camera
node. By setting the setViewport() method to different areas, we can arrange the camera
views in one rendering window without overlapping. Do you know how to design such a
scene graph to achieve this goal?

Changing global display settings
OSG manages a set of global display settings that are required by cameras, viewers, and
other scene elements. It uses the singleton pattern to declare a unique instance of the
container of all of these settings, by using the osg::DisplaySettings class. We can
thus obtain the display settings instance at any time in our applications:

osg::DisplaySettings* ds = osg::DisplaySettings::instance();

The osg::DisplaySettings instance sets up properties requested by all newly created
rendering devices, mainly OpenGL graphics contexts of rendering windows. Its characteristics
include:

1.	 Set double or single buffering with the setDoubleBuffer() method. The default
is on.

2.	 Set whether to use the depth buffer or not, via the setDepthBuffer() method.
Default is on.

3.	 Set bits for an OpenGL alpha buffer, a stencil buffer, and an accumulation buffer, by
using a series of methods such as setMinimumNumAlphaBits(), and so on. The
defaults are all 0.

4.	 Set using multisampling buffers and number of samples with the
setNumMultiSamples() method. The defaults is 0.

5.	 Enable stereo rendering and configure stereo mode and eye mapping parameters.

In the following chapters, we will learn that some of these characteristics can be separately
set for different graphics contexts, by using a specific traits structure. However, at this time,
we will first focus on how to make use of the global display settings on our scene viewers.

Viewing the World

[180]

Time for action – enabling global multisampling
Multisampling is a type of anti-aliasing technique. It can improve the final result's quality
without much performance hit. User applications should set a sampling number for
implementing multisample rasterization. Note that not all graphics cards support the
multisampling extension, thus this example may fail on some systems and platforms.

1.	 Include the necessary headers:

#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2.	 Set the number of multisamples. Available values often include 2, 4, and 6,
depending on specific graphics devices:

osg::DisplaySettings::instance()->setNumMultiSamples(4);

3.	 Load a model and render it with a standard viewer. The global multisampling
attribute managed by the osg::DisplaySettings singleton has already
come into effect now:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile(
 "cessna.osg");

osgViewer::Viewer viewer;
viewer.setSceneData(model.get());
return viewer.run();

4.	 A close-up shot of the standard Cessna model's propellers (without applying the
setNumMultiSamples() method) is shown in the following screenshot. We can
clearly see that there is an aliasing error at the edges of propellers:

Chapter 7

[181]

5.	 The multisampling now obviously minimizes the distortion of the rendered model,
and generates levels of smooth results according to the global display setting
attribute. This will affect all viewers created in the current application:

Viewing the World

[182]

What just happened?
The multisampling technique allows applications to create a frame buffer with a given
number of samples per pixel, containing necessary color, depth, and stencil information.
More video memory is required but a better rendering result will be produced. In WGL (the
windowing interface to the Win32 implementation of OpenGL), it is essentially determined
by two pixel format attributes: WGL_SAMPLE_BUFFERS_ARB and WGL_SAMPLES_ARB.

OSG has an internal graphics context manager osg::GraphicsContext. Its subclass
osgViewer::GraphicsWindowWin32, which manages the configuration and creation
of rendering windows under Windows, will apply these two attributes to the encapsulated
wglChoosePixelFormatARB() function, and enable multisampling of the entire scene.

osg::DisplaySettings actually works like a default value set of various display
attributes. If there is no separate setting for a specific object, the default one will take
effect; otherwise the osg::DisplaySettings instance will not be put to use.

We are going to talk about the separate settings for creating graphics context and the
osg::GraphicsContext class in Chapter 9, Interacting with Outside Elements.

Stereo visualization
We have already experienced the charm of stereoscopic 3D films and photographs. A good
example is James Cameron's Avatar, which brings us a spectacular new world beyond
imagination. The anaglyph image is the earliest and most popular method of presenting
stereo visualization. Other implementations include NVIDIA's quad-buffering, horizontal or
vertical split, horizontal or vertical interlace, and so on. Fortunately, OSG supports most of
these common stereo techniques, and can immediately realize one of them in the viewer
with just a few commands:

osg::DisplaySettings::instance()->setStereoMode(mode);
osg::DisplaySettings::instance()->setStereo(true);

The method setStereoMode() selects a stereo mode from a set of enumerations, and
the setStereo() method enables or disables it. Available stereo modes in OSG are:
ANAGLYPHIC, QUAD_BUFFER (NVIDIA's quad-buffering), HORIZONTAL_SPLIT, VERTICAL_
SPLIT, HORIZONTAL_INTERLACE, VERTICAL_INTERLACE, and CHECKERBOARD (on a DLP
projector). You may also use LEFT_EYE or RIGHT_EYE to indicate that the screen is used for
left-eye or right-eye views.

There are additional methods of the osg::DisplaySettings class for specifying special
stereo parameters, such as the eye separation. Have a look at the API documentation and
header files for more details.

Chapter 7

[183]

Time for action – rendering anaglyph stereo scenes
We are going to make use of OSG's internal anaglyph stereo mode to implement a simple
and quick stereoscopic 3D effect. Before starting programming and rendering the scene, we
have to prepare a pair of 3D red/cyan glasses to view the result correctly:

In most cases, the left eye of the glasses is red, and the right eye is cyan. This is the most
commonly-used anaglyph effect, with limited color perception.

1.	 Include the necessary headers:

#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2.	 We will directly work on the global display settings. There are three steps to follow:
switch the stereo mode to ANAGLYPHIC, set a suitable eye separation (distance
from the left eye to the right) with the setEyeSeparation() method, and enable
the stereo visualization:

osg::DisplaySettings::instance()->setStereoMode(
 osg::DisplaySettings::ANAGLYPHIC);
osg::DisplaySettings::instance()->setEyeSeparation(0.05f);
osg::DisplaySettings::instance()->setStereo(true);

3.	 After that, we can construct and render our scene graph as usual. Here we will take
the Cessna model as a simple enough example:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile(
 "cessna.osg");

osgViewer::Viewer viewer;
viewer.setSceneData(model.get());
return viewer.run();

Viewing the World

[184]

4.	 The result is completely different from previous ones. Wear the glasses right now
and see if there is a depth perception:

What just happened?
In the ANAGLYPHIC mode, the final rendering result is always made up of two color layers,
with a small offset to produce a depth effect. Each eye of the glasses will see a slightly
different picture, and their composition produces a stereograph image, which will be fused
by our brain into a three dimensional scene.

OSG supports the anaglyphic stereo mode with a two-pass rendering scheme. The first pass
renders the left eye image with a red channel color mask, and the second pass renders the
right eye image with a cyan channel. The color mask is defined by the rendering attribute
osg::ColorMask. It can be easily applied to state sets of nodes and drawables by using:

osg::ref_ptr<osg::ColorMask> colorMask = new osg::ColorMask;
colorMask->setMask(true, true, true, true);
stateset->setAttribute(colorMask.get());

The stereo mode often causes the scene graph to be rendered multiple times, which slows
down the frame rate as a side effect.

Rendering to textures
The render-to-textures technique allows developers to create textures based on a
sub-scene's appearance in the rendered scene. These textures are then "baked" into
objects of coming scene graphs via texture mapping. They can be used to create nice
special effects on the fly, or can be stored for subsequent deferred shading, multi-pass
rendering, and other advanced rendering algorithms.

Chapter 7

[185]

To implement texture baking dynamically, there are generally three steps to follow:

1.	 Create the texture for rendering to.

2.	 Render the scene to the texture.

3.	 Use the texture as you want.

We have to create an empty texture object before putting it into use. OSG can create an
empty osg::Texture object by specifying its size. The setTextureSize() method
defines the width and height of a 2D texture, and an additional depth parameter of a 3D
texture.

The key to rendering a scene graph to the newly created texture is the attach() method of
the osg::Camera class. This accepts the texture object as an argument, as well as a buffer
component parameter, which indicates which part of the frame buffer will be rendered to
the texture. For example, to attach the color buffer of a camera's sub-scene to the texture,
we use:

camera->attach(osg::Camera::COLOR_BUFFER, texture.get());

Other usable buffer components include the DEPTH_BUFFER, STENCIL_BUFFER, and
COLOR_BUFFER0 to COLOR_BUFFER15 (multiple render target outputs, depending on the
graphics card).

Continue setting suitable view and projection matrices of this camera, and a viewport to
meet the texture size, and set the texture as an attribute of nodes or drawables. The texture
will be updated with the camera's rendering result in every frame, dynamically varying with
the alteration of the view matrix and the projection matrix.

Be aware that the main camera of a viewer is not suitable for attaching a texture. Otherwise
there will be no outputs to the actual window, which will make the screen pitch-dark.
Of course, you may ignore this if you are doing off-screen rendering and don't care of any
visual effects.

Frame buffer, pixel buffer, and FBO
A concern is how to get the rendered frame buffer image into the texture object. A direct
approach is to use the glReadPixels() method to return pixel data from the frame buffer,
and apply the result to a glTexImage*() method. This is easy to conceptualize and use, but
will always copy data to the texture object, which is extremely slow.

Viewing the World

[186]

The glCopyTexSubImage() method would be better in terms of improving the efficiency.
However, we can still optimize the process. Rendering the scene directly to a target other
than the frame buffer is a good idea. There are mainly two solutions for this:

1.	 The pixel buffer (pbuffer for short) extension can create an invisible rendering
buffer with a pixel format descriptor, which is equivalent to a window. It should
be destroyed after being used, as is done for the rendering window.

2.	 The frame buffer object (FBO for short), which is sometimes better than pixel buffer
in saving the storage space, can add application-created frame buffers and redirect
the rendering output to it. It can either output to a texture object or a renderbuffer
object, which is simply a data storage object.

OSG supports making use of different render target implementations: directly
copying from the frame buffer, pixel buffer, or FBO. It uses the method
setRenderTargetImplementation() of the osg::Camera class to select a solution
from them, for example:

camera->setRenderTargetImplementation(osg::Camera::FRAME_BUFFER);

This indicates that the rendering result of Camera will be rendered to the attached texture
by using the glCopyTexSubImage() method internally. In fact, this is the default setting
of all camera nodes.

Other major implementations include PIXEL_BUFFER and FRAME_BUFFER_OBJECT.

Time for action – drawing aircrafts on a loaded terrain
In this section, we are going to integrate what we learned before to create a slightly
complex example, which identifies all texture objects in a scene graph by using the
osg::NodeVisitor utility, replaces them with a newly created shared texture, and binds
the new texture to a render-to-textures camera. The texture is expected to represent more
than a static image, so a customized simulation loop will be used to animate the sub-scene
graph before calling the frame() method.

1.	 Include the necessary headers:

#include <osg/Camera>
#include <osg/Texture2D>
#include <osgDB/ReadFile>
#include <osgGA/TrackballManipulator>
#include <osgViewer/Viewer>

Chapter 7

[187]

2.	 The first task is to look for any textures applied to a loaded model. We have to
derive a FindTextureVisitor from the osg::NodeVisitor base class. This
manages a texture object, which will be used for render-to-textures operation later.
Every time we find an existing texture in the scene graph, we replace it with the
managed one. This is implemented in the replaceTexture() method:

class FindTextureVisitor : public osg::NodeVisitor
{
public:
 FindTextureVisitor(osg::Texture* tex) : _texture(tex)
 {
 setTraversalMode(
 osg::NodeVisitor::TRAVERSE_ALL_CHILDREN);
 }

 virtual void apply(osg::Node& node);
 virtual void apply(osg::Geode& geode);
 void replaceTexture(osg::StateSet* ss);

protected:
 osg::ref_ptr<osg::Texture> _texture;
};

3.	 In the apply() method, call replaceTexture() on each node and drawable to
see if there are any textures stored. Don't forget to call traverse() at the end of
each method body to continue going through the scene graph:

void FindTextureVisitor::apply(osg::Node& node)
{
 replaceTexture(node.getStateSet());
 traverse(node);
}

void FindTextureVisitor::apply(osg::Geode& geode)
{
 replaceTexture(geode.getStateSet());
 for (unsigned int i=0; i<geode.getNumDrawables(); ++i)
 {
 replaceTexture(geode.getDrawable(i)->getStateSet());
 }
 traverse(geode);
}

Viewing the World

[188]

4.	 This user method uses getTextureAttribute() to obtain the texture in unit
0 from the input state set, and replace it with the managed one. Because the
state set is obtained via the getStateSet() method of node or drawable, not
getOrCreateStateSet() which is sure to return an existing or new state set
object, the input pointer may be null here:

void replaceTexture(osg::StateSet* ss)
{
 if (ss)
 {
 osg::Texture* oldTexture = dynamic_cast<osg::Texture*>(
 ss->getTextureAttribute(0,osg::StateAttribute::TEXTURE)
);
 if (oldTexture) ss->setTextureAttribute(
 0,_texture.get());
 }
}

5.	 Load two models as scene graphs. The lz.osg model is used as the main scene,
and the glider will be treated as a sub-graph that will be rendered to a texture, and
presented on the surfaces of models in the main scene:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile("lz.osg");
osg::ref_ptr<osg::Node> sub_model = osgDB::readNodeFile("glider.
osg");

6.	 Create a new texture object. This differs from the previous example that creates
2D textures and applies an image to it. This time we should specify the texture size,
the internal format, and other attributes by ourselves:

int tex_width = 1024, tex_height = 1024;

osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
texture->setTextureSize(tex_width, tex_height);
texture->setInternalFormat(GL_RGBA);
texture->setFilter(osg::Texture2D::MIN_FILTER,
 osg::Texture2D::LINEAR);
texture->setFilter(osg::Texture2D::MAG_FILTER,
 osg::Texture2D::LINEAR);

7.	 Use the FindTextureVisitor to locate all textures used in the lz.osg model,
and replace them with the new, empty texture object:

FindTextureVisitor ftv(texture.get());
if (model.valid()) model->accept(ftv);

Chapter 7

[189]

8.	 Now it's time to create the render-to-textures camera. We set it up to have the
same viewport as the texture size specified, and clear the background color and
buffer when starting to render the sub-scene:

osg::ref_ptr<osg::Camera> camera = new osg::Camera;
camera->setViewport(0, 0, tex_width, tex_height);
camera->setClearColor(osg::Vec4(1.0f, 1.0f, 1.0f, 0.0f));
camera->setClearMask(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

9.	 Force the camera to be rendered before the main scene, and use the high
efficiency FBO to implement the render-to-textures technique. The key statement
in this example is to bind the color buffer with the texture object, which leads to
continuous updates of the texture object, redrawing the sub-scene graph again
and again:

camera->setRenderOrder(osg::Camera::PRE_RENDER);
camera->setRenderTargetImplementation(
 osg::Camera::FRAME_BUFFER_OBJECT);
camera->attach(osg::Camera::COLOR_BUFFER, texture.get());

10.	Set the camera to be absolute, and set the loaded glider to be its sub-scene graph:

camera->setReferenceFrame(osg::Camera::ABSOLUTE_RF);
camera->addChild(sub_model.get());

11.	 Initialize the viewer and set a default manipulator to it:

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
viewer.setCameraManipulator(new osgGA::TrackballManipulator);

12.	The last step is to animate the glider. We haven't learnt any animation
functionalities in OSG, but we already known that the simulation loop can be
customized to add some pre- and post-frame events. We will simply modify
the view matrix of the render-to-textures camera during each frame, as if
making the glider swing. This is done by altering the up direction of the
"look-at" view matrix, as shown:

float delta = 0.1f, bias = 0.0f;
osg::Vec3 eye(0.0f,-5.0f, 5.0f);
while (!viewer.done())
{
 if (bias<-1.0f) delta = 0.1f;
 else if (bias>1.0f) delta = -0.1f;
 bias += delta;
 camera->setViewMatrixAsLookAt(eye, osg::Vec3(),

Viewing the World

[190]

 osg::Vec3(bias, 1.0f, 1.0f));

 viewer.frame();
}
return 0;

13.	Now let's execute the program. A huge glider with black background is displayed
on the terrain surface, along with a few small gliders growing like trees. All of the
gliders are quickly rotating left and right, as the result of rendering the sub-scene
graph of the parent camera node to a shared texture:

14.	 If you forget what the original scene looks like, the following image can help you
recall it. You will see that textures of the terrain ground and trees have all been
replaced by the texture attached via the sub-scene's color buffer. That is why
such an extraordinary sight is produced as the final result of this example:

Chapter 7

[191]

What just happened?
We just created a child camera under the main camera, as we have already done in the
Creating an HUD camera example. However, this time it doesn't produce any result on the
screen. The render-to-textures camera is traversed and executed in every frame, before the
main camera (because of the PRE_RENDER setting). It renders the sub-scene to a texture
object, which is then applied to all related state sets in the main scene graph. Use of the
shared object mechanism and FBO make everything high performance.

Note that the setViewMatrixAsLookAt() method called in the customized simulation
loop is not as safe as we wish, because of the multithread pipeline in the OSG backend. It is
just a temporary implementation that demonstrates how to realize dynamic texturing. In the
coming Chapter 8, Animating Scene Objects, we are going to introduce the node callbacks,
and in Chapter 9, Interacting with Outside Elements, we will explain the event handlers, both
of which can solve this in a thread-safe way.

Viewing the World

[192]

Have a go hero – saving scene to an image file
Believe it or not, OSG can also attach an osg::Image object to the camera and save frame
buffer data to the data() pointer of the image object. After that, we can save the image
data to disk files by using the osgDB::writeImageFile() method, which corresponds to
the osgDB::readImageFile() method:

osg::ref_ptr<osg::Image> image = new osg::Image;
image->allocateImage(width, height, 1, GL_RGBA, GL_UNSIGNED_BYTE);
camera->attach(osg::Camera::COLOR_BUFFER, image.get());
…
// After running for a while
osgDB::writeImageFile(*image, "saved_image.bmp");

Here, the width and height parameters are also set to the camera by using the
setViewport() method. Now, could you save the scene image to a bitmap file at the
time of exiting the application?

Summary
This chapter is mainly about the observation and transformation of the 3D world with
the help of the osg::Camera class. In this chapter, we also introduced how to use the
osgViewer::Viewer and osgViewer::CompositeViewer, which encapsulate the
cameras, manipulators, and stereo supports in order to make them work together.

In this chapter, we specially covered:

�� How to set the view point, the view, and the projection matrix of a camera node,
and how to define the rendering order of cameras, by using osg::Camera

�� Realization of the single viewer and composite viewer by using
osgViewer::Viewer and osgViewer::compositeViewer

�� The management of global display settings as well as the population of stereo
visualization by using osg::DisplaySettings

�� Different ways of implementing the rendering-to-textures technique by using
frame buffer, pixel buffer, and FBO

8
Animating Scene Objects

OSG provides comprehensive toolkits for the realization of real-time animation,
including transformation animation, key-frame animation, skeletal animation,
and almost all other animations such as you may find in this chapter, which
first explains basic concepts of animating scene objects, and then delivers
implementation details for the most commonly-used types of scene animations,
which can be applied in a variety of occasions.

In this chapter, we will tell you:

•	 The concept of callbacks and making use of them

•	 Realizing ease motions in different situations

•	 How to create simple path animations

•	 How to construct complex key-frame and animation channel systems

•	 How to generate character animations by using a preset skeleton system

•	 How to implement rendering state and texture animations

Taking references to functions
In the last chapter, we tried to animate the sub-scene graph for dynamically rendering to
textures. A non-recommended method is to update the view matrix of the render-to-textures
camera in the post-frame events, in which the major issue is in a multithread context. The
"post-frame" events may overlap with separated cull or draw threads, thus causing data
access conflicts.

Animating Scene Objects

[194]

To avoid the situation of data access conflicts, we may consider employing a reference of
these animating functionalities for the update traversal and let OSG decide the execution
timeline and when to call these functionalities according to the reference. The reference
passed to an executable code fragment is called a callback.

A callback triggered in the update traversal is called an update callback. There is also an
event callback and a cull callback for executing in event and cull traversals, respectively.
Instead of just using the address of functions as their references, OSG provides its own
implementation of the execution operation, which is called functor. To customize the
execution code, we have to override the callback a functor's key operator or method,
and attach it to a suitable scene object, for instance, a node or a drawable.

List of callbacks
There are several kinds of callbacks in the OSG scene graph and backend. Among
them, the osg::NodeCallback class is an important implementer of update,
event, and cull callbacks. It can be only attached to nodes. For drawables, we have
osg::Drawable::UpdateCallback, osg::Drawable::EventCallback and
osg::Drawable::CullCallback to achieve the same goal.

The osg::NodeCallback class has a virtual operator() method for users to override
by customizing their own execution code. To make it work, we have to attach the callback
object to a specific node in the scene graph with the setUpdateCallback() or
addUpdateCallback() method. The operator() method will then be automatically
called during the update traversal in every frame.

The following table provides a brief introduction to the main callbacks defined in OSG,
each of which has a virtual method to be overridden by user subclasses, and an attached
to property to indicate that it is attached to a certain class with corresponding methods.

Name Callback functor Virtual method Attached to

Update
callback

osg::NodeCallback operator() osg::Node::
setUpdateCallback()

Event
callback

osg::NodeCallback operator() osg::Node::
setEventCallback()

Cull callback osg::NodeCallback operator() osg::Node::
setCullCallback()

Drawable
update
callback

osg::Drawable::
UpdateCallback

update() osg::Drawable::
setUpdateCallback()

Chapter 8

[195]

Name Callback functor Virtual method Attached to

Drawable
event
callback

osg::Drawable::
EventCallback

event() osg::Drawable::
setEventCallback()

Drawable
cull callback

osg::Drawable::
CullCallback

cull() osg::Drawable::
setCullCallback()

State
attribute
update
callback

osg::
StateAttribute
Callback

operator() osg::StateAttribute::
setUpdateCallback()

State
attribute
event
callback

osg::
StateAttribute
Callback

operator() osg::StateAttribute::
setEventCallback()

Uniform
update
callback

osg::Uniform::
Callback

operator() osg::Uniform::
setUpdateCallback

Uniform
event
callback

osg::Uniform::
Callback

operator() osg::Uniform::
setEventCallback

Camera
callback
before
drawing the
sub-graph

osg::Camera::
DrawCallback

operator() osg::Camera::

setPreDrawCallback()

Camera
callback
after
drawing the
sub-graph

osg::Camera::
DrawCallback

operator() osg::Camera::

setPostDrawCallback()

Time for action – switching nodes in the update traversal
Do you remember that we have designed an animated switch node in Chapter 5, Managing
Scene Graph? It is derived from osg::Switch, but will automatically change the states of
its first two children according to an internal counter, through overriding the traverse()
virtual method.

Animating Scene Objects

[196]

Now we would like to redo the same task, but this time using the update callback
mechanism. This requires customizing a new class derived from the osg::NodeCallback
base class, and overriding the operator() to perform the execution in the callback
implementaton.

1.	 Include the necessary headers:

#include <osg/Switch>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

2.	 Declare the SwitchingCallback class. It is an osg::NodeCallback based class,
which can soon be used as update, event, or cull callbacks of scene nodes. The only
important virtual method to implement is operator(). This is automatically called
during the update, event, or cull traversal of the scene graph. Besides, we also
initialize the member variable _count, as an internal counter:

class SwitchingCallback : public osg::NodeCallback

{

public:

 SwitchingCallback() : _count(0) {}

 virtual void operator()(osg::Node* node,
 osg::NodeVisitor* nv);

protected:

 unsigned int _count;

};

3.	 The operator() has two input parameters: the node associated with the callback,
and the node visitor calling the function during traversals. To animate the state
switching of the two child nodes, we have to convert the node pointer to the type
osg::Switch. A static_cast<> is used here because we are sure that the
associated node is a switch node. Also, note that the traverse() method should
be executed in a certain location, to ensure that the update traversal visitor can
continue traversing the scene graph.

void SwitchingCallback::operator()(osg::Node* node,
 osg::NodeVisitor* nv)
{
 osg::Switch* switchNode = static_cast<osg::Switch*>(node);
 if (!((++_count)%60) && switchNode)
 {
 switchNode->setValue(0, !switchNode->getValue(0));
 switchNode->setValue(1, !switchNode->getValue(1));
 }
 traverse(node, nv);
}

Chapter 8

[197]

4.	 The next step was already introduced in Chapter 5, Managing Scene Graph.
Load two models that show two different states of a Cessna, and put them
under the switch node, which will be used in the customized update callback
SwitchingCallback:

osg::ref_ptr<osg::Node> model1 = osgDB::readNodeFile(
 "cessna.osg");

osg::ref_ptr<osg::Node> model2= osgDB::readNodeFile("cessnafire.
osg");

osg::ref_ptr<osg::Switch> root = new osg::Switch;

root->addChild(model1.get(), false);

root->addChild(model2.get(), true);

5.	 Don't forget to attach the update callback object to the node. And if you are
tired of executing this callback in every frame, just retransfer a NULL argument
to the setUpdateCallback() method. The callback object will be deleted if its
referenced count is down to 0:

root->setUpdateCallback(new SwitchingCallback);

6.	 Now start the viewer:

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

7.	 The rendering result is completely similar to the Animating the switch node example
in Chapter 5, Managing Scene Graph. The Cessna will be intact and afire alternately,
acting in cycles. Comparing with overriding a new node type, the solution is that
using a callback is less intrusive to the scene graph, and can be easily removed or
replaced by other callbacks at runtime.

What just happened?
So far we have dealt with the mysterious traverse() method for two purposes:
customizing nodes by overriding the traverse() method for own-execution code; and
calling the traverse() method of the osg::NodeVisitor class in order to continue the
traversal while implementing node visitors. Although these two occurrences have different
parameters, they actually represent the same processing pipeline.

Firstly, the traverse() method of node visitors, which has a single osg::Node parameter,
simply calls the node's traverse() virtual method and passes itself as an argument.

Secondly, the node's traversing method must call its super class's traverse() at the end of
the implementation. It will then determine if there are child nodes to be traversed with the
current visitor object (using the accept() method of child nodes).

Animating Scene Objects

[198]

Finally, the visitor in turn calls the apply() virtual method to receive various types of nodes
as its argument, and realizes customized visiting behaviors thereafter. Since each apply()
method must call the visitor's traverse() to end itself, the cycle comes back to the first
step, until the whole scene graph is traversed. The entire diagram can be explained with
following image:

The callback's operator() method calls its traverse() in the third form, with a visitor
and a node parameter. However, there is no need to worry about the complexity, as the only
work it performs is to call the traverse() method of the visitor and continue the traversal.
If you fail to call this in the callback's method, the traversal will simply be stopped and will
return from current node at once.

Pop quiz – adding or setting callbacks
The addUpdateCallback() method can be used to attach callbacks to scene nodes
besides setUpdateCallback(). It adds the new callback object to the end of the major
one, and thus makes it possible to have more than one callback on a single node. Which one
do you prefer? Can you point out when the nested callback is going to be executed during
the run of the major one's operator() method?

Avoiding conflicting modifications
We have discussed OSG's multithread implementation and thread safety in a very simple and
easy way. The theory of the processing architecture is really out of the scope of this book.
But in order to show the importance of maintaining data variance of scene objects, we need
to briefly talk about the threading model.

Chapter 8

[199]

OSG can make the draw traversal, which transfers data to the OpenGL pipeline run in a
separated thread. It must be synchronized with other draw traversals in every frame, but
part of the draw traversal can usually overlap the update traversal coming from the next
frame, which improves the rendering efficiency and reduces frame latency. That means that
the frame() method of osgViewer::Viewer will return while the drawing work is still
active. Data changes in update callbacks could then conflict with the unfinished rendering
process and cause unexpected behaviors, and even crashes.

OSG supplies a solution in the setDataVariance() method, which belongs to the
osg::Object class—the base class of all scene objects. This can be set to one of three
enumerate values: UNSPECIFIED (by default), STATIC, and DYNAMIC. A DYNAMIC object
in the scene graph must be processed at the beginning of the draw traversal. That is, the
rendering backend should ensure all nodes and scene objects that are specified as DYNAMIC
have finished being drawn before starting the next frame's update and cull traversals.
However, STATIC objects, which are considered to be unchanged during updating and
drawing, can thus be rendered later and won't hold back the frame rate.

By default, any newly-allocated objects are set to UNSPECIFIED, including nodes, drawables,
state sets, and attributes. This allows OSG to predict the data variance. On the other hand,
you can always reset the value and make it work from the next frame, for instance:

node->setDataVariance(osg::Object::DYNAMIC);

Time for action – drawing a geometry dynamically
It is common practice to modify geometries' vertices and primitive attributes dynamically.
We can change the position, normal, color, and texture coordinate of each vertex, as well as
related primitives per frame, in order to implement kinds of morph animations. During the
modifications, it is important to keep an eye on the data variance, because the draw traversal
might be running while updating vertices and primitives, which might cause conflicts and
even crashes.

In this example, we will make use of the quad geometry that was created in Chapter 4,
Building Geometry Models. We will simply alter its last vertex and make it rotate around
the X axis, which results in a simple animation effect.

1.	 Include the necessary headers:

#include <osg/Geometry>

#include <osg/Geode>

#include <osgViewer/Viewer>

Animating Scene Objects

[200]

2.	 The creation of a quad is familiar to us. Specify the vertex, normal, and color array,
and add a primitive set to indicate that all vertices are arranged and rendered with
the type of GL_QUADS. Finally, return the newly-allocated geometry object:

osg::Geometry* createQuad()

{

 osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array;

 vertices->push_back(osg::Vec3(0.0f, 0.0f, 0.0f));

 vertices->push_back(osg::Vec3(1.0f, 0.0f, 0.0f));

 vertices->push_back(osg::Vec3(1.0f, 0.0f, 1.0f));

 vertices->push_back(osg::Vec3(0.0f, 0.0f, 1.0f));

 osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;

 normals->push_back(osg::Vec3(0.0f,-1.0f, 0.0f));

 osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array;

 colors->push_back(osg::Vec4(1.0f, 0.0f, 0.0f, 1.0f));

 colors->push_back(osg::Vec4(0.0f, 1.0f, 0.0f, 1.0f));

 colors->push_back(osg::Vec4(0.0f, 0.0f, 1.0f, 1.0f));

 colors->push_back(osg::Vec4(1.0f, 1.0f, 1.0f, 1.0f));

 osg::ref_ptr<osg::Geometry> quad = new osg::Geometry;

 quad->setVertexArray(vertices.get());

 quad->setNormalArray(normals.get());

 quad->setNormalBinding(osg::Geometry::BIND_OVERALL);

 quad->setColorArray(colors.get());

 quad->setColorBinding(osg::Geometry::BIND_PER_VERTEX);

 quad->addPrimitiveSet(new osg::DrawArrays(GL_QUADS, 0, 4));

 return quad.release();

}

3.	 With the help of osg::Drawable::UpdateCallback, we can easily obtain
the geometry pointer for altering each frame. The only method to be overridden
is update(), which has a node visitor and a drawable pointer parameter. Its
super class, osg::Drawable::UpdateCallback, is a little similar to the
osg::NodeCallback class, except that a drawable's callback doesn't have to
traverse to any "child" (a drawable has no child).

class DynamicQuadCallback : public osg::Drawable::UpdateCallback

{

public:

 virtual void update(osg::NodeVisitor*, osg::Drawable*
drawable);

};

Chapter 8

[201]

4.	 In the implementation of the update() method, we read out the vertex
array of the created quad geometry with two static_cast<> operators. The
dynamic_cast<> keyword might be safer here if the DynamicQuadCallback
class is not only applied to osg::Geometry, but is also applied to other customized
drawables. After that, we quickly rotate the last vertex in the array around the origin
(0, 0, 0), using the osg::Quat quaternion class. The last work before exiting the
method is to recalculate the display list object and bounding box of the current
geometry, which may need to be updated when any of the vertices are changed:

void DynamicQuadCallback::update(osg::NodeVisitor*,

 osg::Drawable* drawable)

{

 osg::Geometry* quad = static_cast<osg::Geometry*>(drawable);

 if (!quad) return;

 osg::Vec3Array* vertices = static_cast<osg::Vec3Array*>(

 quad->getVertexArray());

 if (!vertices) return;

 osg::Quat quat(osg::PI*0.01, osg::X_AXIS);

 vertices->back() = quat * vertices->back();

 quad->dirtyDisplayList();

 quad->dirtyBound();

}

5.	 We define the geometry as DYNAMIC, so the drawing traversal of the OSG backend
will automatically order the dynamic object to perform robust scene graph
traversals. In addition, the drawable's modification callback is specified by the
setUpdateCallback() method of the osg::Drawable class:

osg::Geometry* quad = createQuad();

quad->setDataVariance(osg::Object::DYNAMIC);

quad->setUpdateCallback(new DynamicQuadCallback);

6.	 Now, add the quad geometry to an osg::Geode node, and attach the root node to
the viewer:

osg::ref_ptr<osg::Geode> root = new osg::Geode;

root->addDrawable(quad);

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

Animating Scene Objects

[202]

7.	 The quad is animated this time. Its fourth vertex is dancing around the X axis, with
the help of osg::Quat class. It is more dynamic than just showing a motionless
image on the screen:

What just happened?
Try to remove the setDataVariance() line and see what happens. It is a little surprising
that the example is still running perfectly, as if it is not affected by the threading model. That
is because UNSPECIFIED objects can decide if they will be dynamically modified in callbacks
or not, and reset the data variance to DYNAMIC automatically.

Try changing the enumeration DYNAMIC to STATIC, and you may occasionally find that the
rendering result is flickering and there is an OpenGL error message "invalid operation" from
the console. This is actually caused by thread conflicts.

Without calling the dirtyDisplayList() method, OSG will ignore all dynamic drawable
changes and make use of the display list commands storing the previous vertex and primitive
data. Also, without the dirtyBound() method, OSG will not know if the bounding box no
longer fits the drawable size, and will make mistakes when doing view frustum culling work.

Chapter 8

[203]

Have a go hero – dirtying geometry objects
We have to call the dirtyDisplayList() method to activate the update of drawable data
for correct rendering. But an important prerequisite here is the drawable should support the
display list mode, which is the default behavior of drawables and can be enabled or disabled
with the setUseDisplayList() method.

OSG allows a better mechianism to be used while working in the VBO mode, which
tends to be more efficient. Enable setUseVertexBufferObjects() and disable
setUseDisplayList() to make it work. You will find the dirtyDisplayList() method
is useless in this case. Try dirtying array data by issuing a dirty() command, such as:

osg::Vec3Array* vertices = …;
… // Dynamically modify the vertex array data
vertices->dirty();

See if your modifications take effect, and identify the difference between these two
strategies when dirtying the same geometry. Actually, display list is of no use here because
it is regenerated in every frame. Therefore, we often prefer VBO for rendering changing
geometry data.

Understanding ease motions
Assume that there is a train running from station A to station B within 15 minutes. We would
like to simulate this scenario by altering the transformation matrix of the train in an update
callback. The simplest way is to put the train at station A at time point 0, and at station B
at time point 15 (minutes), and move it evenly in the transition phase. A heavily-employed
method used here is the linear interpolation. This draws a straight line between two
neighboring samples P0 and P1, and returns the appropriate point P along the line, which
can be used to represent translation and scale operations of nodes. It is commonly expressed
in the following form:

P = (1 - t) * P0 + t * P1

Here, t is a number between 0 and 1.

Unfortunately, the motion of a train is usually much more complex. It starts from station A,
accelerates slowly, drives at an even speed, decelerates, and finally stops at station B. In that
case, linear interpolation is always slightly unnatural.

Animating Scene Objects

[204]

So we have ease motions, or ease functions. These are mathematical functions that are used
to interpolate values between two endpoints. An ease motion usually generates non-linear
results, in order to produce more natural effects. The osgAnimation library defines a number
of built-in ease motions. Each of them has at least two arguments: the start value (usually 0)
and a duration (usually 1), and thus produces results in the range [start value, start value +
duration]. They can be applied to the start (InMotion), to the end (OutMotion), or to both
start and end of the animation (InOutMotion). We will list them in the following table:

Motion type Ease-in class Ease-out class Ease-in/out class

Linear
interpolation

LinearMotion - -

Quad function
(y = t2)

InQuadMotion OutQuadMotion InOutQuadMotion

Cubic function
(y = t3)

InCubicMotion OutCubicMotion InOutCubicMotion

Quart function
(y = t4)

InQuartMotion OutQuartMotion InOutQuartMotion

Bounce effect
function

InBounceMotion OutBounceMotion InOutBounceMotion

Elastic bounce
function

InElasticMotion OutElasticMotion InOutElasticMotion

Sine function InSineMotion OutSineMotion InOutSineMotion

Back function InBackMotion OutBackMotion InOutBackMotion

Circle function InCircMotion OutCircMotion InOutCircMotion

Exponent
function

InExpoMotion OutExpoMotion InOutExpoMotion

To create a linear interpolation motion object, we just type:

// Start value is 0.0, and duration time is 1.0.
osg::ref_ptr<osgAnimation::LinearMotion> motion =
 new osgAnimation::LinearMotion(0.0f, 1.0f);

The examples/osganimationeasemotion file in the OSG source code can help you to
discover these ease motions graphically. Try compiling and running it for details.

Chapter 8

[205]

Animating the transformation nodes
Path animations are the most commonly-used animations in graphics applications. They
can be used to describe a running car, a flight, a rotating ball, or the camera's motion. The
path should always be set up first, including position, rotation, and scale values at different
key time nodes. When the simulation loop is running, a transition state is calculated every
frame, using the linear interpolation for position and scale vectors, and spherical linear
interpolation for the rotation quaternion. The slerp() method of osg::Quat is used
internally here.

OSG provides the osg::AnimationPath class to encapsulate a time varying transformation
path. It has an insert() method that can be used to insert a control point at a specific
time. A control point, declared by the osg::AnimationPath::ControlPoint class,
accepts a position value, and optional rotation and scale values in order to construct the
animation path. For example:

osg::ref_ptr<osg::AnimationPath> path = new osg::AnimationPath;
path->insert(t1, osg::AnimationPath::ControlPoint(pos1,rot1,scale1));
path->insert(t2, …);

Here, t1 and t2 are time nodes in seconds, and rot1 is an osg::Quat variable for
representing the rotation of a object.

Besides that, we can set up the loop mode of the animation path with the setLoopMode()
method. The default value is LOOP, that is, the animation will continuously run on the preset
path over and over again. This parameter can be changed to NO_LOOPING (run once) or
SWING (create a ping-pong path) for other purposes.

After that, we attach the osg::AnimationPath object to a built-in
osg::AnimationPathCallback object, which is actually derived from
osg::NodeCallback, and can help developers to control their animating scenes
in an intuitive way.

Time for action – making use of the animation path
Now we are going to make our Cessna navigate a cruise. It will be moving in a circle with
the centre at (0, 0, 0). The animation path is used for updating the position and orientation
of the model continuously, using linear interpolation between key-frames. The only work
is to add control points, including position, optional rotation, and scale key value, to the
animation timeline.

1.	 Include the necessary headers:

#include <osg/AnimationPath>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

Animating Scene Objects

[206]

2.	 Create the animation path. This is in fact a circle with a specific radius on the XOY
plane. The time parameter is used to indicate the total time required to finish a lap.
The osg::AnimationPath object is set to loop the animation infinitely. It contains
32 control points to form a circle path, which is determined by the local variable
numSamples:

osg::AnimationPath* createAnimationPath(float radius, float time
)

{

 osg::ref_ptr<osg::AnimationPath> path = new
osg::AnimationPath;

 path->setLoopMode(osg::AnimationPath::LOOP);

 unsigned int numSamples = 32;

 float delta_yaw = 2.0f * osg::PI / ((float)numSamples - 1.0f);

 float delta_time = time / (float)numSamples;

 for (unsigned int i=0; i<numSamples; ++i)

 {

 float yaw = delta_yaw * (float)i;

 osg::Vec3 pos(sinf(yaw)*radius, cosf(yaw)*radius, 0.0f);

 osg::Quat rot(-yaw, osg::Z_AXIS);

 path->insert(delta_time * (float)i,

 osg::AnimationPath::ControlPoint(pos, rot)
);

 }

 return path.release();

}

3.	 Load the Cessna model. You will have noticed that there is a significant difference
between this and previous file names. The string "0,0,90.rot" seems redundant
and ambiguous here. It is a kind of pseudo-loader, which is written as part of
filename but actually does a 90 degrees rotation around the Z axis to the model
cessna.osg. We are going to discuss this in detail in Chapter 10, Creating
Components and Extending Functionality:

osg::ref_ptr<osg::Node> model =

 osgDB::readNodeFile("cessna.osg.0,0,90.rot");

osg::ref_ptr<osg::MatrixTransform> root = new
osg::MatrixTransform;

root->addChild(model.get());

Chapter 8

[207]

4.	 Add the animation path to the osg::AnimationPathCallback object, and
attach the callback to a node. Note that the animation path can only affect
osg::MatrixTransform and osg::PositionAttitudeTransform nodes,
updating their transformation matrices or position and rotation attributes in the
update traversal:

osg::ref_ptr<osg::AnimationPathCallback> apcb = new
osg::AnimationPathCallback;

apcb->setAnimationPath(createAnimationPath(50.0f, 6.0f));

root->setUpdateCallback(apcb.get());

5.	 Simply start the viewer now:

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

6.	 The Cessna starts circling now. It may move beyond the scope of the screen, so we
have to use the camera manipulator to change to a better viewing place than the
initial one. Use the mouse buttons to adjust the view matrix and have an overview
of the animation path that we have created:

What just happened?
The osg::AnimationPath class uses a getMatrix() method to compute and
return a transitional transformation matrix according to the two control points just
before and after a given time. It is then applied to the host osg::MatrixTransform,
osg::PositionAttitudeTransform, or osg::Camera node in order to make it move
along the path. This is done by the osg::AnimationPathCallback class, which is actually
an update callback for a specific purpose.

Animating Scene Objects

[208]

If the osg::AnimationPathCallback object is attached to any kind of nodes other
than transformation nodes previously described, it will become invalid. It is also not
suggested to use the animation path callback as event or cull callbacks, as this may lead
to unexpected results.

Have a go hero – more controls over the animation path
An animation must be able to be stopped, reset, and fast-forwarded, which makes it easy to
be controlled by users. The osg::AnimationPathCallback class provides the reset(),
setPause(), setTimeMultiplier(), and setTimeOffset() methods to implement
these common operations. For example, to restart a preset animation path, callback apcb at
any time:

apcb->setPause(false);
apcb->reset();

In order to set the time offset to 4.0s and move forward through the animation at a 2x
speed, just use:

Apcb->setTimeOffset(4.0f);
apcb->setTimeMultiplier(2.0f);

Now, can you figure out how to create your own path animation player?

Changing rendering states
Rendering states can be animated, too. A number of effects can be generated by altering
the properties of one or more rendering attributes, including fade-in and fade-out, density
and variation of the atmosphere, fog, changing the direction of light beams, and so on. We
can easily implement a state animation in the update callback. We may either retrieve the
attribute object from the arguments of the overridden method, or just manage the object as
a member variable of the user-defined callback. Remember to make use of smart pointers,
to ensure that the member attribute won't be automatically destroyed if it is no longer
referenced.

The ease motion classes can be used to improve the animation quality. We must allocate an
ease motion object with the start value and duration parameters, and update it with a delta
time as the time step size. For example:

osg::ref_ptr<osgAnimation::LinearMotion> motion =
 new osgAnimation::LinearMotion(0.0, 10.0);
…
motion->update(dt);
float value = motion->getValue();

Chapter 8

[209]

This creates a linear motion object with the X axis (time) ranging from 0.0 to 10.0.
The getValue() method uses specific formula on the current X value, and obtains a
corresponding Y value.

You should add the osgAnimation library as a dependence if you would like the ease
motion and more functionalities to be used in your projects.

Time for action – fading in
We already had experience of making a scene object translucent using osg::BlendFunc
class and rendering orders. The fourth component of the color vector, called the alpha value,
will do the trick for us. But what will happen if we have a continuously-changing alpha? The
object will be completely transparent (invisible) when alpha is 0, and completely opaque
when it is 1.0. The animating process from 0.0 to 1.0 will therefore cause the object to
gradually appear to viewers, that is, the fade-in effect.

The update callback can be used in this task. It is no problem to create an
osg::NodeCallback based class and set it to the node that will be fading in. But the
state attribute callback, osg::StateAttributeCallback, is also available in this case.

The osg::Material class is used here to provide the alpha bit of each geometry vertex,
instead of just setting a color array.

1.	 Include the necessary headers:

#include <osg/Geode>

#include <osg/Geometry>

#include <osg/BlendFunc>

#include <osg/Material>

#include <osgAnimation/EaseMotion>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

2.	 To instantiate an osg::StateAttributeCallback, we have to override the
operator() method and make use of its arguments: the state attribute itself
and the visitor who is traversing it. An additional work item here is to declare an
ease motion interpolator using a cubic function at the in and out position of the
animation curve:

class AlphaFadingCallback : public osg::StateAttributeCallback

{

public:

 AlphaFadingCallback()

 { _motion = new osgAnimation::InOutCubicMotion(0.0f, 1.0f); }

 virtual void operator()(osg::StateAttribute*,

Animating Scene Objects

[210]

 osg::NodeVisitor*);

protected:

 osg::ref_ptr<osgAnimation::InOutCubicMotion> _motion;

};

3.	 In the operator(), we will obtain the material attribute of the scene object, which
can be used for simulating transparent and translucent effects. There are two steps
to follow: firstly, update the ease motion object with a customized delta time value;
after that, retrieve the result of motion between 0 and 1, and apply it to the alpha
component of the material's diffuse color:

void AlphaFadingCallback::operator()(osg::StateAttribute* sa,

 osg::NodeVisitor* nv)

{

 osg::Material* material = static_cast<osg::Material*>(sa);

 if (material)

 {

 _motion->update(0.005);

 float alpha = _motion->getValue();

 material->setDiffuse(osg::Material::FRONT_AND_BACK,

 osg::Vec4(0.0f, 1.0f, 1.0f, alpha)
);

 }

}

4.	 That is all we have done in osg::StateAttribute's callback. Now, in the main
function of the example, we would like to create a quad and apply the callback to
its material. You may copy the code from Chapter 4, Building Geometry Models and
Chapter 6, Creating Realistic Rendering Effects to create a geometry quad yourself.
OSG supports a more convenient function named osg::createTexturedQuad
Geometry(). It requires a corner point, a width vector, and a height vector, and
returns a newly-created osg::Geometry object with preset vertex, normal, and
texture coordinate data:

osg::ref_ptr<osg::Drawable> quad = osg::createTexturedQuadGeomet
ry(

 osg::Vec3(-0.5f, 0.0f, -0.5f),

 osg::Vec3(1.0f, 0.0f, 0.0f), osg::Vec3(0.0f, 0.0f, 1.0f)

);

osg::ref_ptr<osg::Geode> geode = new osg::Geode;

geode->addDrawable(quad.get());

Chapter 8

[211]

5.	 Configuring the material attribute is nothing special. With experience of using
OpenGL glMaterial(), we can easily imagine how the osg::Material class sets
ambient and diffuse colors with similar member methods. An important matter here
is to attach the AlphaFadingCallback object to the material and make it work in
every update traversal per frame:

osg::ref_ptr<osg::Material> material = new osg::Material;

material->setAmbient(osg::Material::FRONT_AND_BACK,

 osg::Vec4(0.0f, 0.0f, 0.0f, 1.0f));

material->setDiffuse(osg::Material::FRONT_AND_BACK,

 osg::Vec4(0.0f, 1.0f, 1.0f, 0.5f));

material->setUpdateCallback(new AlphaFadingCallback);

6.	 Add the material attribute and related mode to the state set of the geode.
Meanwhile, we have to enable the OpenGL blend function to implement our fade-in
effect, and ensure that transparent objects are rendered in an orderly manner:

geode->getOrCreateStateSet()->setAttributeAndModes(
 material.get());

geode->getOrCreateStateSet()->setAttributeAndModes(

 new osg::BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));

geode->getOrCreateStateSet()->setRenderingHint(

 osg::StateSet::TRANSPARENT_BIN);

7.	 Add the quad to the root node. We will also add a glider model as the referenced
model, half of which is covered by the quad and thus indicates whether the quad
is fading in or not:

osg::ref_ptr<osg::Group> root = new osg::Group;

root->addChild(geode.get());

root->addChild(osgDB::readNodeFile("glider.osg"));

8.	 OK, now start the viewer:

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

Animating Scene Objects

[212]

9.	 The in-out cubic ease motion makes the changing of the alpha in a smooth way. You
will find that it is more suitable for implementing realistic animations than simply
linear interpolation motion. Now, can you figure out how to achieve a fade-out
effect with the same structure? These two are often used in representing dynamic
models and buildings in a huge city scene:

What just happened?
The osgAnimation::InOutCubicMotion class here generates values based on a cubic
formula of time. The resultant curve is illustrated as follows:

Chapter 8

[213]

Assuming that the current time value is t (on the X axis), the motion object will return Y
values according to the cubic formula. It is accelerating from zero velocity to halfway, and
then decelerating to zero velocity. This allows the object to appear more natural than just
using a simple constant speed. Try applying this and more ease motions to the alpha value
of the material, as well as the path animation of osg::MatrixTransform nodes (alter its
matrix in a customized node callback).

Pop quiz – choosing the alpha setter and the callback
What else can set the alpha value of vertices, besides the osg::Material class and the
color array of osg::Geometry? And what callback types do you think can be used to control
the fade-in effect, besides osg::StateAttributeCallback, for instance, node and
drawable callbacks? Can you implement the fade-out effect by modifying the example above
in the simplest way?

Have a go hero – animating in graphics shaders
It would be cool to use state animations in graphics shaders. In most cases, it is easier to
control than the fixed pipeline, and gives you free imagination of various effects, such as
the ocean wave, ripple, blaze, shadow, and complex particle effects.

Animating Scene Objects

[214]

The osg::Uniform class can define its own update callback with the
setUpdateCallback() method and an osg::Uniform::Callback derived object. The
virtual method operator() has two input arguments: the uniform pointer and the visitor
who traverses it. Use the set() method to change uniform values (must be the same type
as before) and see if it can work in graphics shaders.

Playing movies on textures
It is fantastic if we can watch movies or hold video conferences in the 3D world. We can
place a big quad geometry as the movie screen and attach a dynamic 2D texture to its
surface. The texture contains a series of images that make up the whole video. It is necessary
that the image sequence can add new images on the fly, which may be transferred from files
or mini cameras.

OSG uses the osg::ImageStream class to support an image stream, which manages
sub-images in the data buffer. It can be derived to read data from video files or the Internet.
In fact, OSG has already had a few built-in plugins that support the loading and playing of
AVI, MPG, MOV, and other file formats. This will be described in details in Chapter 10, Saving
and Loading Files.

Here, we are going to introduce another osg::ImageSequence class, which stores multiple
image objects and renders them successively. It has the following public methods:

1. The addImage() method adds an osg::Image object to this sequence. There are
also setImage() and getImage() methods for operating sub-images at specific
indexes, and getNumImages() for counting the number of sub-images.

2. The addImageFile() and setImageFile() methods can also push image objects
to the end of the sub-image list. But instead of specifying a pointer, they both accept
a filename parameter, for reading the sub-image from the disk.

3. The setLength() method sets the total time of the image sequence in seconds.
The time is divided equally between each sub-image during the animation.

4. The setTimeMultiplier() method sets the time multiplier. The default is 1.0,
and a larger value indicates that the sequence should be fast-forwarded.

5. The play(), pause(), rewind(), and seek() methods give developers basic
controls over the sequence. The seek() method accepts a time parameter, which
should be less than the total time length.

Chapter 8

[215]

Time for action – rendering a flashing spotlight
The key to rendering dynamic textures is to provide multiple images as the source, and
draw them one after another. These images can be obtained from a video file, or created by
developers and artists. In the following example, we will create a series of spotlights with varying
radii, and output them to osg::Image objects, and then attach them to the texture attribute
using the osg::ImageSequence class to produce a flashing effect on a specific model.

1.	 Include the necessary headers:

#include <osg/ImageSequence>

#include <osg/Texture2D>

#include <osg/Geometry>

#include <osg/Geode>

#include <osgViewer/Viewer>

2.	 The spotlight can be defined as a follow spot projecting a bright beam of light onto a
space. It usually produces a halo surrounding the central spot, and can be modified
to use different color and power ranges. Here, the function createSpotLight()
simply generates an osg::Image object with the center color, background color,
and power arguments. The size parameter is used to define the final size of the
image itself. Here, the data() method accepts the column and row indices, and
returns a corresponding start address for assignment:

osg::Image* createSpotLight(const osg::Vec4& centerColor,

 const osg::Vec4& bgColor,

 unsigned int size, float power)

{

 osg::ref_ptr<osg::Image> image = new osg::Image;

 image->allocateImage(size, size, 1, GL_RGBA,
 GL_UNSIGNED_BYTE);

 float mid = (float(size)-1) * 0.5f;

 float div = 2.0f / float(size);

 for(unsigned int r=0; r<size; ++r)

 {

 unsigned char* ptr = image->data(0, r);

 for(unsigned int c=0; c<size; ++c)

 {

 float dx = (float(c) - mid)*div;

 float dy = (float(r) - mid)*div;

 float r = powf(1.0f - sqrtf(dx*dx+dy*dy), power);

 if (r<0.0f) r = 0.0f;

Animating Scene Objects

[216]

 osg::Vec4 color = centerColor*r + bgColor*(1.0f - r);

 *ptr++ = (unsigned char)((color[0]) * 255.0f);

 *ptr++ = (unsigned char)((color[1]) * 255.0f);

 *ptr++ = (unsigned char)((color[2]) * 255.0f);

 *ptr++ = (unsigned char)((color[3]) * 255.0f);

 }

 }

 return image.release();

}

3.	 With the convenient createSpotLight() function, we can quickly generate
multiple images with different power values. We will then add all of them to the
osg::ImageSequence object for unified management:

osg::Vec4 centerColor(1.0f, 1.0f, 0.0f, 1.0f);

osg::Vec4 bgColor(0.0f, 0.0f, 0.0f, 1.0f);

osg::ref_ptr<osg::ImageSequence> sequence = new
 osg::ImageSequence;

sequence->addImage(createSpotLight(centerColor, bgColor, 64,
 3.0f));

sequence->addImage(createSpotLight(centerColor, bgColor, 64,
 3.5f));

sequence->addImage(createSpotLight(centerColor, bgColor, 64,
 4.0f));

sequence->addImage(createSpotLight(centerColor, bgColor, 64,
 3.5f));

4.	 Because osg::ImageSequence is derived from the osg::Image class, it can
be directly attached to a texture as the data source. This makes it possible to
continuously display images on model surfaces:

osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;

texture->setImage(imageSequence.get());

5.	 Create a quad with the osg::createTextuedQuadGeometry() function, again.
This is used to present the resultant image sequence. It can be even regarded as
the screen for displaying movies in a visual cinema, if all images are captured from
a video source.

osg::ref_ptr<osg::Geode> geode = new osg::Geode;

geode->addDrawable(osg::createTexturedQuadGeometry(

 osg::Vec3(), osg::Vec3(1.0,0.0,0.0), osg::Vec3(0.0,0.0,1.0))
);

geode->getOrCreateStateSet()->setTextureAttributeAndModes(

 0, texture.get(), osg::StateAttribute::ON);

Chapter 8

[217]

6.	 We have to configure the osg::ImageSequence object to determine the total
length (in seconds), and start to play the sequence in an orderly manner. This can
be done in an update callback, too.

imageSequence->setLength(0.5);

imageSequence->play();

7.	 Start the viewer:

osgViewer::Viewer viewer;

viewer.setSceneData(geode.get());

return viewer.run();

8.	 You will see a spotlight flashing in the center of the quad. This is because we apply
spotlight images with different radii to the sequence, and play them in a loop (by
default). Now you can imagine some more realistic effects based on this basic
implementation:

Animating Scene Objects

[218]

What just happened?
The osg::ImageSequence class updates the current rendering data from stored images
in every frame. It uses a setImage() method to configure the dimensions, format, and
pixel data, and will also dirty itself—this will remind all texture objects that keep the image
to update the graphics memory and output new data to the rendering pipeline. This is not
efficient as it causes already-high CPU-GPU bandwidth usage to increase if image switching is
too frequent.

Another point of interest is the addFileName() and setFileName() methods. These use
image files on the disk to form the image sequence, and all these files are loaded at once by
default. This can be modified with a setMode() method. This accepts one of three values:

1.	 PRE_LOAD_ALL_IMAGES leads to the default behavior

2.	 PAGE_AND_RETAIN_IMAGES will load the image from file on the fly and retain it

3.	 PAGE_AND_DISCARD_USED_IMAGES removes any used images and reload them
when the movie is reset

Thus, in order to force to load images with a pager mechanism, set the mode before starting
the simulation loop:

imageSequence->setMode(osg::ImageSequence::PAGE_AND_RETAIN_IMAGES);

Creating complex key-frame animations
Now we can explore more about the osgAnimation library. Besides the ease motion
implementations, osgAnimation supports a lot more generic animation features, including
solid animations, morph animations, skeleton animations with rigged mesh, channel
mixers with priorities, basic animation managers, and timeline schedulers. It defines a lot
of concepts and template classes, which seems to be of high complexity, but can provide
developers with great flexibility to build their own advanced animations.

With the foundation of using animation paths, we can quickly clarify some important
concepts of osgAnimation, and get started with an example implementing the same
result as the animation path example.

The basic element of animations is the key-frame. This defines the endpoints of any smooth
transition. The osg::AnimationPath uses a ControlPoint class to create key-frames
of position, rotation, and scale values.

Chapter 8

[219]

A key-frame usually requires two parameters: the time point, and the value to be achieved.
The osgAnimation::TemplateKeyframe<> class is used to define a generic key-frame
in the osgAnimation library, and the osgAnimation::TemplateKeyframeContai
ner<> class manages a list of key-frames with the same data type. It is derived from the
std::vector class and can benefit from all vector methods, such as push_back(),
pop_back(), and iterators. Thus, to add a position key-frame into a corresponding
container object, we have:

osgAnimation::TemplateKeyframe<osg::Vec3> kf(0.0, osg::Vec3(…));

osgAnimation::TemplateKeyframeContainer<osg::Vec3>* container =
 new osgAnimation::TemplateKeyframeContainer<osg::Vec3>;
container->push_back(keyframe);

Here, osg::Vec3 is the template argument of both the key-frame and the
container. To simplify the code, we can simply replace the template class names with
osgAnimation::Vec3KeyFrame and osgAnimation::Vec3KeyFrameContainer
classes, that is:

osgAnimation::Vec3KeyframeContainer* container =
 new osgAnimation::Vec3KeyframeContainer;
container->push_back(osgAnimation::Vec3Keyframe(0.0, osg::Vec3(…)));

The container object is actually derived from osg::Referenced, so it can be managed by
smart pointers. A sampler is then used to interpolate elements in the key-frame container
with a functor that defines the interpolation method.

The osgAnimation::TemplateSampler<> defines the low-level sampler template. It
contains an internal interpolator object and an osgAnimation::TemplateKeyframeC
ontainer<> with the same template argument. Samplers have aliases, too. For example,
osgAnimation::Vec3LinearSampler defines a sampler including osg::Vec3 data and
a linear interpolator. Its public method getOrCreateKeyframeContainer() can return a
valid 3D vector key-frame container object at any time.

The following table lists the types of samplers and the associated container and key-frame
classes within the osgAnimation namespace:

Sampler class Key-frame class Value type

FloatStepSampler FloatKeyframe float

DoubleLinearSampler DoubleKeyframe double

Vec2LinearSampler Vec2Keyframe osg::Vec2

Vec3LinearSampler Vec3Keyframe osg::Vec3

Vec4LinearSampler Vec4Keyframe osg::Vec4

QuatSphericalLinearSampler QuatKeyframe osg::Quat

MatrixLinearSampler MatrixKeyframe osg::Matrixf

Animating Scene Objects

[220]

In order to add key-frames to a given sampler object, just type:

// Again, assume it is a 3D vector sampler
sampler->getOrCreateKeyframeContainer()->push_back(
 osgAnimation::Vec3Keyframe(0.0, osg::Vec3(…))); // Frame at 0s
sampler->getOrCreateKeyframeContainer()->push_back(
 osgAnimation::Vec3Keyframe(2.0, osg::Vec3(…))); // Frame at 2s

Channels and animation managers
Now it's time to handle samplers full of preset key-frames. The
osgAnimation::TemplateChannel<> class accepts a certain sampler class as the
argument and represents the association of the sampler and a "target". The channel's
name is set by the setName() method, and the target it is looking for is defined by the
setTargetName() method.

The target objects are often osgAnimation built-in update callbacks. They should be
attached to specific nodes with the setUpdateCallback() method. The osgAnimation:
:UpdateMatrixTransform is a typical one. It updates the host osg::MatrixTransform
node and changes the transformation matrix using the channel results per frame. We will
have a look at its usage in the following example.

A channel that contains a 3D vector's sampler can be replaced by the
osgAnimation::Vec3LinearChannel class, and the one with a spherical linear
quaternion sampler is called osgAnimation::QuatSphericalLinearChannel,
and so on.

After finishing designing all key-frames and animation channels, the last step in constructing
our animation scene is to declare a manager class for all channels. Before that, we define
the osgAnimation::Animation class for containing a series of animation channels, as
if they were in the same layer. Channels can be added into the animation object with the
addChannel() method.

The osgAnimation::BasicAnimationManager class is the final "butler" of all animation
objects. It manages osgAnimation::Animation objects via the registerAnimation(),
unregisterAnimation(), and getAnimationList() methods, and controls the playing
states of one or more animation objects via the playAnimation(), stopAnimation(),
and isPlaying() methods. It is an update callback, too, but should be set to the root
node, in order to give full control of animations all over the scene graph.

Chapter 8

[221]

The entire process can be described with the following image:

Time for action – managing animation channels
To achieve the same animation effect that the animation path example has already done,
we have to create two channels, one with a position animation target and the other with a
rotation one.

The createAnimationPath() function, which generates a circular path around the
origin point, can be reused. But instead of just combining the position and rotation values
into a control point structure, these two kinds of key frames should be added to separate
containers that belong to different animation channels.

Animating Scene Objects

[222]

1.	 Include the necessary headers:

#include <osg/MatrixTransform>

#include <osgAnimation/BasicAnimationManager>

#include <osgAnimation/UpdateMatrixTransform>

#include <osgAnimation/StackedTranslateElement>

#include <osgAnimation/StackedQuaternionElement>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

2.	 The algorithm of createAnimationPath() is still usable. The only difference is
that the calculated values should be put into different types of key-frame objects
(Vec3KeyFrame and QuatKeyFrame), and then added to input containers:

void createAnimationPath(float radius, float time,

 osgAnimation::Vec3KeyframeContainer* container1,

 osgAnimation::QuatKeyframeContainer* container2)

{

 unsigned int numSamples = 32;

 float delta_yaw = 2.0f * osg::PI/((float)numSamples - 1.0f);

 float delta_time = time / (float)numSamples;

 for (unsigned int i=0; i<numSamples; ++i)

 {

 float yaw = delta_yaw * (float)i;

 osg::Vec3 pos(sinf(yaw)*radius, cosf(yaw)*radius, 0.0f);

 osg::Quat rot(-yaw, osg::Z_AXIS);

 container1->push_back(

 osgAnimation::Vec3Keyframe(delta_time * (float)i, pos)
);

 container2->push_back(

 osgAnimation::QuatKeyframe(delta_time * (float)i, rot)
);

 }

}

3.	 In the main function, we are going to first declare a "position animation" channel
and a "rotation animation" channel (the QuatSphericalChannel can realize the
same effect as the slerp() method of osg::Quat). Their names should be unique,
and the target name should be same as their updater. Otherwise, the channel will
not be recognized correctly:

osg::ref_ptr<osgAnimation::Vec3LinearChannel> ch1 =

 new osgAnimation::Vec3LinearChannel;

ch1->setName("position");

ch1->setTargetName("PathCallback");

Chapter 8

[223]

osg::ref_ptr<osgAnimation::QuatSphericalLinearChannel> ch2 =

 new osgAnimation::QuatSphericalLinearChannel;

ch2->setName("quat");

ch2->setTargetName("PathCallback");

4.	 The key-frame containers of the channels will receive proper animation data in the
createAnimationPath() function, as described above:

createAnimationPath(50.0f, 6.0f,

 ch1->getOrCreateSampler()->getOrCreateKeyframeContainer(),

 ch2->getOrCreateSampler()->getOrCreateKeyframeContainer());

5.	 Now we are going to create an osg::Animation object to contain these two
channels and define their general behaviors. The setPlayMode() method just
equals to setLoopMode() of osg::AnimationPath:

osg::ref_ptr<osgAnimation::Animation> animation = new
osgAnimation::Animation;

animation->setPlayMode(osgAnimation::Animation::LOOP);

animation->addChannel(ch1.get());

animation->addChannel(ch2.get());

6.	 The animation is set, but is not attached to any scene elements. Because it will
effect transformation nodes, we have to create a "transform updater" target here,
to match all channels of the animation. Its stacked elements and the channels are
put into a one-to-one relationship, by using the same name string:

osg::ref_ptr<osgAnimation::UpdateMatrixTransform> updater =

 new osgAnimation::UpdateMatrixTransform("PathCallback");

updater->getStackedTransforms().push_back(

 new osgAnimation::StackedTranslateElement("position"));

updater->getStackedTransforms().push_back(

 new osgAnimation::StackedQuaternionElement("quat"));

7.	 The Cessna is loaded with the help of a pseudo-loader, and placed under an
osg::MatrixTransform parent. The transformation parent node, to which
transformation animations can be applied, will accept the updater as an update
callback. The data variance here ensures that the processing of animation is always
safe:

osg::ref_ptr<osg::MatrixTransform> animRoot= new
osg::MatrixTransform;

animRoot->addChild(osgDB::readNodeFile("cessna.osg.0,0,90.rot")
);

animRoot->setDataVariance(osg::Object::DYNAMIC);

animRoot->setUpdateCallback(updater.get());

Animating Scene Objects

[224]

8.	 As we have only one animation object to play, a basic manager is enough. The next
step is to create an osgAnimation::BasicAnimationManager object
and register the animation to it:

osg::ref_ptr<osgAnimation::BasicAnimationManager> manager =

 new osgAnimation::BasicAnimationManager;

manager->registerAnimation(animation.get());

9.	 The manager is also an update callback, so attach it to the root node of the
scene graph:

osg::ref_ptr<osg::Group> root = new osg::Group;

root->addChild(animRoot.get());

root->setUpdateCallback(manager.get());

10.	Now, play the animation. Of course, you can also put this line in a
customized callback:

manager->playAnimation(animation.get());

11.	Start the viewer:

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

12.	 The result is completely the same as the animation path example. It is a little too
complicated, with so many objects, to achieve such a simple animation. We introduce
this example here only to illustrate the overall structure of osgAnimation elements,
with the hope that it can inspire more brains and thoughts.

What just happened?
The osgAnimation::UpdateMatrixTransform object here is the target of both
animation channels, because its name, PathCallback, set in the constructor, is also
used by the setTargetName() method of channels.

But this is not enough. The updater should also know what action each channel
will take, and link the channels to the correct action handlers. For example, an
osgAnimation::Vec3LinearChannel object can be used to represent either a 3D
position, or the Euler angles for implementing rotation. To judge the actual work it will
be applied to, we have to push some stacked elements into the updater, each of which
is associated with a predefined channel. This is done by adding to the list returned by
getStackedTransforms() method, which is indirectly derived from std::vector.

Chapter 8

[225]

Usable stacked elements include StackedTranslateElement (translation action),
StackedScaleElement (scale action), StackedRotateAxisElement (Euler
rotation action), StackedQuaternionElement (quaternion rotation action), and
StackedMatrixElement (matrix assignment action). All of these are defined in the
osgAnimation namespace, and are linked to channels of the same name.

Loading and rendering characters
The osgAnimation library has certain classes for implementing character animations. The
osgAnimation::Bone and osgAnimation::Skeleton classes are used to construct a
complete skeleton in the scene graph. The osgAnimation::UpdateBone class defines
how to update bones from animation channels.

Unfortunately, it is not easy to build your own characters in OSG, especially when starting
completely from scratch. A simpler way is to load a character model file and play it in
your OSG applications. Collada DAE is a great royalty-free format that beginners can use
to create and save animation characters. You may find more information about the open
standards and tools at: https://collada.org.

Autodesk FBX is a good file format, too, but it can only be supported by commercial
software.

OSG can read both formats directly via the osgDB::readNodeFile() function, assuming
that you have the third party libraries and have compiled the corresponding OSG plugin.
Please refer to Chapter 10, Saving and Loading Files for details of how to do this.

Time for action – creating and driving a character system
Now we are going to load and play animations for an existing OSG character: bignathan.
This was created by the principal author of osgAnimation, and contains a few comic
animations. The main work here is to obtain the animation manager from the root node,
list all available animations, and play a certain animation within it.

1.	 Include the necessary headers:

#include <osgAnimation/BasicAnimationManager>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

#include <iostream>

Animating Scene Objects

[226]

2.	 We would like to configure two arguments for the application. The argument
--animation specifies a name string that will be played in the application,
and --listall lists all available animations on the console:

osg::ArgumentParser arguments(&argc, argv);

bool listAll = false;

std::string animationName;

arguments.read("--animation", animationName);

if (arguments.read("--listall")) listAll = true;

3.	 Make sure that bignathan.osg is loaded; otherwise, we can't continue with
this example. It should be located in the sample data directory defined by the
environment variable OSG_FILE_PATH. You may obtain it by running the installer,
or by searching the OSG website:

osg::ref_ptr<osg::Node> model =
 osgDB::readNodeFile("bignathan.osg");

if (!model) return 1;

4.	 Try getting the animation manager from the update callback of the model root:

osgAnimation::BasicAnimationManager* manager =

 dynamic_cast<osgAnimation::BasicAnimationManager*>

 (model->getUpdateCallback());

if (!manager) return 1;

5.	 Now it's time to iterate over all animations recorded in the manager. If the
--listall argument is read from the command line, each animation's name
should also be printed on the screen. Play the animation that matches the input
name following the --animation argument:

const osgAnimation::AnimationList& animations =

 manager->getAnimationList();

if (listAll) std::cout << "**** Animations ****" << std::endl;

for (unsigned int i=0; i<animations.size(); ++i)

{

 const std::string& name = animations[i]->getName();

 if (name==animationName)

 manager->playAnimation(animations[i].get());

 if (listAll) std::cout << name << std::endl;

}

if (listAll)

{

 std::cout << "********************" << std::endl;

 return 0;

}

Chapter 8

[227]

6.	 Start the viewer, now:

osgViewer::Viewer viewer;

viewer.setSceneData(model.get());

return viewer.run();

7.	 Start the prompt. The first step is to list all animations and see which one is more
interesting. Type the following command and have a look at the output (assuming
that the executable file is MyProject.exe):

	 # MyProject.exe --listall

The output is as follows:

8.	 Type the command with the --animation argument this time:

	 # MyProject.exe --animation Idle_Head_Scratch_01

9.	 Now we are able to see the polygonal boy scratching his head all the time:

Animating Scene Objects

[228]

What just happened?
Maybe you are eager to learn how to create characters with animations, rather than loading
them into OSG, and start rendering. But again, it is out of the scope of this book. There are a
couple of 3D modeling software for you to use: Autodesk 3dsmax, Autodesk Maya, Blender,
and so on. Try outputting your works to FBX format, or you may choose to convert it to OSG
native formats by using some exporting tools, such as Cedric Pinson's Blender Exporter:
http://hg.plopbyte.net/osgexport/. This is controlled by Mercurial, a popular
source control management tool.

In addition to the character solution in osgAnimation, there exist more third-party projects
that handle character animations. One of them is known as Cal3D project. This has an OSG
wrapper project named osgCal2. It is suggested that you have a look at the following
websites to see if they are more preferred in your applications:

�� http://cal3d.sourceforge.net/

�� http://osgcal.sourceforge.net/

Have a go hero – analyzing the structure of your character
Are you interesting in the structure of bignathan? As introduced before, it should be made
up of osgAnimation::Bone and osgAnimation::Skeleton classes, which are actually
nodes. Therefore, a node visitor can be used to analyze the scene graph and see how it is
constructed and traversed.

Alter the node visitor example in Chapter 5, Managing Scene Graph and use it to view and
operate all of the bone nodes in the character file. A suggestion is that you may read out the
update callback attached with each osgAnimation::Bone node, and, if possible, build
your own biped with bignathan used as a reference. They often have the same skeletons
in design.

Summary
OSG supports all major types of animation that can be applied in 3D applications. The most
common is transformation over time, which can be achieved by changing the spatial status
or even rendering states of a 3D object, while the so called key-frame animation is designed
to achieve smooth movement by interpolating between frames. Skeleton system is the key
for character animation, in which a mesh is used to rig to a prebuilt skeleton.

Chapter 8

[229]

In this chapter, we introduced the capabilities of OSG animation classes' and specifically
covered:

�� The reason for and methods to avoid conflicted modifications, especially when
creating dynamic geometries

�� Deriving from the callback base classes, including osg::NodeCallback,
osg::StateAttributeCallback, and so on

�� Interpolating transformation values in a path animation by using the
osg::AnimationPath and osg::AnimationPathCallback classes

�� Using ease motion classes such as osgAnimation::LinearMotion and
osgAnimation::InOutCubicMotion to achieve nature motion effects

�� Generating animated textures using the osg::ImageSequence class

�� How to create complex generic key-frame animation by using the osgAnimation
library, as well as the concept of animation channels and the way to control them

�� Managing and animating rigged characters from existing files

9
Interacting with

Outside Elements

OSG provides a graphical user interface (GUI) abstraction library that
centralizes the commonality of implementations of different windowing systems
(MFC, Qt, GLUT, and so on). It handles GUI events, among which the most
commonly seen is the user's real-time interaction with peripheral devices such
as the mouse and keyboard. In addition, the osgViewer library encapsulates
different windowing systems' graphics contexts for constructing rendering
environments. These constitute the topic of this chapter: how OSG interacts
with other elements—for instance, input devices and windowing systems.

In this chapter, we will tell you:

�� How to handle keyboard and mouse events with customized event handlers

�� How to create and handle user-defined events

�� How to understand the intersection test of scene objects

�� How to configure traits of a window, and thus create the graphical context

�� How to integrate the rendered scene into a windowing system

Interacting with Outside Elements

[232]

Various events
A graphical user interface (GUI) is a type of interface object that allows computer users to
interact with programs in many ways, via so called GUI events. There are always different
kinds of events that can be handled to respond to corresponding user operations, for
instance, moving the mouse device, clicking a mouse button, pressing a key, resizing
windows, and even waiting until a deadline has been reached.

In today's GUI framework, a widget element is always defined to receive these user actions
and transfer them to an event handler object. The latter is written by high-level developers to
implement specific functionalities. For example, to pop up a dialog when clicking the Browse
button, or to save current content of a text editor to a file when pressing the S key.

Unfortunately, most frameworks, including MFC and .NET under Windows, GTK+ under
Linux, Cocoa under Mac OS X, and some cross-platform systems like Qt and wxWidgets, are
incompatible with each other. Therefore they are not so convenient for direct use in an OSG
application. Instead, OSG provides a basic interface for anyone who wants to handle GUI
events, called the osgGA::GUIEventHandler.

This event handler class should be attached to the scene viewer with
the addEventHandler() method of the viewer, and removed with the
removeEventHandler() method. It is a kind of callback that will automatically
be called during the event traversal, which is introduced in the Traversing the scene
graph section of Chapter 5, Managing Scene Graph.

When inheriting osgGA::GUIEventHandler to implement your own event handlers,
the most important work is to override the handle() method. This has two arguments:
the osgGA::GUIEventAdapter parameter that supplies the received events, and the
osgGA::GUIActionAdapter parameter for feedback. The method can be written like this:

bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa)
{
 … // concrete operations
}

The osgGA::GUIEventAdapter class will be introduced in the next section. The
osgGA::GUIActionAdapter allows the handler to ask the GUI to take some action
in response to an incoming event. In most cases, this can actually be considered as the
viewer object. That is because the osgViewer::Viewer class is also derived from
osgGA::GUIActionAdapter. The dynamic_cast<> operator can be used here to
perform the conversion in a safe way:

osgViewer::Viewer* viewer = dynamic_cast<osgViewer::Viewer*>(&aa);

Here, aa is the input parameter of the handle() method of osgGA::GUIEventHandler.

Chapter 9

[233]

Handling mouse and keyboard inputs
The osgGA::GUIEventAdapter class manages all kinds of OSG supported events, including
both setting and getting methods for them. The getEventType() method returns the
current GUI event stored in an event adapter. Every time the overriding handle() method
is called, we have to check this first to determine the event type and take appropriate
countermeasures.

The following table shows the main event types in OSG, as well as the related methods used
to get the necessary event arguments:

Event type value Description Related methods

PUSH/RELEASE/
DOUBLECLICK

The push, release, and
double-click events of the
mouse

Get the current mouse position: getX(),
getY()

Get the related button: getButton();
return value can be one of:

LEFT_MOUSE_BUTTON,
MIDDLE_MOUSE_BUTTON, or
RIGHT_MOUSE_BUTTON

SCROLL The scrolling motion of
the mouse

Get the motion value:
getScrollingMotion(); return value
can be one of:

SCROLL_UP, SCROLL_DOWN, SCROLL_
LEFT, or SCROLL_RIGHT

DRAG The mouse drag event Get the current mouse position: getX(),
getY()

Get the current mouse button state:
getButtonMask(); return value is the
same as getButton()

MOVE The mouse move event Get the current mouse position: getX(),
getY()

KEYDOWN/KEYUP The key up and down
events of the keyboard

Get the related key value: getKey(); the
return value can be any ASCII character for
letter keys, or values in the Key_Symbol
enumeration (for example KEY_BackSpace
for the backspace key)

FRAME An event that occurs every
frame

None

Interacting with Outside Elements

[234]

Event type value Description Related methods

USER A user-defined event for
more extensions.

Get the user data pointer:
getUserData(); the user data
object must be derived from the
osg::Referenced base class

There is another getModKeyMask() method that can be used to get the current modifier key
when moving or clicking the mouse or pressing the keys on the keyboard. The return value is
bitwise OR'ed with values including MODKEY_CTRL, MODKEY_SHIFT, MODKEY_ALT, and so on.
So we can check to see if the Ctrl key is pushed with the following code segment:

if (ea.getModKeyMask()&osgGA::GUIEventAdapter::MODKEY_CTRL)
{
 … // Related operations
}

Be aware that the corresponding setting methods of all getting ones above, including
setEventType(), setX(), setY(), and so on, are not suitable for use in the handle()
implementation. They are often called by the low-level graphics window system of OSG to
push new events to the event queue.

Time for action – driving the Cessna
We have learnt how to change the transformation matrix of a model with the
osg::MatrixTransform nodes. With the help of the osg::AnimationPath class and the
osgAnimation namespace, we can even create animation effects on these transformable
objects. But this is not enough for an interactive scene. Our further requirement is to control
scene graph nodes with user input devices. Imagine that we have a submarine, a tank, or a
familiar Cessna in a modern warfare game. It will be really exciting if we can simulate driving
it with the keyboard, mouse, or even joysticks.

1.	 Include the necessary headers:

#include <osg/MatrixTransform>

#include <osgDB/ReadFile>

#include <osgGA/GUIEventHandler>

#include <osgViewer/Viewer>

2.	 Our task is to take control of a Cessna model with some keys. To handle these user
events, we have to declare a ModelController class, which is derived from the
osgGA::GUIEventHandler base class, and override the handle() method to
make sure that all user events are passed in as an osgGA::GUIEventAdapter
object. The model pointer is also included in the handler class; otherwise
there is no way to tell which model is going to be controlled:

Chapter 9

[235]

class ModelController : public osgGA::GUIEventHandler
{
public:
 ModelController(osg::MatrixTransform* node)
: _model(node)
{}
 virtual bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa);

protected:
 osg::ref_ptr<osg::MatrixTransform> _model;
};

3.	 In the implementation of the handle() method, we will modify the Euler
angles of the member variable _model, which can be a transformation node
representing a Cessna or other models. The character keys w, s, a, and d can
easily describe the heading and pitch rotations of the aircraft via a common
KEYDOWN event. Of course, function keys and navigation keys, including
KEY_Left, KEY_Right, and so on, are also available for use here:

bool ModelController::handle(const osgGA::GUIEventAdapter& ea,

 osgGA::GUIActionAdapter& aa)

{

 if (!_model) return false;

 osg::Matrix matrix = _model->getMatrix();

 switch (ea.getEventType())

 {

 case osgGA::GUIEventAdapter::KEYDOWN:

 switch (ea.getKey())

 {

 case 'a': case 'A':

 matrix *= osg::Matrix::rotate(-0.1f, osg::Z_AXIS);

 break;

 case 'd': case 'D':

 matrix *= osg::Matrix::rotate(0.1f, osg::Z_AXIS);

 break;

 case 'w': case 'W':

 matrix *= osg::Matrix::rotate(-0.1f, osg::X_AXIS);

 break;

 case 's': case 'S':

 matrix *= osg::Matrix::rotate(0.1f, osg::X_AXIS);

 break;

 default:

Interacting with Outside Elements

[236]

 break;

 }

 _model->setMatrix(matrix);

 break;

 default:

 break;

 }

 return false;

}

4.	 In the main function, we will first load the Cessna model and add it to an
osg::MatrixTransform parent. The parent node will be used as the
controlled object and transferred to a ModelController handler instance:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile("cessna.osg"
);

osg::ref_ptr<osg::MatrixTransform> mt = new osg::MatrixTransform;

mt->addChild(model.get());

osg::ref_ptr<osg::Group> root = new osg::Group;

root->addChild(mt.get());

5.	 Initialize the model controller and pass the transformation node as an argument:

osg::ref_ptr<ModelController> ctrler =

 new ModelController(mt.get());

6.	 We don't want the camera manipulator to work in this example, because it may also
affect the model-view matrix of the viewer when using the keyboard and mouse,
and confuse the result of handling GUI events. Therefore, in addition to adding
the created event handler, we will prevent the main camera from receiving any
user events with the setAllowEventFocus() method, and set a suitable view
matrix by ourselves (because the manipulator can't contact the camera now):

osgViewer::Viewer viewer;

viewer.addEventHandler(ctrler.get());

viewer.getCamera()->setViewMatrixAsLookAt(

 osg::Vec3(0.0f,-100.0f,0.0f), osg::Vec3(), osg::Z_AXIS);

viewer.getCamera()->setAllowEventFocus(false);

7.	 Now start the viewer:

viewer.setSceneData(root.get());

return viewer.run();

Chapter 9

[237]

8.	 We will find that the camera manipulator (its default behavior is
trackball-like) losses control of the main camera, and none of the mouse
buttons can navigate in the scene now. However, pressing the four character
keys has an effect on the Cessna now. Be aware, that the keyboard event here
only works on the model node, but not on the whole scene graph. You may add
another stationary node to the root node and see if it can be changed at any time:

What just happened?
Event handlers can be used for many purposes. In a hander callback, we can move and rotate
transformable nodes, record animation paths, add or remove children from a parent node,
compute frame rates and free memory, and do anything we want. It is triggered in the event
traversal, thus it is always safe for dynamic data modification.

An interesting question here is how to decide the return value of the handle() method.
The required Boolean value here is used to indicate whether the event has already been
handled or not. If true is returned, OSG believes that the user event is no longer needed
by any subsequent handlers, including the camera manipulator. The event will be marked as
"handled" and will be ignored by other handlers or event callbacks by default. In most cases
in this book, we don't want this behavior. So false will always be returned without any
doubts in this and subsequent examples.

Interacting with Outside Elements

[238]

Pop quiz – handling events within nodes
Similar to update callbacks, OSG also allows event callbacks to be set to nodes and
drawables, using the setEventCallback() and addEventCallback() methods, both
of which accept an osg::NodeCallback pointer as the unique parameter. To obtain the
event variable in the overrode operator(), we can just convert the node visitor to an
osg::EventVisitor pointer:

#include <osgGA/EventVisitor>
…
void operator()(osg::Node* node, osg::NodeVisitor* nv)
{
 std::list< osg::ref_ptr<osgGA::GUIEventAdapter> > events;

 osgGA::EventVisitor* ev = dynamic_cast<osgGA::EventVisitor*>(nv);
 if (ev) events = ev->getEvents();
 … // Handle events with the node
}

Can you tell the major difference between using node callbacks and event handlers?
Is it better to reproduce this example using a customized event callback on the
transformation node?

Have a go hero – manipulating the cameras
Believe it or not, the osgGA::CameraManipulator class also has a virtual method named
handle(). This is actually derived from the osgGA::GUIEventHandler, but is not
suitable for adding to the viewer with the addEventHandler() method. It navigates the
main camera by calling the getInverseMatrix() virtual method, which computes the
inverse transformation matrix of the manipulator, that is, the view matrix, and set it to the
main camera with the setViewMatrix() method during the update traversal. All OSG
manipulators, including user customized ones, should override this method to make sure
that they work properly.

The osgGA::CameraManipulator class also provides the setByMatrix() and
getMatrix() virtual methods which can be overridden to specify or obtain the
transformation matrix. Try rewriting all of these methods to produce your own camera
manipulators. The standard manipulators, including osgGA::TrackballManipulator,
among others, can be very good references for this activity.

Chapter 9

[239]

Adding customized events
OSG uses an internal event queue to manage coming GUI events in a first in first out (FIFO)
list. Events at the beginning will be handled first and then erased from the list. That is,
the handle() method of each added event handler will be executed as many times as
the size of the event queue. The event queue class, named osgGA::EventQueue, allows
new events to be pushed in with the addEvent() method at any time. Its argument is an
osgGA::GUIEventAdapter pointer, which uses setting methods like setEventType()
and setButton() to define its behavior.

There are some additional methods of the osgGA::EventQueue class that can be used
to quickly set and add new GUI events. One of them is the userEvent() method, which
adapts user-defined events with a user data pointer as the argument. This user data can be
used to represent any kind of customized event, for instance, the timer event described in
the following section.

It is of no use to create a completely new event queue object. The viewer class has already
defined one to operate on:

viewer.getEventQueue()->userEvent(data);

Here, the variable data is an object derived from osg::Referenced. After adding this new
event, the event handler will receive a USER event and developers can then read from the
getUserData() method of the handler and do anything they want.

Time for action – creating a user timer
A timer event is emitted whenever the internal counter reaches a specified interval. This
is common in various GUI systems, and allows users to set a customized timer callback to
receive the timing message and implement related operations.

Now we are able to realize the same work in OSG. As there are no standard timer events
defined in the osgGA::GUIEventAdapter class, we have to make use of the USER event
type, as well as an additional data pointer.

1.	 Include the necessary headers:

#include <osg/Switch>

#include <osgDB/ReadFile>

#include <osgGA/GUIEventHandler>

#include <osgViewer/Viewer>

#include <iostream>

Interacting with Outside Elements

[240]

2.	 A TimerInfo structure is first defined to manage the parameters (mainly
the trigger time of the timer) of the timer event. We have to attach this
osg::Referenced derived pointer to the userEvent() method, because it
is the only element for distinguishing between different customized events:

struct TimerInfo : public osg::Referenced

{

 TimerInfo(unsigned int c) : _count(c) {}

 unsigned int _count;

};

3.	 The TimerHandler is used for both processing the timer object and handling
timer events. We would like to switch between normal and afire states of a
Cessna model every time we receive such an event. In Chapter 5, Managing
Scene Graph and Chapter 8, Animating Scene Object, this is done by customizing
the osg::Node class and the update callback. But this time we will try using
the event handler with an input osg::Switch pointer as the argument:

class TimerHandler : public osgGA::GUIEventHandler

{

public:

 TimerHandler(osg::Switch* sw) : _switch(sw), _count(0) {}

 virtual bool handle(const osgGA::GUIEventAdapter& ea,

 osgGA::GUIActionAdapter& aa);

protected:

 osg::ref_ptr<osg::Switch> _switch;

 unsigned int _count;

};

4.	 There are two kinds of events to handle in the overrode handle() method.
The FRAME event is automatically emitted with every frame and can be
used to manage and increase an internal counter, and send userEvent()
to the event queue when time is ripe. In this example, we assume that the
timer event is emitted every 100 counts. The other one is the USER event,
which doesn't contain any information except a TimerInfo object as the
"user data" to indicate the timer and its counts. Here, we will print the count
number and switch between child nodes of the variable _switch:

bool TimerHandler::handle(const osgGA::GUIEventAdapter& ea,

 osgGA::GUIActionAdapter& aa)

{

 switch (ea.getEventType())

 {

 case osgGA::GUIEventAdapter::FRAME:

Chapter 9

[241]

 if (_count % 100 == 0)

 {

 osgViewer::Viewer* viewer =

 dynamic_cast<osgViewer::Viewer*>(&aa);

 if (viewer)

 {

 viewer->getEventQueue()->userEvent(

 new TimerInfo(_count));

 }

 }

 _count++;

 break;

 case osgGA::GUIEventAdapter::USER:

 if (_switch.valid())

 {

 const TimerInfo* ti =

 dynamic_cast<const TimerInfo*>(ea.getUserData()
);

 std::cout << "Timer event at: " <<ti->_count<<
 std::endl;

 _switch->setValue(0, !_switch->getValue(0));

 _switch->setValue(1, !_switch->getValue(1));

 }

 break;

 default:

 break;

 }

 return false;

}

5.	 In the main function, we simply create the switch node, which contains a normal
Cessna model and an afire one:

osg::ref_ptr<osg::Node> model1= osgDB::readNodeFile("cessna.osg");

osg::ref_ptr<osg::Node> model2= osgDB::readNodeFile("cessnafire.
osg");

osg::ref_ptr<osg::Switch> root = new osg::Switch;

root->addChild(model1.get(), false);

root->addChild(model2.get(), true);

Interacting with Outside Elements

[242]

6.	 Add the timer event sender and handler to the viewer, and start it:

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

viewer.addEventHandler(new TimerHandler(root.get()));

return viewer.run();

7.	 As we have seen for times, the Cessna is alternating between intact and afire.
In addition, there are messages appearing on the console screen, which tell us
when the timer is trigged:

What just happened?
We made use of the FRAME event here to check and emit user events to the event queue.
This leads to an architecture that is a little weird: the event sender and the receiver is the
same TimeHandler class. This is similar to the postman and the addressee being the same
person!

In fact, we can easily avoid this problem. The occasion to emit a user event is determined
every frame. A new user event can be added to the event queue at any time in an update or
cull traversal. That is, callbacks, customized nodes,and drawables can all be used as an event
sender, rather than the event handler itself. This makes it possible to obtain and handle
complex events like joysticks and data gloves. Declare a structure named JoyStickInfo or
DataGloveInfo with the necessary information, set its attributes, emit user events with
the instance of the structure in an update callback, and handle user events in the handler.
That is all we need to make the user event mechanism work.

Chapter 9

[243]

Pop quiz – global and node-related events
We have already demonstrated two kinds of event handlers in the last two examples: the
ModelController, which controls a node's orientations, and the TimerHandler, which
simulates timer events. So, continue our discussion and quiz: do you think an event callback
is suitable for re-implementing the timer example? And what about implementing the
picking example in the next section with callbacks (read it first and then come back to this
question)?

Picking objects
The picking functionality allows users to move the mouse over a portion of a rendered scene
and click a button. The result may be an action of opening or closing a door, or shooting on
an intruding alien in the 3D world. There are three main steps required to perform these
kinds of actions.

Firstly, we use an event handler to receive mouse events. For example, a mouse push event
comes along with the X and Y positions of the cursor, which are of course the most important
factors of the picking operation.

Secondly, we have to determine which part of the scene graph is under the mouse cursor.
This can be done by using the intersection tools provided by the osgUtil library. The
result is a set of intersections that includes the picked drawable, its parent node path, the
intersecting point, and so on.

Finally, we are going to make use of the intersection result to achieve our goals of picking
objects or making them fight.

Intersection
OSG has its own intersection strategy that makes use of the node visitor mechanism to
reduce time consumption. It is always more efficient than OpenGL's selection feature.
The osgUtil::IntersectionVisitor class is the implementer. It is derived from
the osg::NodeVisitor class and can test nodes' bounding volumes against the input
intersector and quickly skip sub-scene graphs that are not intersectable during the traversal.

The osgUtil::IntersectionVisitor object takes an osgUtil::Intersector derived
object as the argument of its constructor. It can be configured for intersection tests with
several intersectors, including line segments, planes, and polytopes. An intersector can work
in four kinds of coordinate system, each of which has different input parameters and can
convert them to world space with different transformation matrices. In the following table,
we will take the line segment intersector class osgUtil::LineSegmentIntersector, to
use as an example:

Interacting with Outside Elements

[244]

Coordinate system Input parameters Requirement

MODEL Two osg::Vec3 vertices
in the local space as the
endpoints

No more requirements. The vertices in the
world space will be automatically computed
during the traversal.

VIEW Two osg::Vec3 vertices
in the view space as the
endpoints

One or more osg::Camera nodes must
exist in the scene graph to be traversed to
provide a valid view matrix.

PROJECTION Two double values are
required as a point on the
projection plane, ranging
from (-1, -1) to (1, 1)

One or more osg::Camera nodes must
exist to provide a valid view matrix and a
projection matrix.

WINDOW Two double values are
required as a point on the
screen

One or more osg::Camera nodes must
exist to provide a valid view matrix,
projection matrix, and window matrix.

Assume that we are going to make an intersection test in the handle() method of an event
handler. The WINDOW coordinate system can then be used here to obtain a ray from the
mouse position into the 3D scene. The following code segment shows how this works on a
camera node camera:

osg::ref_ptr<osgUtil::LineSegmentIntersector> intersector =
 new osgUtil::LineSegmentIntersector(
 osgUtil::Intersector::WINDOW, ea.getX(), ea.getY()
);
osgUtil::IntersectionVisitor iv(intersector.get());
camera->accept(iv);

The containsIntersections() method of the intersector can be used to
check if there is any intersecting result. The getIntersections() method
of osgUtil::LineSegmentIntersector returns a set of Intersection
variables, ascending from the nearest to the viewer, to the farthest. The intersection
point can be found by calling the getLocalIntersectPoint() method or
getWorldIntersectPoint() method of one of these result variables, for example:

osgUtil::LineSegmentIntersector::Intersection& result =
 *(intersector->getIntersections().begin());
osg::Vec3 point = result.getWorldIntersectPoint(); // in world space

The first line can also be rewritten as:

osgUtil::LineSegmentIntersector::Intersection& result =
 intersector->getIntersections().front();

Chapter 9

[245]

Similarly, we can obtain the intersected drawable object, its parent node path nodePath,
and even the indexList which lists all vertices and indices of triangles intersected with the
line segment, from the result's member variables, for future use.

Time for action – clicking and selecting geometries
Our task this time is to implement a very common task in 3D software—clicking to select
an object in the world and showing a selection box around the object. The bounding
box of the selected geometry should be good for representing a selection box, and the
osg::ShapeDrawable class can quickly generate a simple box for display purposes.
The osg::PolygonMode attribute will then make the rendering pipeline only draw the
wireframes of the box, which helps to show the selection box as brackets. These are all we
need to produce practical picking object functionalities.

1.	 Include the necessary headers:

#include <osg/MatrixTransform>

#include <osg/ShapeDrawable>

#include <osg/PolygonMode>

#include <osgDB/ReadFile>

#include <osgUtil/LineSegmentIntersector>

#include <osgViewer/Viewer>

2.	 The PickHandler will do everything required for our task, including an
intersection test of the mouse cursor and the scene graph, creating and returning
the selection box node (the _selectionBox variable in this example), and
transforming the box around the selected object when pressing the mouse button:

class PickHandler : public osgGA::GUIEventHandler

{

public:

 osg::Node* getOrCreateSelectionBox();

 virtual bool handle(const osgGA::GUIEventAdapter& ea,

 osgGA::GUIActionAdapter& aa);

protected:

 osg::ref_ptr<osg::MatrixTransform> _selectionBox;

};

Interacting with Outside Elements

[246]

3.	 In the following method, we will allocate and return a valid selection box
node to the main function. There are several points to note here: firstly, the
osg::Box object will not be changed at runtime, but a parent transformation
node will be used and modified instead, for the reason of simplifying
operations; secondly, the GL_LIGHTING mode and the osg::PolygonMode
attribute should be used to make the selection box more natural; finally, there
is also a confusing setNodeMask() call, which will be explained later:

osg::Node* PickHandler::getOrCreateSelectionBox()

{

 if (!_selectionBox)

 {

 osg::ref_ptr<osg::Geode> geode = new osg::Geode;

 geode->addDrawable(

 new osg::ShapeDrawable(new osg::Box(osg::Vec3(),
 1.0f)));

 _selectionBox = new osg::MatrixTransform;

 _selectionBox->setNodeMask(0x1);

 _selectionBox->addChild(geode.get());

 osg::StateSet* ss = _selectionBox->getOrCreateStateSet();

 ss->setMode(GL_LIGHTING, osg::StateAttribute::OFF);

 ss->setAttributeAndModes(new osg::PolygonMode(

 osg::PolygonMode::FRONT_AND_
BACK,osg::PolygonMode::LINE));

 }

 return _selectionBox.get();

}

4.	 We are going to strictly limit the occasion of picking scene objects to make
sure camera manipulation operations can work. It will only be called when
the user is holding the Ctrl key and releasing the left mouse button. After
that, we obtain the viewer by converting the osgGA::GUIActionAdapter
object, and create an intersection visitor to find a node that can possibly be
picked by the mouse cursor (be aware of the setTraversalMask() method
here, which will be introduced along with the setNodeMask() method).
Then the resulting drawable object and its parent node path can be used
to describe the world position and scale of the bounding selection box:

bool PickHandler::handle(const osgGA::GUIEventAdapter& ea,

 osgGA::GUIActionAdapter& aa)

{

 if (ea.getEventType()!=osgGA::GUIEventAdapter::RELEASE ||

Chapter 9

[247]

 ea.getButton()!=osgGA::GUIEventAdapter::LEFT_MOUSE_BUTTON
||

 !(ea.getModKeyMask()&osgGA::GUIEventAdapter::MODKEY_CTRL)
)

 return false;

 osgViewer::Viewer* viewer =
 dynamic_cast<osgViewer::Viewer*>(&aa);

 if (viewer)

 {

 osg::ref_ptr<osgUtil::LineSegmentIntersector>
 intersector =

 new osgUtil::LineSegmentIntersector(

 osgUtil::Intersector::WINDOW, ea.getX(), ea.getY()

);

 osgUtil::IntersectionVisitor iv(intersector.get());

 iv.setTraversalMask(~0x1);

 viewer->getCamera()->accept(iv);

 if (intersector->containsIntersections())

 {

 osgUtil::LineSegmentIntersector::Intersection&
 result =

 *(intersector->getIntersections().begin());

 osg::BoundingBox bb = result.drawable->getBound();

 osg::Vec3 worldCenter = bb.center() *

 osg::computeLocalToWorld(result.nodePath);

 _selectionBox->setMatrix(

 osg::Matrix::scale(bb.xMax()-bb.xMin(),

 bb.yMax()-bb.yMin(),

 bb.zMax()-bb.zMin()) *

 osg::Matrix::translate(worldCenter));

 }

 }

 return false;

}

5.	 The remaining work is not hard to understand. We will first construct the scene
graph by adding two models to the root node:

osg::ref_ptr<osg::Node> model1 = osgDB::readNodeFile("cessna.osg"
);

osg::ref_ptr<osg::Node> model2 = osgDB::readNodeFile("cow.osg");

Interacting with Outside Elements

[248]

osg::ref_ptr<osg::Group> root = new osg::Group;

root->addChild(model1.get());

root->addChild(model2.get());

6.	 We create the picking handler, and add the value of getOrCreateSelectionBox()
to the root node, too. This will make the selection box visible in the scene graph:

osg::ref_ptr<PickHandler> picker = new PickHandler;

root->addChild(picker->getOrCreateSelectionBox());

7.	 OK, start the viewer with the PickHandler object as a customized event handler:

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

viewer.addEventHandler(picker.get());

return viewer.run();

8.	 Hold the Ctrl key and press on the cow. You will see a white selection box appear.
Try moving your mouse and clicking on the Cessna, without releasing the Ctrl
key. The selection box now migrates to the Cessna model, enclosing all of its
vertices. All other operations will not be affected if the Ctrl key is not held down:

What just happened?
The setNodeMask() method of osg::Node class is introduced for some special purposes.
It performs a bitwise logical AND operation with a certain scene controller to indicate
that the node is available for use to the controller or not. For example, to make a node
and its sub-scene graph untouchable to the intersection visitor, we can adjust the two
operators, one of which is defined by setNodeMask() and the other is defined by the
setTraversalMask() method of the osg::NodeVisitor class, to make the result
of the logical AND zero. That is why we have these two lines in the previous example:

Chapter 9

[249]

_selectionBox->setNodeMask(0x1);
…
iv.setTraversalMask(~0x1);

That makes the selection box itself not pickable by the visitor, as shown in the following
diagram:

Have a go hero – selecting geometries in a rectangular region
osgUtil::LineSegmentIntersector is used for computing the intersection between a
line segment and the scene graph. It accepts both model and window coordinate systems,
thus the mouse position on the screen can be converted to a line segment from the near
plane to the far plane, leading to desired results.

But what will happen if we left click and drag a rectangular region around all scene
objects to be selected? There are four points to be recorded to form a rectangle, and
actually eight points in the model coordinates, which constitutes a polyhedron. The
osgUtil::PolytopeIntersector is recommended for this purpose. This accepts
the coordinate frame and four screen points as input arguments, and returns a list of
intersections as the result. Try making use of this class to select multiple geometries,
and list all of them.

Windows, graphics contexts, and cameras
In Chapter 7, Viewing the World we have already seen that the osg::Camera class
manages the OpenGL graphics context associated with it, which is done via a simple
setGraphicsContext() method. The graphics context actually encapsulates information on
the way in which scene objects are drawn and rendering states are applied. It can be a graphics
window providing a related windowing API or some other buffer objects, for example, the
OpenGL pixel buffer, which stores pixel data without transferring it to the frame buffer.

Interacting with Outside Elements

[250]

OSG uses the osg::GraphicsContext class to represent the abstract graphics context,
and the osgViewer::GraphicsWindow class to represent the abstract graphics window.
The latter also has a getEventQueue() method for managing GUI events. Its platform-
specific subclasses will continuously add new events to this event queue.

Because of the agnostic type of the windowing API (Windows, X11, Mac OS
X, and so on), a graphics context must be created as a platform-specific one.
The createGraphicsContext() method of the osg::GraphicsContext
class will automatically make the decision for us. Its only argument, an
osg::GraphicsContext::Traits pointer, will provide the specification of
what type of graphics window or buffer is required.

The Traits class
The osg::GraphicsContext::Traits class can set up properties of a specific graphics
context. This is different from the osg::DisplaySettings class, which manages the
characteristics of all newly-created cameras' graphics contexts. Instead of a number of
setting and getting property methods, the traits class uses public class member variables
to indicate a property. This will take effect once the createGraphicsContext() is called.
The main components of the traits are listed in the following table:

Member attribute Data type Default
value

Description

x int 0 The initial horizontal position of the
graphics context

y int 0 The initial vertical position of the
graphics context

width int 0 The width of the graphics context
(always affect the window rectangle)

height int 0 The height of the graphics context
(always affect the window rectangle)

windowName std::
string

"" The name of the generated graphics
window

windowDecoration bool false The decoration (title bar) of the
generated graphics window

red unsigned int 8 Number of bits of red in the OpenGL
color buffer

green unsigned int 8 Number of bits of green in the
OpenGL color buffer

blue unsigned int 8 Number of bits of blue in OpenGL
color buffer

Chapter 9

[251]

Member attribute Data type Default
value

Description

alpha unsigned int 0 Number of bits in the OpenGL alpha
buffer

depth unsigned int 24 Number of bits in the OpenGL depth
buffer

stencil unsigned int 0 Number of bits in the OpenGL stencil
buffer

doubleBuffer bool false Use double or single buffering

samples unsigned int 0 Number of multisampling buffer
samples

quadBufferStereo bool false Use NVIDIA's quad-buffering stereo
mode or not

inheritedWindowData osg::
ref_ptr
<osg::
Referenced>

NULL The associated window handle, which
will be described later

To initialize a new traits pointer and set one or more of its member variables, just type:

osg::ref_ptr<osg::GraphicsContext::Traits> traits =
 new osg::GraphicsContext::Traits;
traits->x = 50;
…

Time for action – configuring the traits of a rendering window
We will create a fixed-size window to contain the rendering result of an OSG scene. The brief
steps are: configure the traits of the rendering window, create a graphics context according
to the traits, attach the graphics context to a camera, and finally set the camera as the main
camera of the viewer.

1.	 Include the necessary headers:

#include <osg/GraphicsContext>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

Interacting with Outside Elements

[252]

2.	 Create a traits structure and set its attributes. The samples value here is set
to enable the global multisampling functionality of the current window, but
leave others to their defaults (no multisampling). This is different from the
setNumMultiSamples() method of the osg::DisplaySettings class:

osg::ref_ptr<osg::GraphicsContext::Traits> traits =

 new osg::GraphicsContext::Traits;

traits->x = 50;

traits->y = 50;

traits->width = 800;

traits->height = 600;

traits->windowDecoration = true;

traits->doubleBuffer = true;

traits->samples = 4;

3.	 Create the graphics context with the createGraphicsContext() function.
Note here, never create new graphic's contexts with the new operator,
otherwise OSG can't decide the low-level windowing platform for it:

osg::ref_ptr<osg::GraphicsContext> gc =

 osg::GraphicsContext::createGraphicsContext(traits.get());

4.	 The graphics context is then attached to a newly-created camera node. It will be
used as the main camera of the whole scene, so we have to specify the clear mask
and color to make it work like ordinary OSG cameras. It is also very important to
preset the projection matrix here. But we don't need to alter this projection
matrix all the time, as it will be recomputed and updated by the rendering
backend at an appropriate time:

osg::ref_ptr<osg::Camera> camera = new osg::Camera;

camera->setGraphicsContext(gc);

camera->setViewport(

 new osg::Viewport(0, 0, traits->width, traits->height));

camera->setClearMask(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

camera->setClearColor(osg::Vec4f(0.2f, 0.2f, 0.4f, 1.0f));

camera->setProjectionMatrixAsPerspective(

 30.0f,(double)traits->width/(double)traits->height,
 1.0,1000.0);

5.	 Load a model as the scene graph:

osg::ref_ptr<osg::Node> root = osgDB::readNodeFile(
 "cessna.osg");

Chapter 9

[253]

6.	 Set the camera to the viewer and start it as usual:

osgViewer::Viewer viewer;

viewer.setCamera(camera.get());

viewer.setSceneData(root.get());

return viewer.run();

7.	 Now we have the Cessna model shown in a rendering window. We can still navigate
in the window, run previous examples, and test the code. To make it rendered in
full-screen mode again, set the width and height attributes to the size of the
screen, and set windowDecoration to false.

Interacting with Outside Elements

[254]

What just happened?
We have already made use of the setUpViewInWindow() method in Chapter 7, Viewing
the World. It constructs a window instead of full-screen mode to display rendering results.
Believe it or not, the content of the setUpViewInWindow() method is nearly the same
as the example here. It configures the traits, creates a specific graphics context, attaches
it to a new camera, and finally sets the camera as the main camera of the viewer. Other
methods, like setUpViewFor3DSphericalDisplay(), do the similar work at the
beginning of implementations to generate rendering containers. But after that, they always
produce multiple camera objects with special projection matrices to realize rich effects. The
rendering-to-textures technique is also useful in these cases.

Integrating OSG into a window
Interface developers may work under various GUI systems, and have to integrate the OSG
scene graph into their UI widgets. According to the different working strategies of GUIs, it is
technically hard to have a universal method of embedding OSG viewers. However, there do
exist some tricks we can use to make the integration easier:

�� Attach the window handle to the inheritedWindowData of the
osg::GraphicsContext::Traits class. The window handle's type can be
Win32's HWND, X11's Window, and Cocoa's WindowRef. After that, OSG will
manage the OpenGL rendering context and drawing calls on the inherited
window and thus render the whole scene to the window surface.

�� The frame() method of the osgViewer::Viewer class should be executed
continuously. For this purpose, we can either use a separate thread, or a GUI timer
event handler with a short enough interval.

�� For widgets that support OpenGL drawing calls directly (Qt's QGLWidget, GLUT,
FLTK, and so on), use the osgViewer::GraphicsWindowEmbedded class to
create a graphic's context without worrying about the rendering context and related
buffer attributes. The frame() method of the OSG viewer must be executed in a
continuous-updating method of the widget class.

�� Never modify the scene graph (dynamic changing node and state attributes, adding
or removing child nodes, and so on) in a GUI's callbacks or event handlers. Use
OSG native ones instead to prevent thread conflicts. Another inefficient solution is
to force the viewer to use the single-threaded mode, which will be introduced in
Chapter 12, Improving Rendering Efficiency.

Chapter 9

[255]

Time for action – attaching OSG with a window handle in Win32
A window handle (HWND) in Win32 applications allows the system resources to know what
kind of window objects it referring to. The HWND variable may encapsulate a dialog, a push
button, an MDI or SDI window, and so on. In that case, attaching this handle to the OSG
traits and then to the graphics context will make it possible to integrate OSG and Win32 GUI
controls, and thus display 3D scenes in all kinds of user interface objects.

1.	 Include the necessary headers:

#include <windows.h>

#include <process.h>

#include <osgDB/ReadFile>

#include <osgGA/TrackballManipulator>

#include <osgViewer/api/win32/GraphicsWindowWin32>

#include <osgViewer/Viewer>

2.	 Two global variables are declared here; these will be explained later:

osg::ref_ptr<osgViewer::Viewer> g_viewer;

bool g_finished;

3.	 We would like to create a classic pop-up window with the CreateWindow() function
from the Win32 API. It must use a WNDCLASS structure to define the styles and
customized procedure of the window. In most cases, the procedure is a pointer to a
static function, which handles windowing messages that are passed to this window:

static TCHAR szAppName[] = TEXT("gui");

WNDCLASS wndclass;

wndclass.style = CS_HREDRAW | CS_VREDRAW;

wndclass.lpfnWndProc = WndProc;

wndclass.cbClsExtra = 0;

wndclass.cbWndExtra = 0;

wndclass.hInstance = 0;

wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);

wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);

wndclass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);

wndclass.lpszMenuName = NULL;

wndclass.lpszClassName = szAppName;

if (!RegisterClass(&wndclass))

 return 0;

Interacting with Outside Elements

[256]

4.	 Create an 800x600 window at the position (100, 100). It returns the window handle
if it succeeds, which is required by the OSG rendering window traits for integrating
work. We can either put the initialization code of the graphics context here, or put
it in the WM_CREATE case:

HWND hwnd = CreateWindow(szAppName, // window class name
 TEXT("OSG and Win32 Window"),
 // caption
 WS_OVERLAPPEDWINDOW, // window style
 100, // initial x position
 100, // initial y position
 800, // initial x size
 600, // initial y size
 NULL, // parent window handle
 NULL, // window menu handle
 0, // program instance handle
 NULL); // creation parameters
ShowWindow(hwnd, SW_SHOW);
UpdateWindow(hwnd);

5.	 Create a message loop to retrieve messages from the internal queue and dispatch
them to the appropriate window procedure:

MSG msg;

while (GetMessage(&msg, NULL, 0, 0))

{

 TranslateMessage(&msg);

 DispatchMessage(&msg);

}

return 0;

6.	 Now, in the implementation of the procedure WndProc(), we will try initializing
an OSG viewer and embedding it into the created window. This is going to
be done in the WM_CREATE statement. Firstly, a WindowData structure is
created to include the HWND handle. Then it is applied to the traits and the
graphic's context is created platform-specific. The camera and the viewer
objects are then initialized one after another. The setKeyEventSetsDone()
here is used to disable quitting OSG applications with the Esc key. Finally,
we start a new rendering thread for advancing the frames in the viewer.
That is why we declare two global variables at the beginning:

case WM_CREATE:

{

 osg::ref_ptr<osg::Referenced> windata =

 new osgViewer::GraphicsWindowWin32::WindowData(hwnd);

 osg::ref_ptr<osg::GraphicsContext::Traits> traits =

Chapter 9

[257]

 new osg::GraphicsContext::Traits;

 traits->x = 0;

 traits->y = 0;

 traits->width = 800;

 traits->height = 600;

 traits->windowDecoration = false;

 traits->doubleBuffer = true;

 traits->inheritedWindowData = windata;

 osg::ref_ptr<osg::GraphicsContext> gc =

 osg::GraphicsContext::createGraphicsContext(traits.get()
);

 osg::ref_ptr<osg::Camera> camera = new osg::Camera;

 camera->setGraphicsContext(gc);

 camera->setViewport(

 new osg::Viewport(0, 0, traits->width, traits->height));

 camera->setClearMask(GL_DEPTH_BUFFER_BIT |
 GL_COLOR_BUFFER_BIT);

 camera->setClearColor(osg::Vec4f(0.2f, 0.2f, 0.4f, 1.0f));

 camera->setProjectionMatrixAsPerspective(

 30.0f,(double)traits->width/(double)traits
 ->height,1.0,1000.0);

 g_viewer = new osgViewer::Viewer;

 g_viewer->setCamera(camera.get());

 g_viewer->setSceneData(osgDB::readNodeFile("cessna.osg"));

 g_viewer->setKeyEventSetsDone(0);

 g_viewer->setCameraManipulator(
 new osgGA::TrackballManipulator);

 g_finished = false;

 _beginthread(render, 0, NULL);

 return 0;

}

Interacting with Outside Elements

[258]

7.	 In the case of WM_DESTROY, we have to force exiting the OSG rendering thread
before releasing the window handle. The setDone() method tells OSG to stop all
work and wait for the application to quit. A Sleep() method is good for handling
multiple threads here, because it yields the current time slice to the rendering
thread until it is finished:

case WM_DESTROY:

 g_viewer->setDone(true);

 while (!g_finished) Sleep(10);

 PostQuitMessage(0);

 return 0;

8.	 The routine that begins execution of the extra rendering thread will only do one
thing, that is, it will continue rendering new frames until the viewer is told to stop:

void render(void*)

{

 while (!g_viewer->done())

 g_viewer->frame();

 g_finished = true;

}

9.	 Now start the application. You will see the Cessna model appearing in a new
window. The run() method of osgViewer::Viewer is not used directly, but
a separate rendering thread is used to draw OSG scene graph to the graphics
context of the window. Of course, the WM_TIMER message is also available for
advancing frames continuously, if the time interval is short enough for simulating
an active 3D world:

Chapter 9

[259]

What just happened?
Almost all kinds of operating systems supply functionalities for specifying the
rendering contexts of OpenGL-based applications. Under the Windows systems, WGL
(Windows GL) functions are used to bring related Windows API support into OpenGL,
such as wglCreateContext() and wglMakeCurrent(). Developers should first
create and set up the handle to a GDI-like rendering context, and execute OpenGL
calls only when the current context is enabled. All of the above are encapsulated in
the internal osgViewer::GraphicsWindowWin32 class. Similarly, there are also
GraphicsWindowX11, GraphicsWindowCarbon, and GraphicsWindowCocoa classes
for different operating systems, which liberates OSG programmers from maintaining the
portability of their applications, especially in cross-platform GUI systems like Qt.

In other platform-dependant GUI systems like MFC, the most important step to follow is to
obtain and attach the window handle (HWND) to the traits of the graphic's contexts. This can
be always acquired from CWND objects with the GetSafeHwnd() method. It is also smart to
use a separate thread for rendering frames, if the GUI system permits this.

Interacting with Outside Elements

[260]

Have a go hero – embedding into GUI systems
There is a special graphics context in OSG, named osgViewer::GraphicsWindowEmbedded.
It assumes that the window containing the graphic's context can support OpenGL without
any other operations (like making rendering context current, and so on). In this case, we can
allocate a new embedded graphics window directly and attach it to the camera, as follows:

gw = new osgViewer::GraphicsWindowEmbedded(x,y,width,height);
camera-> setGraphicsContext(gw);

Then we have to draw frames at a certain frequency when the GUI is running, and send
keyboard and mouse events to the event queue of the graphics context all the time, for
example:

gw->getEventQueue()->keyPress('W');

A good GUI for testing the embedded graphic's contexts is the GLUT library, which supports
OpenGL calls directly. Try implementing OSG and GLUT integration with the osgViewer
::GraphicsWindowEmbedded class. The osgviewerGLUT example in the examples
subdirectory can also help a lot.

For your information, OSG now implements integration with GUI systems including Qt, MFC,
wxWidgets, GTK, SDL, GLUT, FLTK, FOX, and Cocoa. You can find all of the implementations in
the examples folder of the OSG source code.

Summary
This chapter taught us how users can interact with the 3D scene using OSG's GUI event
adapters and handlers. Events of different windowing systems under different platforms
are translated into a compatible interface named osgGA::GUIEventAdapter.

We also introduced a common solution for integrating OSG scene graph with a 2D windowing
system. The key element here is to create the graphic's context with the appropriate window
traits, including the size, display settings, and window handle arguments.

In this chapter, we specifically covered:

�� Handling ordinary user events with the osgGA::GUIEventHandler class,
which uses an osgGA::GUIEventAdapter to pass in events, and an
osgGA::GUIActionAdapter to receive further requests (actually, a viewer
object in most cases).

�� The customization and emitting of user-defined GUI events using
osgGA::EventQueue.

Chapter 9

[261]

�� Intersection tests of scene objects with the osgUtil::IntersectionVisitor
visitor, and operators like osgUtil::LineSegmentIntersector.

�� How to set up the traits of the to-be-rendered window using
osg::GraphicsContext::Traits.

�� Embedding the graphic context for rendering scenes into a windowing system,
for example, a Win32 API window handler. More examples can be found in the
examples folder of the source code.

10
Saving and Loading Files

One of the more important concepts in programming is the ability to store
information after the program has terminated. This has many advantages, such
as a small executable size, easy to implement modularity, and the ability of the
program remember different user information.

The osgDB library provides support for reading and writing the scene graph
nodes, images and other objects. It also implements a plugin framework and
file I/O utility classes. It allows various file formats, including the OSG native
formats that wrap up the entire scene graph elements into text or binary files,
to be dynamically loaded, on demand.

In this chapter, we will discuss:

•	 The file I/O mechanism implemented in OSG

•	 A complete list of presently-supported file formats, including models, images,
fonts, and so on

•	 The concept and usage of OSG's pseudo-loaders

•	 How to customize OSG plugin interface and provide support for user-defined
formats

•	 How to create class wrappers for supporting serialized I/O of the OSG native formats

Saving and Loading Files

[264]

Understanding file I/O plugins
We have already learnt a little about the plugin mechanism of reading and writing data files,
in Chapter 2, Compilation and Installation of OpenSceneGraph. With the help of specific
format-managing plugins, OSG can load various models, images, fonts, and even video data
from external files. A plugin here is a separate functionality component that customizes
the supported file formats of an OSG-based application. It is recognized as a shared library
file implementing the necessary reading or writing interface (or both). Different plugins are
always required by user applications to load and construct large and complex scene graphs
without too much programming work.

All file I/O plugins conform to the same naming convention; otherwise they are not
recognizable and can't be used to read files. Take the native .osg file format as an example:
under the Windows system, the plugin library file is osgdb_osg.dll. Under Linux, it is
named osgdb_osg.so. Both have the prefix osgdb_ and the following name usually
represents the file extension.

However, a plugin may support multiple extensions. For instance, the JPEG image format
uses .jpeg and .jpg as the most common file extensions. There are no essential
differences between them, so a unified osgdb_jpeg plugin should be enough to input and
output files with either of these extensions. Fortunately, the osgDB library can support such
kinds of plugins with an internal extension-to-handler map, which will be introduced later.

After the file I/O plugins are prepared and placed at locations at which they can be
referenced, we can read OSG scene nodes or images with the osgDB namespace
functions below:

osg::Node* node = osgDB::readNodeFile("cow.osg");
osg::Image* image = osgDB::readImageFile("Images/lz.rgb");

As we just discussed, OSG will automatically look for plugin library files named osgdb_osg
and osgdb_rgb and read these two files from the hard disk. The required data files should
exist in specified relative or absolute paths, or in the OSG search path defined by the
environment variable OSG_FILE_PATH.

Chapter 10

[265]

Discovery of specified extension
The basic principles of searching and locating a plugin for the handling of a specified file type
can be described in two steps:

Firstly, OSG manages a commonly-used plugin list in the osgDB::Registry class. This class
is designed as a singleton and can be only instantiated and obtained with the instance()
method. The protected plugin list of the osgDB registry can help quickly find and call the
corresponding reading or writing entries of the required format, based on the chain-of-
responsibility design pattern. This means that each plugin object, called a reader-writer in OSG,
will try to process the extension of the input file, and pass it off to the next plugin in the list if
the extension is unrecognizable to that plugin.

In case all prestored reader-writers fail to handle the file extension, OSG will use the
extension as a keyword to find and load a plugin from an external shared module, that is, the
osgdb_<ext> library file. Here, <ext> represents the extension string, but the extension-
to-handler map is also used here to decide the relationship between the extension and the
special plugin library name. For example, we can define the relation of the extension string
and plugin name with the addFileExtensionAlias() method:

// Add alias extensions for specified plugin
osgDB::Registry::instance()->addFileExtensionAlias("jpeg", "jpeg");
osgDB::Registry::instance()->addFileExtensionAlias("jpg", "jpeg");

// Now OSG can read .jpg files with the osgdb_jpeg plugin
osg::Image* image = osgDB::readImageFile("picture.jpg");

Calling these two lines before any other reading or writing operations will automatically link
both *.jpeg and *.jpg files to the osgdb_jpeg library file, which is dynamically loaded
when such types of files are required for use.

Note that we don't have to add such aliases for the JPEG support, because it is already
embedded when the registry object is being initialized. Other OSG predefined plugins
that support multiple file formats will be listed in the table in the following section.

Saving and Loading Files

[266]

Supported file formats
Here, we would like to list all of the supported plugins in OSG 3.0. Some of these require
third-party dependencies, which are shown in the Notes column. The Interface property
identifies whether a plugin supports the reading (R) or writing (W) interface. The ellipsis in
the Extensions column signals whether the plugin supports additional file formats. More
details can also be found in the src/osgPlugins directory of the source code.

Plugin name Extensions Interface Requirements

osgdb_3dc

(3DC Point cloud)
*.3dc, *.asc R/W -

osgdb_3ds

(Autodesk 3DS)

*.3ds R/W -

osgdb_ac

(AC3D)

*.ac R/W -

osgdb_bmp

(Windows Bitmap)

*.bmp R/W -

osgdb_bsp

(Valve BSP)

*.bsp R -

osgdb_bvh

(Biovision Motion)

*.bvh R -

osgdb_curl

(Web data with URL)

*.curl

(pseudo-loader)
R Needs libcurl (http://

curl.haxx.se)

osgdb_dae

(COLLADA DOM)

*.dae R/W Needs COLLADA (http://
collada.org)

osgdb_dds

(DirectDraw Surface)

*.dds R/W -

osgdb_dicom

(NEMA DICOM)
*.dicom,

*.dcm,

…

R Needs DCMTK (http://
dicom.offis.de/dcmtk)
or ITK (http://www.itk.
org)

osgdb_directshow

(DirectShow)
*.avi,

*.wmv,

…

R Needs DirectX SDK (http://
msdn.microsoft.com/
en-us/directx)

osgdb_dot

(DOT graph)

*.dot W Needs Graphviz (http://
www.graphviz.org/)

osgdb_dw

(Designer Workbench)

*.dw R -

Chapter 10

[267]

Plugin name Extensions Interface Requirements

osgdb_dxf

(Autodesk DXF)

*.dxf R/W -

osgdb_exr

(ILM OpenEXR)

*.exr R Needs OpenEXR (http://
www.openexr.com)

osgdb_fbx

(Autodesk FBX)

*.fbx R/W Needs Autodesk FBX SDK
(http://www.autodesk.
com/fbx)

osgdb_ffmpeg

(FFmpeg)

*.ffmpeg

(pseudo-loader)
R Needs FFmpeg (http://

www.ffmpeg.org)

osgdb_freetype

(FreeType)
*.ttf,
*.ttc,

…

R Needs FreeType (http://
www.freetype.org)

osgdb_gdal

 (GDAL)

*.gdal

(pseudo-loader)
R Needs GDAL (http://www.

gdal.org)

osgdb_geo

(Carbon Graphics)
*.gem, *.geo R -

osgdb_gecko

(Mozilla Gecko)

*.gecko R Needs XULRunner (https://
developer.mozilla.
org/en/XULRunner)

osgdb_gif

(Graphics Interchange
format)

*.gif R Needs libungif (http://
sourceforge.net/
projects/libungif)

osgdb_hdr

 (Radiance HDR)

*.hdr R/W -

osgdb_imageio

(Mac OS X ImageIO)
*.bmp,

*.jpg,

…

R/W Available only under Mac OS X

osgdb_iv

(Inventor)
*.iv, *.wrl R/W Needs OpenInventor

(http://oss.sgi.com/
projects/inventor) or
Coin3D (www.coin3d.org)

osgdb_ive

(OSG binary format,
deprecated)

*.ive R/W -

osgdb_jp2

(JPEG 2000)
*.jp2, *.jpc R/W Needs JasPer (http://www.

ece.uvic.ca/~mdadams/
jasper)

Saving and Loading Files

[268]

Plugin name Extensions Interface Requirements

osgdb_jpeg

(JPEG)
*.jpeg, *.jpg R/W Needs libjpeg (http://www.

ijg.org)

osgdb_lwo

(Lightwave 3D Object)
*.lwo R -

osgdb_lws

(Lightwave 3D Scene)

*.lws R -

osgdb_md2

 (Quake2 models)

*.md2 R -

osgdb_mdl

(Valve MDL)

*.mdl R -

osgdb_obj

(Wavefront OBJ)

*.obj R/W -

osgdb_ogr

 (OGR)

*.ogr

(pseudo-loader)

R Needs OGR (http://www.
gdal.org/ogr)

osgdb_openflight

(OpenFlight)

*.flt R/W -

osgdb_osg

(OSG extendable
format)

*.osg, *.osgt,
*.osgb, *.osgx

R/W -

osgdb_p3d

(Present3D)

*.p3d R -

osgdb_pdf

(Acrobat PDF)

*.pdf R Needs libpoppler (http://
poppler.freedesktop.
org)

osgdb_pfb

(Performer)
*.pfb,

*.pfs,

…

R Needs OpenPerformer
(http://oss.sgi.com/
projects/performer)

osgdb_pic

(PC-Paint)

*.pic R -

osgdb_ply

(Stanford Triangle
Format)

*.ply R -

osgdb_png

 (Portable Network
Graphics)

*.png R/W Needs libpng (http://www.
libpng.org/pub/png)

Chapter 10

[269]

Plugin name Extensions Interface Requirements

osgdb_pnm

(Netpbm)

*.pnm R/W -

osgdb_pov

 (POV-Ray)

*.pov W -

osgdb_qfont

(Qt font engine)

*.qfont

(pseudo-loader)
R Needs Qt (http://

qt.nokia.com)

osgdb_QTKit

(QTKit media)
*.mov,

*.mpg,

…

R Available only under Mac OS
X, needs the QTKit/CoreVideo
framework

osgdb_quicktime

 (Apple Quicktime)
*.mov,

*.avi,

…

R Needs Quicktime SDK
(http://developer.
apple.com/quicktime/
download)

osgdb_rgb

(SGI Images)
*.rgb,

*.rgba,

…

R/W -

osgdb_rot

(Rotation)

*.rot

(pseudo-loader)
R Needs Euler angles as

parameters

osgdb_scale

(Scale)

*.scale

(pseudo-loader)
R Needs scale values along axes

as parameters

osgdb_shp

(ESRI Shapefile)

*.shp R -

osgdb_stl

(Stereolithography)
*.stl, *.sta R/W -

osgdb_svg

(Scalar Vector
Graphics)

*.svg R Needs librsvg (http://
librsvg.sourceforge.
net)

osgdb_tga

(Truevision Targa)

*.tga R/W -

osgdb_tiff

(Tagged Image File)
*.tiff; *.tif R/W Needs libtiff (http://www.

libtiff.org)

osgdb_trans

(Translation)

*.trans

(pseudo-loader)
R Needs translation values along

axes as parameters

osgdb_txf

(Textured Font)

*.txf R -

osgdb_txp

(TerraPage)

*.txp R -

Saving and Loading Files

[270]

Plugin name Extensions Interface Requirements

osgdb_vnc

(VNC Client)

*.vnc R Needs libVNCClient
(http://libvncserver.
sourceforge.net)

osgdb_vrml

(VRML)

*.wrl R Needs OpenVRML (http://
openvrml.org)

osgdb_vtf

(Valve Texture)

*.vtf R/W -

osgdb_x

(Microsoft DirectX)

*.x R -

osgdb_xine

(Xine)

*.xine

(pseudo-loader)

R Needs Xine (http://www.
xine-project.org)

Details about configuring third-party dependencies that have been listed for certain plugins
can be found in the Configuring third-party dependencies section of this chapter. Besides,
there is another important project called Zlib (http://www.zlib.net), which is used as
an optional part of the osgDB library and the osgdb_ive plugin to enable the compression
of OSG native file formats, and is also required by some third-party projects referred into the
Notes property.

The pseudo-loader
In the previous table, some extensions are marked as pseudo-loader. This means they are
not actually file extensions, but just add a suffix to the end of the real filename to indicate
that the file should be read by the specified plugin. For example:

osgviewer worldmap.shp.ogr

The real file on the disk is worldmap.shp, which may store the entire world map in ESRI's
shapefile format. The suffix .ogr forces osgdb_ogr to read the .shp file and construct
the scene graph; otherwise osgdb_shp will be automatically found and used by default.

Another good example is the osgdb_ffmpeg plugin. The FFmpeg library supports over
100 different codecs. To read any of these, we can simply add a suffix .ffmpeg behind the
filename and leave the work to FFmpeg itself.

In addition, we have already seen some other pseudo-loaders in the following form:

node = osgDB::readNodeFile("cessna.osg.0,0,90.rot");

The string 0,0,90 between the real filename and the suffix is the parameter. Some
pseudo-loaders need specific parameters to make them work properly.

Chapter 10

[271]

Time for action – reading files from the Internet
To understand the use of a pseudo-loader, we will try to read a model from the Internet.
The osgviewer utility is enough to perform this example, but you can always make use
of the osgDB::readNodeFile() function to achieve the same result in your OSG-based
applications.

1.	 The model file already exists at the following URL: http://www.
openscenegraph.org/data/earth_bayarea/earth.ive.

2.	 Before trying to read files from the Internet or intranet, we'd better have a check
of the OSG plugin directory to see if there is an osgdb_curl plugin. It should exist
if you are installing OSG from the installer described in Chapter 2, Compilation
and Installation of OpenSceneGraph. But for developers who build OSG from
the source code, it may be ignored during the CMake configuration. In this latter
case, please refer to the next section and obtain this important plugin first.

3.	 Start the osgviewer utility with the following argument:

osgviewer http://www.openscenegraph.org/data/earth_bayarea/
earth.ive.curl

4.	 The .curl suffix tells OSG to load the specified file using the osgdb_curl plugin.
The redundancy will be automatically removed by the reader-writer interface.

5.	 Now you will see an earth model on the screen. Rotate and scale the view matrix
using your camera manipulator and try to find your home on the earth:

Saving and Loading Files

[272]

What just happened?
Although the whole earth model is rough for navigation, you can still find that some parts of
it can become more detailed if you zoom in. The model is actually constructed from a tree
of osg::PagedLOD nodes, each of which is stored in a separate file on the remote site, and
manages a piece of terrain geometry of different level. This technique, called the quad-tree,
is described in detail in the last chapter of this book.

The osgdb_curl plugin helps a lot when parsing and loading files from specified URLs. It
depends upon a third-party library named libcurl, which provides an easy-to-use client-side
URL transferring interface. The pseudo-loader mechanism here can quickly decide whether
the required filename should be directly sent to osgdb_curl; otherwise OSG will check if
the filename contains a remote address first, and make the final decision.

Pop quiz – getting rid of pseudo-loaders
Somebody may rename a pseudo-loader, for instance, the osgdb_ffmpeg library which can
read .avi, .mpg, and many other media formats, to other plugin names like osgdb_avi.
After that, the .ffmpeg suffix will become invalid, and only .avi files can be read directly
using the osgDB::readNodeFile() function. Now, can you figure out the reason why the
pseudo-loader lost its ability, and how to make the new osgdb_avi plugin still available for
.mpg and other formats that were originally supported?

Configuring third-party dependencies
Have you ever built OSG from source code with your native compiler and the CMake
system introduced in Chapter 2, Compilation and Installation of OpenSceneGraph? Then
you may find that there are lots of mis-compiled components in the self-made OSG
libraries, when compared with the installer provided in the same chapter. For example:

osgviewer --image picture.jpg

The image picture.jpg may not be displayed even though it exists in the proper search
path. If you encounter this situation, look into the plugin directory, and you may find
that the osgdb_jpg or osgdb_jpeg library is missed. That is simply because we din't
configure the options for an important third-party library, libjpeg, which is required by
the JPEG reader-writer.

OSG doesn't load most file formats by itself, but delegates the loading of the data to
third-party dependencies. Especially when handling various kinds of model, image, and
miscellaneous files, a huge number of excellently-written open source projects can be used
by different plugins as third-party dependencies. This effective methodology can share the
ideas of developers all over the world during the design and implementation phases of the
OSG engine, and support a continuous, stable, and team-style design.

Chapter 10

[273]

Time for action – adding libcurl support for OSG
In this section, we will build the osgdb_curl support for compiling and linking OSG binaries
from the source code. Without the necessary third-party library libcurl, the osgdb_curl
plugin will be ignored in the entire solution and thus will not be generated. In Chapter 2,
Compilation and Installation of OpenSceneGraph, we did not introduce the steps to add libcurl
to the CMake configuration options. But with the CMake cache files and intermediate files kept
in the build directory, we can quickly restart the configuration and rebuild our OSG libraries and
development files. The Visual Studio solution file will be automatically updated to include the
new osgdb_curl project.

1.	 Download the libcurl prebuilt package from the following website: http://curl.
haxx.se/download.html. Visual Studio users should choose a download link in
the section Win32 – MSVC and uncompress the ZIP file into an independent folder.

2.	 The folder includes the most important development files for use: the header files
in the include sub-directory, the static-link file libcurl.lib, and the dynamic
library libcurl.dll. Their locations will be specified to the CMake system:

3.	 Now it's time for us to restart the CMake GUI environment. Instead of loading the
CMakeLists.txt file in the source directory, we can drag the CMakeCache.
txt from the out-of-source build directory and into the main window (you
didn't remove the whole build directory, did you?) to quickly apply the
previous settings. Change to Grouped View and expand the group CURL.

Saving and Loading Files

[274]

4.	 Set the CURL_INCLUDE_DIR to the include directory in the uncompressed
folder. It will be used as the additional dependency directories of the generated
Visual Studio project. CURL_LIBRARY and CURL_LIBRARY_DEBUG can both be
set to the libcurl.lib file, which is automatically added to the dependency
library list of the same project. Our prebuilt libcurl has a dynamic library file
named libcurl.dll, so the option CURL_IS_STATIC should be cancelled:

5.	 That is all! Click on Configure and then Generate, open the updated
OpenSceneGraph.sln, and see if there are any changes. You will soon find
that a new Plugins curl project has appeared among the plugin projects.

6.	 Repeat the steps of compiling and linking the OSG libraries and plugins. Then
build the ALL_BUILD project and then INSTALL. The osgdb_curl library
will be created during the entire process.

7.	 It is possible to view models and images from the Internet, now. Let's go back to the
last example and browse the earth model with our generated osgdb_curl plugin.

Chapter 10

[275]

What just happened?
Have a look at the CMake options used while configuring the CURL group; you will find
a number of option groups that indicate different third-party dependencies, like JPEG,
GIFLIB, TIFF, and ZLIB. Some groups will only appear when the necessary precursor
groups are set up, for instance, the PNG group. Most of them require a <PROJ>_INCLUDE_
DIR option to set the include directory, and the <PROJ>_LIBRARY and <PROJ>_LIBRARY_
DEBUG options to locate the static-link libraries (both release and debug). Here, the name
<PROJ> will vary according to the group name in CMake.

Under Windows, these options are then applied to the Visual Studio project properties for
correctly compiling and linking it. Under a UNIX system, these can affect the Makefile.

To start from the cmake command-line and configure these third-party dependencies, you
can add each option with a –D prefix as follows:

cmake -DCMAKE_BUILD_TYPE=Release

–DCURL_INCLUDE_DIR=/usr/local/include

-DCURL_LIBRARY=/usr/local/lib/libcurl.so …

You may worry about obtaining so many third-party projects for building different kinds of
OSG plugins. It is really heavy but interesting work to compile each of them from the source
code and learn how to live in the open source world. But for developers who are eager to
taste the most common OSG file I/O plugins (often including osgdb_jpeg, osgdb_gif,
osgdb_tiff, and osgdb_png, for which the zlib library is required as the prerequisite),
the following website may provide some useful prebuilt libraries and development files:
http://gnuwin32.sourceforge.net/packages.html.

The following link may also help if you are familiar with SVN tools and the SourceForge
website (http://sourceforge.net/): http://osgtoy.svn.sourceforge.net/
viewvc/osgtoy/3rdParty/.

In addition, OSG also provides a CMake option ACTUAL_3RDPARTY_DIR to avoid manually
setting too many include, dir, and library options. Developers may first create an empty
directory called 3rdparty, as well as three subdirectories named include, lib, and
bin. Then we have to put all of the headers of third-party dependencies into include,
all static-link libraries (*.lib) into lib, and all dynamic libraries (*.dll) into the bin
subfolder. After that, open Ungrouped entries, set ACTUAL_3RDPARTY_DIR to the
newly-created 3rdparty directory, click on Configure, and see if OSG could automatically
find some of the most common dependencies' include paths and libraries (including
FreeType, gdal, glut, libcurl, libjpeg, libpng, libtiff, libungif, and zlib).

Saving and Loading Files

[276]

Have a go hero – adding FreeType support for OSG
FreeType is used by the osgText library to enable the loading and rendering of fonts for 2D
and 3D texts. It is highly recommended that this is built for the osgdb_freetype plugin.
Otherwise the osgText functionalities will not work properly with multi-languages and True
Type fonts.

OSG requires a FreeType version higher than 2.35. The source code can be downloaded
from: http://savannah.nongnu.org/download/freetype/.

The prebuilts can be found at http://gnuwin32.sourceforge.net/packages/
freetype.htm.

The FreeType group in the CMake GUI window is a little different from the others. It needs
two extra options: FREETYPE_INCLUDE_DIR_freetype2 and FREETYPE_INCLUDE_DIR_
ft2build. The first one points to the parent path of the freetype subdirectory, and the
second points to the location of ft2build.h. All of these should be configured correctly to
make sure that osgdb_freetype can be created without errors. We will introduce its usage
when creating scene texts in the next chapter.

Writing your own plugins
Extending the virtual reader-writer interface, OSG allows developers to add
additional customized file formats as plugins. The virtual interface is defined by the
osgDB::ReaderWriter class. It has several important virtual methods to be used or
re-implemented to achieve reading and writing functionalities.

Virtual method Description

supportsExtension() This has two string arguments: the extension name and
the description. It is always called in the constructor of the
reader-writer subclasses to indicate supported file extensions.

acceptsExtension() This returns true if a specified extension argument is
supported by the reader-writer.

fileExists() This is used to determine if a file exists. It returns true if the
input filename and options indicate that a local or remote file
is accessible.

readNode() This accepts a filename and an osgDB::Option object as
parameters. Developers have to override it in order to read a
file from the disk with user options. The options are parsed
and used by specific plugin implementations.

Chapter 10

[277]

Virtual method Description

writeNode() This has an extra osg::Node pointer besides the filename
and options arguments. It can be re-implemented to write the
scene graph to a file on the disk on the contrary.

readImage() This reads image data from disk files. It is not necessary to
override this method unless you are developing image file
reader plugins.

writeImage() This writes image data to disk. It is not necessary to override this
method unless you are developing image file writer plugins.

The implementation of the readNode() method can be described as follows:

osgDB::ReaderWriter::ReadResult readNode(
 const std::string& file,
 const osgDB::Options* options) const
{
 // Check if the file extension is recognizable and file exists
 bool recognizableExtension = …;
 bool fileExists = …;
 if (!recognizableExtension) return ReadResult::FILE_NOT_HANDLED;
 if (!fileExists) return ReadResult::FILE_NOT_FOUND;
 …
 // Construct the scene graph according to format specification
 osg::Node* root = …;
 …
 // In case there are fatal errors during the process,
 // return an invalid message; otherwise return the root node
 bool errorInParsing = …;
 if (!errorInParsing) return ReadResult::ERROR_IN_READING_FILE;
 return root;
}

It is a little surprising that an osgDB::ReaderWriter::ReadResult object is returned
by the readNode() method, and not an expected node pointer. This read result object
can be used as a container of a node, an image, a status enumeration (like FILE_NOT_
FOUND), some other special object, or even an error message string. It has multiple implicit
constructors to achieve such a purpose. That is why we return the root node directly at the
end of the above example code.

Another useful class here is osgDB::Options. This can set or get a general option string
with the setOptionString() and getOptionString() methods, which are passed
into different plugins to control their operations. Passing the string as an argument of the
constructor is also OK.

Saving and Loading Files

[278]

Developers may design their plugin features and behaviors according to different option
strings. Note that the option object is set and passed in the readNodeFile() function, so
the plugin interface may always receive a NULL pointer, which means that there is no input
options. This is actually the default setting of readNodeFile():

osg::Node* node1 = osgDB::readNodeFile("cow.osg"); // Option is NULL!
osg::Node* node2 = osgDB::readNodeFile("cow.osg",
 new osgDB::Options(string));

Handling the data stream
The osgDB::ReaderWriter base class involves a set of stream data handling methods,
which can also be overridden by user-defined plugins. The only difference is that the input
filename argument is replaced by a std::istream& or std::ostream& variable. Making
use of the file stream is always preferred rather than directly operating on physical files. To
perform stream operations when reading a file, we may design the reader-writer interface
like this:

osgDB::ReaderWriter::ReadResult readNode(
 const std::string& file,
 const osgDB::Options* options) const
{
 …
 osgDB::ifstream stream(file.c_str(), std::ios::binary);
 if (!stream) return ReadResult::ERROR_IN_READING_FILE;
 return readNode(stream, options);
}

osgDB::ReaderWriter::ReadResult readNode(
 std::istream& stream,
 const osgDB::Options* options) const
{
 // Construct the scene graph according to format specification
 osg::Node* root = …;
 return root;
}

We can then use osgDB::readNodeFile() to load and parse the file as usual, but it
actually creates and handles stream data in the reader-writer implementation. The problem
here is how to directly perform operations on some existing streams, for instance, a string
stream in a data buffer or transferred over the socket? As we have seen already, OSG
doesn't define a direct user interface, like the famous osgDB::readNodeFile() and
osgDB::readImageFile(), for analyzing streams.

Chapter 10

[279]

A solution is to retrieve a specific reader-writer and use it to parse the current stream in the
buffer, using the getReaderWriterForExtension() method of osgDB::Registry.
The obtained reader-writer must have implemented the stream operating interface, and
the developer himself must ensure that the stream data format corresponds to the parser's
specification definition. This means that a 3Ds reader-writer must only be used to read a 3Ds
format stream; otherwise a not-so-well-written plugin may even cause a system crash when
trying to explain unpredictable data.

Example code for reading stream data with the osgdb_osg plugin is as follows:

osgDB::ReaderWriter* rw =
 osgDB::Registry::instance()->getReaderWriterForExtension("osg");
if (rw)
{
 osgDB::ReaderWriter::ReadResult rr = reader->readNode(stream);
 if (rr.success())
 node = rr.takeNode();
}

The node variable can be used as the loaded scene graph later. The success() and
takeNode() methods read status information and the stored osg::Node pointer from
the read result.

Time for action – designing and parsing a new file format
We will design a new file format and create the I/O plugin for it in this example. Its format
specification should be simple enough so that we won't take much time in explaining the
usage and parsing it to a scene graph.

The new format will only focus on quickly creating triangle strips—that is, a series of
connected triangles with N+2 shared vertices, where N is the number of triangles to be
drawn. The file is in text format, and has one extension, .tri, which means triangle file
format. The total number of vertices will always be written at the first line of every .tri
file. The following lines provide the vertices data fields. Each vertex is stored as three float
values in a row. An example of the content of the new format is as follows:

8
0 0 0
1 0 0
0 0 1
1 0 1
0 0 2
1 0 2
0 0 3
1 0 3

Saving and Loading Files

[280]

Save these values to an example.tri file, which will be used later. Now it's time to start
implementing our reader-writer interface.

1.	 Include the necessary headers:

#include <osg/Geometry>

#include <osg/Geode>

#include <osgDB/FileNameUtils>

#include <osgDB/FileUtils>

#include <osgDB/Registry>

#include <osgUtil/SmoothingVisitor>

2.	 We would like to implement the reading methods of the new format. So two
readNode() methods should be overridden here, one for reading data from
files and the other for reading from streams:

class ReaderWriterTRI : public osgDB::ReaderWriter

{

public:

 ReaderWriterTRI();

 virtual ReadResult readNode(

 const std::string&, const osgDB::ReaderWriter::Options*)
const;

 virtual ReadResult readNode(

 std::istream&, const osgDB::ReaderWriter::Options*) const;

};

3.	 In the constructor, we have to announce that the extension .tri is supported
by this plugin. Support for extensions can be added here with the same
supportExtension() method:

ReaderWriterTRI::ReaderWriterTRI()

{ supportsExtension("tri", "Triangle strip points"); }

4.	 Now we are going to implement the readNode() method for reading files from the
disk. It will check if the input extension and filename are available, and try to redirect
the content of the file into the std::fstream object for further operations:

ReaderWriterTRI::ReadResult ReaderWriterTRI::readNode(

 const std::string&, const osgDB::ReaderWriter::Options*)
const

{

 std::string ext = osgDB::getLowerCaseFileExtension(file);

 if (!acceptsExtension(ext)) return
 ReadResult::FILE_NOT_HANDLED;

Chapter 10

[281]

 std::string fileName = osgDB::findDataFile(file, options);

 if (fileName.empty()) return ReadResult::FILE_NOT_FOUND;

 std::ifstream stream(fileName.c_str(), std::ios::in);

 if(!stream) return ReadResult::ERROR_IN_READING_FILE;

 return readNode(stream, options);

}

5.	 This is the core implementation of the new file format. All that we need to do is to
read the total number and every vertex from the data stream, and push them into
the osg::Vec3Array variable. A new osg::Geometry object is then created to
include the vertex array and related primitive object. Finally, we generate the normals
of the geometry and return a new osg::Geode containing it as the reading result:

ReaderWriterTRI::ReadResult ReaderWriterTRI::readNode(

 std::istream&, const osgDB::ReaderWriter::Options*) const

{

 unsigned int index = 0, numPoints = 0;

 stream >> numPoints;

 osg::ref_ptr<osg::Vec3Array> va = new osg::Vec3Array;

 while (index<numPoints && !stream.eof() &&

 !(stream.rdstate()&std::istream::failbit))

 {

 osg::Vec3 point;

 stream >> point.x() >> point.y() >> point.z();

 va->push_back(point);

 index++;

 }

 osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;

 geom->setVertexArray(va.get());

 geom->addPrimitiveSet(

 new osg::DrawArrays(GL_TRIANGLE_STRIP, 0, numPoints));

 osgUtil::SmoothingVisitor smoother;

 smoother.smooth(*geom);

 osg::ref_ptr<osg::Geode> geode = new osg::Geode;

 geode->addDrawable(geom.get());

 return geode.release();

}

Saving and Loading Files

[282]

6.	 Register the reader-writer class with the following macro. This must be done for
every OSG plugin at the end of the source file. The first parameter indicates
the plugin library name (without the osgdb_ prefix), and the second one
provides the class name:

REGISTER_OSGPLUGIN(tri, ReaderWriterTRI)

7.	 Note that the output target name should be osgdb_tri this time, and must be a
shared library file instead of an executable. So the CMake script for generating
our project should use the macro add_library() to replace add_executable(),
such as:

add_library(osgdb_tri SHARED readerwriter.cpp)

8.	 Now, start a console and run osgviewer with the example.tri as the
input filename:

	 # osgviewer example.tri

9.	 The result clearly shows whether the vertices are read out correctly and form the
geometry as triangular strips:

Chapter 10

[283]

What just happened?
A few utility functions are used here to judge the validity of the input filename in the
readNode() method. The osgDB::getLowerCaseFileExtension() obtains the file
extension, which is checked by acceptsExtension() of the osgDB::ReaderWriter
base class. The osgDB::findDataFile() function then looks for the file in possible paths
(current and system paths). It will return the full path of the first valid file found, or an empty
string if nothing is found.

Another important point to mention is the macro REGISTER_OSGPLUGIN. This
actually defines a global variable that registers the user-defined reader-writer to the
osgDB::Registry instance in the constructor. When the dynamic library is first loaded,
the global variable is automatically allocated, and the reader-writer can be found in order
to handle the input file or stream then.

Have a go hero – finishing the writing interface of the plugin
We have already demonstrated the reading operation of the .tri format, by implementing
the two virtual readNode() methods. Now it's your turn to re-implement the
writeNode() methods and finish the reader-writer interface. Of course, a plugin can work
with only the reading functionality or the writing functionality, but why not make things
perfect if we have the chance?

A customized node visitor may be used to find all osg::Geode nodes and
geometries of a scene graph. You can improve the format specification to
support saving and loading multiple triangle strips from .tri files, if necessary.

Serializing OSG native scenes
The OSG native formats, implemented by the osgdb_ive and osgdb_osg plugins, are used
for encapsulating OSG native classes and converting them to representations that can be
written to a data stream. This makes it possible to save the scene graph to a disk file and
read it back without missing any information.

For example, the Cessna model is stored in a file named cessna.osg. It is actually made up
of an osg::Group root node, an osg::Geode child node, and an osg::Geometry object
with specific materials and some other rendering attributes. In a text file, it may be defined
by the following lines:

osg::Group {
 Name "cessna.osg"
 DataVariance STATIC

Saving and Loading Files

[284]

 UpdateCallback FALSE
 …
 Children 1 {
 osg::Geode {
 …
 Drawables 1 {
 osg::Geometry {
 …
 }
 }
 }
 }
}

Every scene object (node, drawable, and so on) is defined by a class name and begin and end
brackets. The object's properties, including properties of its parent classes, are written into a
sequence of bits for storing in files and buffers. For example, the Name and DataVariance
fields are defined in the osg::Object base class, UpdateCallback is defined in
osg::Node, and Children is the only native property of osg::Group. They are all saved
for the Cessna's root node to record all of the information required for a complete model.

These properties can be soon reread to create a semantically-identical clone of the original
Cessna scene graph, according to the same sequence of bits. The process of serializing
(writing to a series of data) and deserializing (resurrecting the series of data) the scene graph
is called I/O serialization. Each property that can be saved into and reread from a sequence
is called a serializable object, or a serializer for short.

Creating serializers
The OSG native formats, including .osg, .osgb, .osgt, and .osgx, are extensible for saving
to and loading from files and data streams. With the exception of the deprecated .ive
format, they all need special helper classes called wrappers, which wrap up primitive values
that offer the utility methods and properties of the API's classes. When new methods and
classes are introduced into the OSG core libraries, there should be corresponding wrappers
for them in order to make sure that any new features can be immediately supported in the
native format files. The theory of serializing is extremely useful in this situation, enabling
simple and common input/output interfaces to be utilized.

The .osg format has been widely used in the OSG community for many years. Almost all of
the models referred to in this book are written in this format. It supports only ASCII formats
and uses a slightly complex interface for implementing wrappers.

Chapter 10

[285]

But there is another "second generation" format in development, which is well serialized,
easy-to-extend, and even cross-format. ASCII format (.osgt), binary format (.osgb), and
XML style format (.osgx) files are all supported with one set of core class wrappers, in
each of which a series of serializers are used to bind reading and writing members. In the
following example, we will discuss how to write wrappers for user-defined classes in your
own applications or dynamic libraries. The to-be-wrapped class must be derived from
osg::Object, and must have a namespace for the wrapper manager in osgDB to use.

All OSG predefined wrappers are stored in the src/osgWrappers directory of the source
code. They are always a good reference for user-customized designing and programming.

Time for action – creating serializers for user-defined classes
To create serializers for a class and make it accessible from OSG native formats, there are
some preconditions: firstly, the class must be derived from osg::Object, either directly
or indirectly; secondly, the class must be declared in a namespace, and uses META_Object
to define the correct namespace and class names; finally and most importantly, the class
must have at least a getter and a setter method for each member property, which makes it
serializable, that is, it can be stored to OSG native scene files and deserialized to a cloned
scene object at any time.

1.	 Include the necessary headers:

#include <osg/Node>

#include <osgDB/ObjectWrapper>

#include <osgDB/Registry>

#include <osgDB/ReadFile>

#include <osgDB/WriteFile>

#include <iostream>

2.	 We define the testNS::ExampleNode class to be serialized. It is easy to
understand and will do nothing except record an unsigned integer number,
_exampleID. You will easily find that the setter and getter methods are defined in
strict naming conventions (the same string after the set or get prefix, the same
input and return value type, and a constant keyword to the getter method):

namespace testNS {

class ExampleNode : public osg::Node

{

public:

 ExampleNode() : osg::Node(), _exampleID(0) {}

 ExampleNode(const ExampleNode& copy,

Saving and Loading Files

[286]

 const osg::CopyOp& copyop=osg::CopyOp::SHALLOW_
COPY)

 : osg::Node(copy, copyop), _exampleID(copy._exampleID) {}

 META_Node(testNS, ExampleNode)

 void setExampleID(unsigned int id) { _exampleID = id; }

 unsigned int getExampleID() const { return _exampleID; }

protected:

 unsigned int _exampleID;

};

}

3.	 The REGISTER_OBJECT_WRAPPER macro is used to define a wrapper class. It has
four arguments: the unique wrapper name, the prototype, the class name, and the
inheritance relations in the form of a string. The only serializer object to be added is
the _exampleID property. Its shared name (shared by the setter and getter)
is ExampleID, and the default value is 0:

REGISTER_OBJECT_WRAPPER(ExampleNode_Wrapper,

 new testNS::ExampleNode,

 testNS::ExampleNode,

 "osg::Object osg::Node
 testNS::ExampleNode")

{

 ADD_UINT_SERIALIZER(ExampleID, 0);

}

4.	 Now we enter the main entry. We hope this tiny application can demonstrate both
the writing and reading operations. When the -w argument is specified, a newly-
allocated node is saved to a .osgt file (OSG native ASCII format); otherwise the
saved file will be loaded and the _exampleID will be printed on the screen:

osg::ArgumentParser arguments(&argc, argv);

unsigned int writingValue = 0;

arguments.read("-w", writingValue);

5.	 Write the ExampleNode node to the examplenode.osgt file, if there
is a valid value that can be set with the setExampleID() method:

if (writingValue!=0)
{
 osg::ref_ptr<testNS::ExampleNode> node = new
testNS::ExampleNode;
 node->setExampleID(writingValue);
 osgDB::writeNodeFile(*node, "examplenode.osgt");
}

Chapter 10

[287]

6.	 Read back the node from the same file and print the written value with
getExampleID():

else

{

 testNS::ExampleNode* node = dynamic_
cast<testNS::ExampleNode*>(

 osgDB::readNodeFile("examplenode.osgt"));

 if (node!=NULL)

 {

 std::cout << "Example ID: " << node->getExampleID()

 << std::endl;

 }

}

7.	 We will first set a _exampleID value and write the scene graph to the
.osgt file, assuming the executable name is MyProject.exe:

	 # MyProject.exe -w 20

8.	 A file named examplenode.osgt will be created in current path. Now
let's read it back to the memory and print the stored _exampleID:

	 # MyProject.exe

9.	 It simply shows the value we just inputted. It is certainly obtained when loading
the file on the disk and reconstructing the clone of the previous scene graph:

What just happened?
Open the examplenode.osgt file with any text editors. It may contain the following lines:

testNS::ExampleNode {
 UniqueID 1
 ExampleID 20
}

The namespace and class names are leading a block of properties, including the ExampleID
field which saves our input value. OSG will gain the namespace and class names and look for
appropriate wrapper object that is already registered in the system memory. The wrapper, if
found, will create the ExampleNode instance from the prototype, and then traverse every
superclass in the inheritance relations string to read out all of the properties (properties with
default values will not be saved to or read from ASCII files).

Saving and Loading Files

[288]

The REGISTER_OBJECT_WRAPPER macro will define the prototype and inheritance relations
for a specified class. Similar to REGISTER_OSGPLUGIN, it is actually a global variable,
which registers the wrapper to the OSG registry object. When a dynamic library containing
these wrappers is loaded, or the global variable is allocated in the executable segment of
the application, all of the wrappers will be immediately ready-to-use for the native .osgt,
.osgb, and .osgx formats.

Pop quiz – understanding the inheritance relations
As we have implemented it, the ExampleNode class is derived from osg::Node. According
to the inheritance relations, it must record all changed properties in its super classes and
itself. But what will happen if we remove the string osg::Node from the inheritance
relations string? Will the wrapper fail or lose its effectiveness? Or it will just miss some
information and still work in most cases? Do you have any good ideas or test code to verify
your answer?

Have a go hero – adding more serializers
Obviously, the ADD_UINT_SERIALIZER() macro is used to call class methods to set or get
an unsigned integer property. In fact, there are some more predefined serializers, including
ADD_BOOL_SERIALIZER(), ADD_FLOAT_SERIALIZER(), ADD_VEC3_SERIALIZER(),
and so on. To define enumeration properties, the BEGIN_ENUM_SERIALIZER(),
ADD_ENUM_VALUE(), and END_ENUM_SERIALIZER() macros should be used to form a
complete serializer. There is also an ADD_USER_SERIALIZER() macro that is used to design
user-defined serializers. Any source files in the src/osgWrappers/serializers should
be useful to learn about them, and the following link can also be used as a quick reference
document: http://www.openscenegraph.org/projects/osg/wiki/Support/
KnowledgeBase/SerializationSupport.

Now, let's try adding some more properties to the ExampleNode class, as well as the
corresponding setter and getter methods. Could you implement different serializers for
additional properties and make the class always serializable to OSG native formats?

Chapter 10

[289]

Summary
In this chapter, we mainly discussed about the file I/O mechanism, including the use of
plugins and the chain-of-responsibility design pattern in OSG. The osgDB::Registry is the
singleton class storing all of the reader-writers and wrappers which are linked in at runtime
for reading native and non-native file formats. By the end of this chapter, we were able to
understand how OSG plugins work, and how to implement a new plugin reading and writing
interface with user-defined subclasses of the osgDB::ReaderWriter base class.

In this chapter, we have learnt:

�� How to load files of a specified extension, and searching for a specific plugin in the
table provided

�� How to understand the pseudo-loaders, and how to load files from the Internet,
using the osgdb_curl plugin

�� Re-configuring the CMake build system to set third-party dependency options for
OSG plugins, which will enable related file formats to be readable or writable

�� A basic way to construct the native compiling tool-chain of OSG and third-party
dependencies

�� How to implement customized reader-writer interfaces from the
osgDB::ReaderWriter base class

�� How to design serializable classes for OSG native formats

11
Developing Visual Components

In the past 10 chapters, we have introduced the history and installation of OSG,
and the concepts and tutorials of geometries, scene graph nodes, rendering
states, cameras, animations, interactions and the file I/O mechanism. However,
there are still many aspects of a complete 3D rendering API, including text
display, particles, shadows, special effects, volume rendering, and a lot more
modules that are collectively called NodeKits. It is impossible to explain all of
them in this or any book, but it is worth showing you how to make use of some
typical visual components and get the ball rolling by providing a list of practical
NodeKits at the end of this chapter.

In this chapter, we will learn:

�� How to create geometries as billboards in the scene

�� How to display 2D and 3D texts in the scene

�� How to design a particle system and animate it

�� How to cast shadows onto scene objects

�� The theory and implementation of special effects

Developing Visual Components

[292]

Creating billboards in a scene
In the 3D world, a billboard is a 2D image that is always facing a designated direction.
Applications can use billboard techniques to create many kinds of special effects, such as
explosions, flares, sky, clouds, and trees. In fact, any object can be treated as a billboard
with itself cached as the texture, while looking from a distance. Thus, the implementation of
billboards becomes one of the most popular techniques, widely used in computer games and
real-time visual simulation programs.

The osg::BillBoard class is used to represent a list of billboard objects in a 3D scene. It
is derived from osg::Geode, and can orient all of its children (osg::Drawable objects)
to face the viewer's viewpoint. It has an important method, setMode(), that is used to
determine the rotation behavior, which must set one of the following enumerations as the
argument:

Enumeration Usage

POINT_ROT_EYE Set if all of the drawables are to be rotated about the viewer's position
with the object coordinate Z axis constrained to the window coordinate
Y axis

POINT_ROT_WORLD Set if all of the drawables are to be rotated about the viewer directly
from their original orientation to the current eye direction in the world
space.

AXIAL_ROT Set if all of the drawables are to be rotated about an axis specified by
setAxis().

Every drawable in the osg::BillBoard node should have a pivot point position, which is
specified via the overloaded addDrawable() method, for example:

billboard->addDrawable(child, osg::Vec3(1.0f, 0.0f, 0.0f));

All drawables also need a unified initial front face orientation, which is used for computing
rotation values. The initial orientation is set by the setNormal() method. And each
newly-added drawable must ensure that its front face orientation is in the same direction
as this normal value; otherwise the billboard results may be incorrect.

Time for action – creating banners facing you
The prerequisite for implementing billboards in OSG is to create one or more quad
geometries first. These quads are then managed by the osg::BillBoard class. This forces
all child drawables to automatically rotate around a specified axis, or face the viewer. These
can be done by presetting a unified normal value and rotating each billboard according to
the normal and current rotation axis or viewing vector.

Chapter 11

[293]

We will create two banks of OSG banners, arranged in a V, to demonstrate the use of
billboards in OSG. No matter where the viewer is and how he manipulates the scene camera,
the front faces of banners are facing the viewer all the time. This feature can then be used to
represent textured trees and particles in user applications.

1.	 Include the necessary headers:

#include <osg/Billboard>

#include <osg/Texture2D>

#include <osgDB/ReadFile>

#include <osgViewer/Viewer>

2.	 Create the quad geometry directly from the osg::createTexturedQuadGe
ometry() function. Every generated quad is of the same size and origin point,
and uses the same image file. Note that the osg256.png file can be found in
the data directory of your OSG installation path, but it requires the osgdb_png
plugin for reading image data. Please refer to Chapter 10, Saving and Loading
Files if you have any problems in configuring and compiling this plugin.

osg::Geometry* createQuad()

{

 osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;

 osg::ref_ptr<osg::Image> image =

 osgDB::readImageFile("Images/osg256.png");

 texture->setImage(image.get());

 osg::ref_ptr<osg::Geometry> quad=

 osg::createTexturedQuadGeometry(
 osg::Vec3(-0.5f, 0.0f,-0.5f),
 osg::Vec3(1.0f,0.0f,0.0f),
 osg::Vec3(0.0f,0.0f,1.0f));

 osg::StateSet* ss = quad->getOrCreateStateSet()

 ss->setTextureAttributeAndModes(0, texture.get());

 return quad.release();

}

3.	 In the main entry, we first create the billboard node and set the mode to
POINT_ROT_EYE. That is, the drawable will rotate to face the viewer and keep
its Z axis upright in the rendering window. The default normal setting of the
osg::BillBoard class is the negative Y axis, so rotating it to the viewing
vector will show the quads on the XOZ plane in the best appearance:

osg::ref_ptr<osg::Billboard> geode = new osg::Billboard;

geode->setMode(osg::Billboard::POINT_ROT_EYE);

Developing Visual Components

[294]

4.	 Now let's create the banner quads and arrange them in a V formation:

osg::Geometry* quad = createQuad();

for (unsigned int i=0; i<10; ++i)

{

 float id = (float)i;

 geode->addDrawable(quad, osg::Vec3(-2.5f+0.2f*id, id, 0.0f)
);

 geode->addDrawable(quad, osg::Vec3(2.5f-0.2f*id, id, 0.0f)
);

}

5.	 All quad textures' backgrounds are automatically cleared because of the alpha
test, which is performed internally in the osgdb_png plugin. That means we have to
set correct rendering order of all the drawables to ensure that the entire process
is working properly:

osg::StateSet* ss = geode->getOrCreateStateSet();

ss->setRenderingHint(osg::StateSet::TRANSPARENT_BIN);

6.	 It's time for us to start the viewer, as there are no important steps left to create
and render billboards:

osgViewer::Viewer viewer;

viewer.setSceneData(geode.get());

return viewer.run();

7.	 Try navigating in the scene graph:

8.	 You will find that the billboard's children are always rotating to face the viewer,
but the images' Y directions are never changed (point to the window's Y coordinate
all along). Replace the mode POINT_ROT_EYE to POINT_ROT_WORLD and see if
there is any difference:

Chapter 11

[295]

What just happened?
The basic usage of billboards in OSG scene graph is shown in this example. But it is still
possible to be further improved. All the banner geometries here are created with the
createQuad() function, which means that the same quad and the same texture are
reallocated at least 20 times! The object sharing mechanism is certainly an optimization
here. Unfortunately, it is not clever enough to add the same drawable object to
osg::Billboard with different positions, which could cause the node to work improperly.
What we could do is to create multiple quad geometries that share the same texture object.
This will highly reduce the video card's texture memory occupancy and the rendering load.

Another possible issue is that somebody may require loaded nodes to be rendered as
billboards, not only as drawables. A node can consist of different kinds of child nodes,
and is much richer than a basic shape or geometry mesh. OSG also provides the
osg::AutoTransform class, which automatically rotates an object's children to be
aligned with screen coordinates.

Developing Visual Components

[296]

Have a go hero – planting massive trees on the ground
Billboards are widely used for simulating massive trees and plants. One or more tree pictures
with transparent backgrounds are applied to quads of different sizes, and then added to
the billboard node. These trees will automatically face the viewer, or to be more real, rotate
about an axis as if its branches and leaves are always at the front. Now let's try to create
some simple billboard trees. We only need to prepare an image nice enough (for instance,
Images/tree0.rgba in the data folder of the OpenSceneGraph prebuilts introduced in
Chapter 2, Compilation and Installation of OpenSceneGraph), and follow the steps given for
the previous example to create your own trees and plants.

Creating texts
Text is one of the most important components in all kinds of virtual reality programs. It
is used everywhere—for displaying stats on the screen, labeling 3D objects, logging, and
debugging. Texts always have at least one font to specify the typeface and qualities, as well
as other parameters, including size, alignment, layout (left-to-right or right-to-left), and
resolution, to determine its display behaviors. OpenGL doesn't directly support the loading
of fonts and displaying texts in 3D space, but OSG provides full support for rendering high
quality texts and configuring different text attributes, which makes it much easier to develop
related applications.

The osgText library actually implements all font and text functionalities. It requires the
osgdb_freetype plugin to work properly. This plugin can load and parse TrueType
fonts with the help of FreeType, a famous third-party dependency. After that, it returns an
osgText::Font instance, which is made up of a complete set of texture glyphs. The entire
process can be described with the osgText::readFontFile() function.

The osgText::TextBase class is the pure base class of all OSG text types. It is derived from
osg::Drawable, but doesn't support display lists by default. Its subclass, osgText::Text,
is used to manage flat characters in the world coordinates. Important methods includes
setFont(), setPosition(), setCharacterSize(), and setText(), each of which is
easy to understand and use, as shown in the following example.

Chapter 11

[297]

Time for action – writing descriptions for the Cessna
This time we are going to display a Cessna in the 3D space and provide descriptive texts in
front of the rendered scene. A heads-up display (HUD) camera can be used here, which is
rendered after the main camera, and only clears the depth buffer for directly updating texts
to the frame buffer. The HUD camera will then render its child nodes in a way that is always
visible.

1.	 Include the necessary headers:

#include <osg/Camera>

#include <osgDB/ReadFile>

#include <osgText/Font>

#include <osgText/Text>

#include <osgViewer/Viewer>

2.	 The osgText::readFontFile() function is used for reading a suitable font
file, for instance, an undistorted TrueType font. The OSG data paths (specified
with OSG_FILE_PATH) and the windows system path will be searched to see
if the specified file exists:

osg::ref_ptr<osgText::Font> g_font =

 osgText::readFontFile("fonts/arial.ttf");

3.	 Create a standard HUD camera and set a 2D orthographic projection
matrix for the purpose of drawing 3D texts in two dimensions. The
camera should not receive any user events, and should never be
affected by any parent transformations. These are guaranteed by the
setAllowEventFocus() and setReferenceFrame() methods:

osg::Camera* createHUDCamera(double left, double right,

 double bottom, double top)

{

 osg::ref_ptr<osg::Camera> camera = new osg::Camera;

 camera->setReferenceFrame(osg::Transform::ABSOLUTE_RF);

 camera->setClearMask(GL_DEPTH_BUFFER_BIT);

 camera->setRenderOrder(osg::Camera::POST_RENDER);

 camera->setAllowEventFocus(false);

 camera->setProjectionMatrix(

 osg::Matrix::ortho2D(left, right, bottom, top));

 return camera.release();

}

Developing Visual Components

[298]

4.	 The text is created by a separate global function, too. It defines a font object
describing every character's glyph, as well as the size and position parameters
in the world space, and the content of the text. In the HUD text implementation,
texts should always align with the XOY plane:

osgText::Text* createText(const osg::Vec3& pos,

 const std::string& content,
 float size)

{

 osg::ref_ptr<osgText::Text> text = new osgText::Text;

 text->setFont(g_font.get());

 text->setCharacterSize(size);

 text->setAxisAlignment(osgText::TextBase::XY_PLANE);

 text->setPosition(pos);

 text->setText(content);

 return text.release();

}

5.	 In the main entry, we create a new osg::Geode node and add multiple text
objects to it. These introduce the leading features of a Cessna. Of course, you
can add your own explanations about this type of monoplane by using additional
 osgText::Text drawables:

osg::ref_ptr<osg::Geode> textGeode = new osg::Geode;

textGeode->addDrawable(createText(

 osg::Vec3(150.0f, 500.0f, 0.0f),

 "The Cessna monoplane",

 20.0f)

);

textGeode->addDrawable(createText(

 osg::Vec3(150.0f, 450.0f, 0.0f),

 "Six-seat, low-wing and twin-engined",

 15.0f)

);

6.	 The node including all texts should be added to the HUD camera. To ensure that
the texts won't be affected by OpenGL normals and lights (they are textured
geometries, after all), we have to disable lighting for the camera node:

osg::Camera* camera = createHUDCamera(0, 1024, 0, 768);

camera->addChild(textGeode.get());

camera->getOrCreateStateSet()->setMode(

 GL_LIGHTING, osg::StateAttribute::OFF);

Chapter 11

[299]

7.	 The last step is to add the Cessna model and the camera to the scene graph, and
start the viewer as usual:

osg::ref_ptr<osg::Group> root = new osg::Group;

root->addChild(osgDB::readNodeFile("cessna.osg"));

root->addChild(camera);

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

8.	 In the rendering window, you will see two lines of text over the Cessna model.
No matter how you translate, rotate, or scale on the view matrix, the HUD
texts will never be covered. Thus, users can always read the most important
information directly, without looking away from their usual perspectives:

What just happened?
To build the example code with CMake or other native compilers, you should add the osgText
library as dependence, and include the osgParticle, osgShadow, and osgFX libraries.

Here we specify the font from the arial.ttf file. This is a default font in most Windows
and UNIX systems, and can also be found in OSG data paths. As you can see, this kind of font
offers developers highly-precise displayed characters, regardless of font size settings. This is
because the outlines of TrueType fonts are made of mathematical line segments and Bezier
curves, which means they are not vector fonts. Bitmap (raster) fonts don't have such features
and may sometimes look ugly when resized. Disable setFont() here, to force osgText to
use a default 12x12 bitmap font. Can you figure out the difference between these two fonts?

Developing Visual Components

[300]

Pop quiz – text positions and the projection matrix
We define our text objects with the following code:

text->setAxisAlignment(osgText::TextBase::XY_PLANE);
text->setPosition(pos);

There are two questions for you to think about:

1.	 Firstly, why must the flat text be placed in the XOY plane? What will happen if we
don't do that? Should we use an HUD camera or not?

2.	 Secondly, what is the reference frame of these text positions? That is, when setting
a text object's position, how can we locate it in the rendering window? Is it related
with the orthographic projection matrix? Could you move the two lines of our
example to the right-bottom corner?

Have a go hero – using wide characters to support more languages
The setText() method of osgText::Text accepts std::string variables directly.
Meanwhile, it also accepts wide characters as the input argument. For example:

wchar_t* wstr = …;
text->setText(wstr);

This makes it possible to support multi-languages, for instance, Chinese and Japanese
characters. Now, try obtaining a sequence of wide characters either by defining them directly
or converting from multi-byte characters, and apply them to the osgText::Text object,
to see if the language that you are interested in can be rendered. Please note that the font
should also be changed to support the corresponding language.

Creating 3D texts
Believe it or not, OSG also provides support for 3D texts in the scene graph. Each character
will be extruded with a depth parameter and finally rendered with OpenGL's vertex
array mechanism. The implementer class, osgText::Text3D, is also derived form
osgText::Textbase and thus has nearly the same methods as osgText::Text. It
requires an osgText::Font3D instance as the font parameter, which can be obtained by
the osgText::readFont3DFile() function.

Chapter 11

[301]

Time for action – creating texts in the world space
A simple 3D text object will be created in this example. Like the 2D text class
osgText::Text, the osgText::Text3D class also inherits a list of methods to set basic
text parameters, including position, size, alignment, font object, and the content. 3D texts
are most likely to be used as a special effect of games and applications.

1.	 Include the necessary headers:

#include <osg/MatrixTransform>

#include <osgDB/ReadFile>

#include <osgText/Font3D>

#include <osgText/Text3D>

#include <osgViewer/Viewer>

2.	 Read an appropriate font file with the osgText::readFont3DFile() function,
which is similar to osgText::readFontFile(). Using the osgdb_freetype
plugin, TrueType fonts can be parsed into finely-detailed 3D character glyphs:

osg::ref_ptr<osgText::Font3D> g_font3D =

 osgText::readFont3DFile("fonts/arial.ttf");

3.	 So we are going to imitate the createText() function in the last example.
The only difference is that we have to set an extra depth parameter for the text
character to make it stand out in the 3D world. The setAxisAlignment() method
here indicates that the text object is placed on the XOZ plane, with its front faces
facing the negative Y axis:

osgText::Text3D* createText3D(const osg::Vec3& pos,

 const std::string& content,

 float size, float depth)

{

 osg::ref_ptr<osgText::Text3D> text = new osgText::Text3D;

 text->setFont(g_font3D.get());

 text->setCharacterSize(size);

 text->setCharacterDepth(depth);

 text->setAxisAlignment(osgText::TextBase::XZ_PLANE);

 text->setPosition(pos);

 text->setText(content);

 return text.release();

}

Developing Visual Components

[302]

4.	 Create a 3D text object with short words. Note that because 3D texts are actually
made up of vertices and geometry primitives, abuse of them may cause high
resource consumption:

osg::ref_ptr<osg::Geode> textGeode = new osg::Geode;

textGeode->addDrawable(

 createText3D(osg::Vec3(), "The Cessna", 20.0f, 10.0f));

5.	 This time we add an osg::MatrixTransform as the parent of textGeode.
It will apply an additional transformation matrix to the model-view matrix
when rendering all text drawables, and thus change their displayed positions and
attitudes in the world coordinates:

osg::ref_ptr<osg::MatrixTransform> textNode= new
osg::MatrixTransform;

textNode->setMatrix(osg::Matrix::translate(0.0f, 0.0f, 10.0f));

textNode->addChild(textGeode.get());

6.	 Add our Cessna to the scene graph again, and start the viewer:

osg::ref_ptr<osg::Group> root = new osg::Group;

root->addChild(osgDB::readNodeFile("cessna.osg"));

root->addChild(textNode.get());

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

7.	 You will see some big letters above the model, but in fact the initial position of
the 3D text object should be at (0, 0, 0), which is also the origin of the Cessna.
The osg::MatrixTransform node here prevents the model and the text from
overlapping each other, by translating textGeode to a new position (0, 0, 10):

Chapter 11

[303]

What just happened?
Both 2D and 3D texts can be transformed by their parent nodes. This is always helpful when
we have to compose a paragraph or move a model followed by a text label. Similar to OSG's
transformation nodes, the setPosition() method of osgText::TextBase only sets
the location under the relative reference frame of the text object's parent. The same thing
happens to the setRotation() method, which determines the rotation of the text, and
setAxisAlignment(), which aligns the text with a specified plane.

The only exception is the SCREEN alignment mode:

text->setAxisAlignment(osgText::TextBase::SCREEN);

This mimics the billboard technique of scene objects, and makes the text (either osg::Text
or osg::Text3D) always face the viewer. In 3D Geographic Information Systems (3DGIS),
placing landmarks on earth or cities as billboards is a very common operation, and can be
implemented with the SCREEN mode. In this case, rotation and parent transformations are
not available and should not be used, as they may cause confusion and potential problems.

Creating particle animations
Particles are used in various 3D applications for special effects such as smoke, dust,
explosions, fluid, fire, and rain. It is much more difficult to build and manage a complete
particle system rather than construct other simple scene objects. In fact, OSG provides a
large number of classes in the osgParticle library to enable customization of complex particle
systems, most of which may be extended and overridden using inheritance, if user-defined
algorithms are needed.

The particle class, osgParticle::Particle, represents the atomic particle unit. It is often
used as a design template before the simulation loop starts, and copied and regenerated by
the particle system in run-time to render massive particles.

The particle system class, osgParticle::ParticleSystem, manages the creation,
updating, rendering, and destruction of all particles. It is derived from osg::Drawable,
so it can accept different rendering attributes and modes, just like normal drawables. It
should be added to an osg::Geode nod, as the last class.

Developing Visual Components

[304]

The emitter abstract class (osgParticle::Emitter) defines the number and
basic properties of newly-generated particles every frame. Its descendant class,
osgParticle::ModularEmitter, works like a standard emitter, which provides the
mechanism for controlling particles to be created. It always holds three kinds of sub-controllers:

�� The placer (osgParticle::Placer) sets the initial position of every particle

�� The shooter (osgParticle::Shooter) sets the initial velocities of particles

�� The counter (osgParticle::Counter) determines how many particles should
be created

The program's abstract class (osgParticle::Program) manipulates the position, velocity,
and other properties of each individual particle during its lifetime. Its descendant class,
osgParticle::ModularProgram, is composed of a list of osgParticle::Operator
subclasses to perform operations on existing particles.

Both the emitter and program classes are indirectly derived from osg::Node, which means
that they can be treated as nodes in the scene graph. During the update and cull traversals,
they will be automatically traversed, and sub-controllers and operators will be executed.
The particle system will then make use of their results to re-compute and draw its managed
particles. The re-computing process can be done with the osgParticle::ParticleSys
temUpdater, which is actually a node, too. The updater should be placed after the emitter
and the program in the scene graph, in order to ensure that updates are carried out in the
correct order. For example:

root->addChild(emitter);
root->addChild(program);
root->addChild(updater); // Added last

The following diagram shows the hierarchy of the above osgParticle classes:

Chapter 11

[305]

Time for action – building a fountain in the scene
We will demonstrate how to implement a basic particle fountain. The simulation of a
fountain can be described as follows: firstly, the water emitted from a point rises with a
certain initial speed; then the speed decreases due to gravity of the earth, until reaching
the highest point; after that, the water drops fall down onto the ground or into the pool.
To achieve this, an osgParticle::ParticleSystem node, along with an emitter and a
program processor, should be created and added to the scene graph.

1.	 Include the necessary headers:

#include <osg/MatrixTransform>
#include <osg/Point>
#include <osg/PointSprite>
#include <osg/Texture2D>
#include <osg/BlendFunc>
#include <osgDB/ReadFile>
#include <osgGA/StateSetManipulator>
#include <osgParticle/ParticleSystem>
#include <osgParticle/ParticleSystemUpdater>
#include <osgParticle/ModularEmitter>
#include <osgParticle/ModularProgram>
#include <osgParticle/AccelOperator>

Developing Visual Components

[306]

#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>

2.	 The entire process of creating a particle system can be implemented in a separate
user function:

osgParticle::ParticleSystem* createParticleSystem(

 osg::Group* parent)

{

 …

}

3.	 Now we are inside the function. Every particle system has a template particle that
determines the behaviors of all newly-generated particles. Here, we set the shape
of each particle in this system to POINT. With the help of OpenGL's point sprite
extension, these points can be rendered as textured billboards, which is
enough in most cases:

osg::ref_ptr<osgParticle::ParticleSystem> ps =

 new osgParticle::ParticleSystem;

ps->getDefaultParticleTemplate().setShape(

 osgParticle::Particle::POINT);

4.	 Set the rendering attributes and modes of the particle system. These will
automatically affect every rendered particle. Here, we attach a texture image
to particles, and define a blending function in order to make the background of
the image transparent:

osg::ref_ptr<osg::BlendFunc> blendFunc = new osg::BlendFunc;

blendFunc->setFunction(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;

texture->setImage(osgDB::readImageFile("Images/smoke.rgb"));

5.	 Another two important attributes are osg::Point and osg::PointSprite. The
first will set the point size (diameter of a rasterized point), and the latter will enable
point sprites, which can effectively replace a four-point quad with a single vertex,
without requiring to specify the texture coordinates and rotate the front face to the
viewer. Besides, we had better turn off the lighting of particles, and we set a suitable
rendering order to enable it to be drawn correctly in the whole scene graph:

osg::StateSet* ss = ps->getOrCreateStateSet();

ss->setAttributeAndModes(blendFunc.get());

ss->setTextureAttributeAndModes(0, texture.get());

ss->setAttribute(new osg::Point(20.0f));

Chapter 11

[307]

ss->setTextureAttributeAndModes(0, new osg::PointSprite);

ss->setMode(GL_LIGHTING, osg::StateAttribute::OFF);

ss->setRenderingHint(osg::StateSet::TRANSPARENT_BIN);

6.	 The osgParticle::RandomRateCounter class generates a random number
of particles every frame. It is derived from osgParticle::Counter and has a
setRateRange() method that is used to specify the minimum and maximum
number of elements:

osg::ref_ptr<osgParticle::RandomRateCounter> rrc =

 new osgParticle::RandomRateCounter;

rrc->setRateRange(500, 800);

7.	 Add the random rate counter to the standard emitter. Also, we have to attach the
particle system to it as the operation destination. By default, the modular emitter
already includes a point-shape placer at (0, 0, 0), and a radial shooter that
chooses a direction and an initial speed randomly for each particle, so we don't
need to specify new ones here:

osg::ref_ptr<osgParticle::ModularEmitter> emitter =

 new osgParticle::ModularEmitter;

emitter->setParticleSystem(ps.get());

emitter->setCounter(rrc.get());

8.	 The osgParticle::AccelOperator class applies a constant acceleration to all
particles, on the fly. To simulate gravity, we can either use setAcceleration()
to specify the acceleration vector of gravity, or call the setToGravity()
method directly:

osg::ref_ptr<osgParticle::AccelOperator> accel =

 new osgParticle::AccelOperator;

accel->setToGravity();

9.	 Add the only operator to the standard program node, and attach the particle
system, too:

osg::ref_ptr<osgParticle::ModularProgram> program =

 new osgParticle::ModularProgram;

program->setParticleSystem(ps.get());

program->addOperator(accel.get());

Developing Visual Components

[308]

10.	The particle system, which is actually a drawable object, should be added to a
leaf node of the scene graph. After that, we add all particle-related nodes to
the parent node. Here is an interesting issue of world and local coordinates,
which will be discussed later:

osg::ref_ptr<osg::Geode> geode = new osg::Geode;

geode->addDrawable(ps.get());

parent->addChild(emitter.get());

parent->addChild(program.get());

parent->addChild(geode.get());

return ps.get();

11.	Now let's return to the main entry. Firstly, we create a new transformation node
for locating the particle system:

osg::ref_ptr<osg::MatrixTransform> mt = new osg::MatrixTransform;

mt->setMatrix(osg::Matrix::translate(1.0f, 0.0f, 0.0f));

12.	Create all particle system components and, add them to the input transformation
node. The particle system should also be registered to a particle system updater,
using the addParticleSystem() method.

osgParticle::ParticleSystem* ps = createParticleSystem(mt.get()
);

osg::ref_ptr<osgParticle::ParticleSystemUpdater> updater =

 new osgParticle::ParticleSystemUpdater;

updater->addParticleSystem(ps);

13.	Add all of the nodes above to the scene's root node, including a small axes model
(that can be found in the sample data folder, see Chapter 2, Compilation and
Installation of OpenSceneGraph for details) as a reference. After that, start the
viewer and just take a seat:

osg::ref_ptr<osg::Group> root = new osg::Group;

root->addChild(updater.get());

root->addChild(mt.get());

root->addChild(osgDB::readNodeFile("axes.osg"));

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

Chapter 11

[309]

14.	Our particle fountain is finally finished! Zoom in and you will find that all particles
start from a point on the positive X axis, at x = 1. Now, with just a few simple fixed-
function attributes, particles are rendered as well-textured points, and each particle
element appears much like a water drop because of the blending operation:

What just happened?
In the above image, we can find out that the whole particle system is translated to (1, 0, 0) in
the world. That's because we add the emitter, the program, and the particle system's parent
to a transformation node. But, in fact, the result will be different if we put one of the three
elements under the transformation node and the other two under the root node. Adding
only the osg::Geode node to an osg::Transform will make the entire particle system
move with it; but adding only the emitter will change the transform behavior of new-born
particles but will leave any existing ones in the world coordinate. Similarly, only adding the
program node will make the parent transformation node only affect the operators.

A good example is to design flight jets. While spiraling in the sky, the flight plume's location
and direction will vary at any time. Using an osg::MatrixTransform as the parent of
the particle emitter will be helpful in representing such a particle-based scenario. The
particle system and the updater should not be placed under the same transformation node;
otherwise all old particles in the air will move and rotate with it, too, which is certainly
unreasonable in reality.

Developing Visual Components

[310]

Have a go hero – designing a rotary sprinkler
Have you ever seen a rotary sprinkler? It consists of at least one rounded head that can
automatically rotate 360 degrees and spray water around the sprinkler's diameter. To create
such a machine with a simple cylinder model and the particle system, you have to design a
modular emitter with the shooter shooting particles to a specified horizontal direction, and a
modular program with the gravity acceleration operator.

As a hint, the default radial shooter (osgParticle::RadialShooter) uses two angles,
theta and phi, within specified ranges, in order to determine a random direction of
particles, for example:

osg::ref_ptr<osgParticle::RadialShooter> shooter =
 new osgParticle::RadialShooter;
// Theta is the angle between the velocity vector and Z axis
shooter->setThetaRange(osg::PI_2 - 0.1f, osg::PI_2 + 0.1f);
// Phi is the angle between X axis and the velocity vector projected
// onto the XOY plane
shooter->setPhiRange(-0.1f, 0.1f);
// Set the initial speed range
shooter->setInitialSpeedRange(5.0f, 8.0f);

To rotate the initial direction of emitting particles, you can either use an update callback
that changes the theta and phi ranges, or consider adding a transformation node as the
emitter's parent.

Creating shadows on the ground
Shadow is also an important component of 3D applications. When constructing massive 3D
scenes like digital cities, modelers may first design and compute lights on buildings, models,
and the ground in modeling software like 3dsmax, Maya, and Blender, and then bake the
shadows to these models' textures. Then, real-time applications will read the model files
with textures, and the shadows are then rendered statically in the rendering window.

Real-time shadows are also possible, but not for unlimited use. The osgShadow library
provides a range of shadow techniques on a scene graph that needs to have shadows cast
upon it. The core class, named osgShadow::ShadowedScene, should be used as the root
node of these shadowy sub-graphs. It accepts an osgShadow::ShadowTechnique instance
as the technique used to implement shadowing. Deriving the technique class will extend
the scene graph to support more algorithms and solutions, which will enrich the shadow
functionalities.

Chapter 11

[311]

Time for action – receiving and casting shadows
Our goal is to show you the construction of a scene by casting shadows on models. It always
includes a specific shadow scene root, an inbuilt or custom shadow technique, and child
nodes with a distinguishable receiving or casting mask. A normal scene can't be shadowed
without adding a shadow scene as the parent, and on the contrary, a shadowed scene graph
can either remove the osgShadow::ShadowedScene root node or remove the shadow
technique object (by simply setting a null one) applied to the node to exclude all shadow
computations and effects. In this example, we just create and manage the scene graph under
the shadow scene root, and make use of the predefined shadow mapping technique to
render both real objects and shadows correctly.

1.	 Include the necessary headers:

#include <osg/AnimationPath>

#include <osg/MatrixTransform>

#include <osgDB/ReadFile>

#include <osgShadow/ShadowedScene>

#include <osgShadow/ShadowMap>

#include <osgViewer/Viewer>

2.	 The code for creating the animation path is copied from Chapter 8, Animating Scene
Objects. It uses a few sample control points to generate a circle, which can then be
applied to an osg::AnimationPathCallback to implement a time-varying
transformation pathway:

osg::AnimationPath* createAnimationPath(float radius, float time
)

{

 osg::ref_ptr<osg::AnimationPath> path =
 new osg::AnimationPath;

 path->setLoopMode(osg::AnimationPath::LOOP);

 unsigned int numSamples = 32;

 float delta_yaw = 2.0f * osg::PI/((float)numSamples - 1.0f);

 float delta_time = time / (float)numSamples;

 for (unsigned int i=0; i<numSamples; ++i)

 {

 float yaw = delta_yaw * (float)i;

 osg::Vec3 pos(sinf(yaw)*radius, cosf(yaw)*radius, 0.0f);

 osg::Quat rot(-yaw, osg::Z_AXIS);

 path->insert(delta_time * (float)i,

 osg::AnimationPath::ControlPoint(pos, rot)
);

Developing Visual Components

[312]

 }

 return path.release();

}

3.	 Set masks of shadow receivers and casters. The AND operation of these two
masks must yield 0:

unsigned int rcvShadowMask = 0x1;

unsigned int castShadowMask = 0x2;

4.	 Create the ground model. This only receives shadows from other scene objects, so
performing an AND operation on its node mask and the receiver mask should return
a non-zero value, and the bitwise AND between the node mask and the caster
mask should always return 0. Therefore, we can determine the node mask according
to such principles:

osg::ref_ptr<osg::MatrixTransform> groundNode =

 new osg::MatrixTransform;

groundNode->addChild(osgDB::readNodeFile("lz.osg"));

groundNode->setMatrix(osg::Matrix::translate(0.0f, 0.0f,-200.0f)
);

groundNode->setNodeMask(rcvShadowMask);

5.	 Set the Cessna model, which also accepts an update callback to perform path
animation. In our example, it only casts a shadow on the ground and other
scene objects:

osg::ref_ptr<osg::MatrixTransform> cessnaNode =

 new osg::MatrixTransform;

cessnaNode->addChild(osgDB::readNodeFile("cessna.osg.0,0,90.rot")
);

cessnaNode->setNodeMask(castShadowMask);

osg::ref_ptr<osg::AnimationPathCallback> apcb =

 new osg::AnimationPathCallback;

apcb->setAnimationPath(createAnimationPath(50.0f, 6.0f));

cessnaNode->setUpdateCallback(apcb.get());

6.	 Add a dump truck model onto the ground using an approximate translation
matrix. It receives a shadow from the Cessna circling overhead, and casts a
shadow onto the ground. This means that we have to set an appropriate node
mask to retrieve a non-zero value while performing a bitwise AND with the union
of both the receiver and caster masks:

osg::ref_ptr<osg::MatrixTransform> truckNode =

 new osg::MatrixTransform;

truckNode->addChild(osgDB::readNodeFile("dumptruck.osg"));

Chapter 11

[313]

truckNode->setMatrix(osg::Matrix::translate(0.0f, 0.0f,-100.0f)
);

truckNode->setNodeMask(rcvShadowMask|castShadowMask);

7.	 Set a light source for producing shadows. We specify the parallel light's direction
with the setPosition() method to generate declining shadows here:

osg::ref_ptr<osg::LightSource> source = new osg::LightSource;

 source->getLight()->setPosition(osg::Vec4(4.0, 4.0, 10.0,
0.0));

 source->getLight()->setAmbient(osg::Vec4(0.2, 0.2, 0.2, 1.0)
);

 source->getLight()->setDiffuse(osg::Vec4(0.8, 0.8, 0.8, 1.0)
);

8.	 We must set a shadow technique here. There are already several OpenGL-based
shadow techniques implemented by organizations and individuals, including
shadow mapping using projective texture mapping, shadow volumes realized by
stencil buffer, and other implementations. We choose the famous and effective
shadow mapping (osgShadow::ShadowMap) technique, and set its necessary
parameters including the light source, shadow texture's size, and unit:

osg::ref_ptr<osgShadow::ShadowMap> sm = new osgShadow::ShadowMap;

sm->setLight(source.get());

sm->setTextureSize(osg::Vec2s(1024, 1024));

sm->setTextureUnit(1);

9.	 Set the shadow scene's root node, and apply the technique instance, as well as
shadow masks to it:

osg::ref_ptr<osgShadow::ShadowedScene> root =

 new osgShadow::ShadowedScene;

root->setShadowTechnique(sm.get());

root->setReceivesShadowTraversalMask(rcvShadowMask);

root->setCastsShadowTraversalMask(castShadowMask);

10.	Add all models and the light source to the root and start the viewer:

root->addChild(groundNode.get());

root->addChild(cessnaNode.get());

root->addChild(truckNode.get());

root->addChild(source.get());

osgViewer::Viewer viewer;

viewer.setSceneData(root.get());

return viewer.run();

Developing Visual Components

[314]

11.	With a simple light source, and the most frequently-used and stable shadow
mapping technique, we can now render the ground, Cessna, and dump truck in a
shadowed scene. You may change the texture resolution with setTextureSize()
method, or switch to other shadow techniques to see if there are any changes
or improvements:

What just happened?
The setNodeMask() was introduced in Chapter 9, Interacting with Outside Elements. There,
it was used for indicating the intersection visitor to pass a specified sub-scene graph. But
this time, we make use of this method to distinguish between the receiver and casters of
shadows. Here, it performs a bitwise logical AND operation on the shadow scene node's
masks, instead of the previous node visitor's traversal mask.

Chapter 11

[315]

The setNodeMask() can even be used to cull the node from the to-be-rendered scene,
that is, to remove certain sub-graphs from the rendering pipeline. In the cull traversal of the
OSG backend, each node's mask value will be computed with the camera node's cull mask,
which is set by setCullMask() method of the osg::Camera class. Therefore, nodes and
their sub-graphs will not be drawn if the node mask is 0, because the AND operation always
returns 0 in the culling process.

Note that the current OSG shadow map implementation only handles cast shadow masks of
nodes. It will adapt the shadow map to fit the bounds of all objects set to cast shadows, but
you have to handle objects that do not need to receive shadows yourselves, for example,
don't add them to the shadow scene node. In practice, almost all objects will be set to
receive shadows, and only the ground should be set to not cast shadows.

Have a go hero – testing other shadow techniques
There are more shadow techniques besides shadow mapping, including the simplest
implementation using only textures and fixed-functions, volume algorithm using the stencil
buffer (not fully completed at present), soft-edged shadows, parallel-split shadows, light
space perspective shadows, and so on.

You may find a brief introduction to them at: http://www.openscenegraph.org/
projects/osg/wiki/Support/ProgrammingGuide/osgShadow.

The knowledge of how to create advanced graphical effects (shadows is only one field) is
profound. If you have an interest in learning more, you can read some advanced books, such
as Real-time rendering by Akenine-Möller, Haines, and Hoffman, and Computer Graphics:
Principles and Practice by Foley, Van Dam et al.

Now, choose one of the best performers among these shadow techniques. Another option
is to design your own shadow techniques, if your application development requirements
cannot be met by existing shadow techniques and there is a tangible benefit to developing
at your own risk.

Implementing special effects
The osgFX library provides a special effects framework. It is a little analogous to the
osgShadow NodeKits, which has a shadow scene as the parent of all shadowy sub-graphs.
The osgFX::Effect class, which is derived from osg::Group, implements special effects
on its child nodes, but never affects its siblings and parent nodes.

Developing Visual Components

[316]

The osgFX::Effect is a pure base class that doesn't realize actual effects at all. Its
derivatives include anisotropic lighting, highlights, cartoons, bump mapping, and outline
and scribe effect implementations, and it can be extended at any time for different purposes.

Time for action – drawing the outline of models
Outlining an object is a practical technique for representing special effects in gaming,
multimedia, and industry applications. One implementation in OpenGL is to write a constant
value into the stencil buffer and then render the object with thick wireframe lines. After the
two-pass rendering process, an outline around the object will be populated, the thickness of
which is just one half of the wireframe's. Fortunately, this has already been implemented in
the osgFX library, in the osgFX::Outline class—a derived class of osgFX::Effect.

1.	 Include the necessary headers:

#include <osg/Group>

#include <osgDB/ReadFile>

#include <osgFX/Outline>

#include <osgViewer/Viewer>

2.	 Load a Cessna model for outlining:

osg::ref_ptr<osg::Node> model = osgDB::readNodeFile("cessna.osg"
);

3.	 Create a new outline effect node. Set the width and color parameters, and add the
model node as the child:

osg::ref_ptr<osgFX::Outline> outline = new osgFX::Outline;

outline->setWidth(8);

outline->setColor(osg::Vec4(1.0f, 0.0f, 0.0f, 1.0f));

outline->addChild(model.get());

4.	 As discussed before, outlining requires the stencil buffer in order to accurately
render the results. So we have to set valid stencil bits for the rendering
windows in the osg::DisplaySettings instance. The stencil bits is setting
0 by default, which means that the stencil buffer will not be available.

osg::DisplaySettings::instance()->setMinimumNumStencilBits(1);

5.	 Before starting the viewer, don't forget to reset the clear mask, in order to also
clear stencil bits every frame. The outline effect node is used as the root node
here. It can also be added to a more complex scene graph for rendering.

osgViewer::Viewer viewer;

viewer.getCamera()->setClearMask(

 GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT
);

Chapter 11

[317]

viewer.setSceneData(outline.get());

return viewer.run();

6.	 That's it! This is really a simple example when compared to other examples
in this chapter. However, it may not be easy to realize a similar one by using
traditional nodes and attached state sets. The osgFX library uses the concept
of multi-pass rendering here to realize such kinds of special effects:

What just happened?
OSG's effect classes are actually collections of state attributes and modes. They allow
multiple state sets to be managed for a single host node. When traversing the scene graph,
the node is traversed as many times as the number of predefined state sets. As a result, the
model will be drawn multiple times (so-called multiple passes) in the rendering pipeline,
each of which applies different attributes and modes, and is then combined with previous
passes.

For outlining implementation, there are two passes defined internally: firstly, the model
is drawn with the stencil buffer set to 1 if passable; secondly, the model is drawn again in
wireframe mode, with a thick enough line width and another stencil test process. Pixels will
only be drawn to the frame buffer if the stencil buffer is not set the last time, and thus the
result has a colored outline. For better understanding of how this works, you are encouraged
to take a look into the implementation of the osgFX::Outline class in the src/osgFX
folder of the OSG source code.

Developing Visual Components

[318]

Playing with more NodeKits
There are a lot more NodeKits, either in the OSG source code or contributed by third parties.
Each one provides a specific functionality to be used in the scene graph. Most of them also
extend OSG native formats (.osg, .osgb, and so on) to support reading or writing extended
node and object types.

Here is a table of some of the existing NodeKits (and practical applications) that may enrich
the visual components in OSG-based applications. Play with them freely, or attend one of
these communities to share your ideas and codes. Note that not all of these NodeKits are
available for direct use, but they are always believed to be worthy, and will be sure to draw
the attention of more contributors:

Name Description Website

osgART Augmented reality (AR)
support

http://www.osgart.org/

osgAudio Sound toolkits in OSG http://code.google.com/p/
osgaudio/

osgBullet Physics engine support
using the Bullet library

http://code.google.com/p/
osgbullet/

osgcal Character animation
support using the
Cal3D library

http://osgcal.sourceforge.net/

osgCairo Cairo interface
support

http://code.google.com/p/
osgcairo/

osgCompute
(osgCUDA)

Parallel streaming
processor support

http://www.cg.informatik.uni-
siegen.de/svt/osgcompute/

osgEarth Scalable terrain
rendering toolkit

http://osgearth.org/

osgIntrospection An introspection or
reflection framework

http://www.openscenegraph.org/
svn/osg/osgIntrospection/

(only available in SVN at present)

osgManipulator 3D interactive
manipulators

In the core OSG source code

osgMaxExp 3dsmax's OSG scene
exporter

http://sourceforge.net/
projects/osgmaxexp/

osgModeling Parametric modeling
and polygon
techniques support

http://code.google.com/p/
osgmodeling/

osgNV Cg and NVIDIA
extensions support

http://osgnv.sourceforge.net/

Chapter 11

[319]

Name Description Website

osgOcean Simulation toolkit
for above and below
water effects

http://code.google.com/p/
osgocean/

osgPango Improvements of the
font rendering using
the Pango library

http://code.google.com/p/
osgocean/

osgQt Qt GUI integration In the core OSG source code

osgSWIG Language bindings
for Python and other
languages

http://code.google.com/p/
osgswig/

osgWidgets 3D widgets support In the core OSG source code

osgVirtualPlanets A framework of 3D
GIS planets inside the
gvSIG

http://www.osor.eu/projects/
osgvp/

osgVisual Scientific visualization
and vehicle simulators

http://www.osgvisual.org/
projects/osgvisual/

osgVolume Volume rendering
support

In the core OSG source code

osgXI CgFx, 3D UI, and
game developing
components

http://sourceforge.net/
projects/osgxi/

Maya2OSG Maya's OSG scene
importer/exporter

http://maya2osg.sourceforge.
net/

VirtualPlanet
Builder

Terrain database
creation tool

http://www.openscenegraph.org/
projects/VirtualPlanetBuilder

Summary
In this chapter, we discussed the most important visual components of a rendering API.
These actually extend the core OSG elements by inheriting basic scene classes (for instance,
osg::Group), re-implementing their functionalities, and adding derived objects to the
scene graph. Because of the flexibility of scene graph, we can thus enjoy the new features of
various customized NodeKits as soon as the simulation loop starts and traverses the scene
nodes. It is never too difficult to design your own NodeKits, even if you don't have too much
knowledge of all aspects of OSG.

Developing Visual Components

[320]

In this chapter, we specifically covered:

�� How to create special objects that face the viewer all of the time by using
osg::Billboard

�� How to create and set up texts with osgText::Text and osgText::Text3D, and
how to specify a corresponding font with osgText::Font and osgText::Font3D

�� The main components of a particle system, including the
osgParticle::Particle and osgParticle::ParticleSystem classes, and
the concepts of particle system updaters, emitters, programs, counters, shooters,
placers, and operators

�� The osgShadow::ShadowScene class and usable shadow techniques classes, and
their utilizations in constructing a scene with shadows

�� The implementation of special effects with the osgFX library

�� More NodeKits in the current OSG distribution and third-party projects

12
Improving Rendering Efficiency

In this final chapter of this book, we are going to introduce the techniques
necessary for building a fast, real-time rendering system that will help users
to load, organize, and render massive datasets in an efficient manner. It is
relatively easy to learn all the classes, methods, and global variables of a large
set of API calls, but the way to put what has been learned into practical use,
properly and efficiently, is another thing. The methods to improve rendering
efficiency here may help to solve some engineering problems that we meet
from time to time.

In this chapter, we will learn:

�� The basic principles of implementing multithreaded operations and rendering
in OSG

�� The concept of scene culling and the occlusion culling technique

�� Different ways to improve rendering performance, by modifying and sharing
geometries and textures

�� The dynamic paging mechanism and its utilization in handling huge datasets

Improving Rendering Efficiency

[322]

OpenThreads basics
OpenThreads is a lightweight, cross-platform thread API for OSG classes and applications.
It supports the fundamental elements required by a multithreaded program, that is, the
thread object (OpenThreads::Thread), the mutex for locking data that may be shared
by different threads (OpenThreads::Mutex), barrier (OpenThreads::Barrier),
and condition (OpenThreads::Condition). The latter two are often used for thread
synchronization.

To create a new thread for certain purposes, we have to derive the OpenThreads::Thread
base class and re-implement some of its virtual methods. There are also some global
functions for conveniently handling threads and thread attributes, for example:

�� The GetNumberOfProcessors() function gets the number of processors
available for use.

�� The SetProcessorAffinityOfCurrentThread()function sets the processor
affinity (that is, which processor is used to execute this thread) of the current
thread. It should be called when the thread is currently running.

�� The CurrentThread() static method of OpenThreads::Thread returns a
pointer to the current running thread instance.

�� The YieldCurrentThread() static method of OpenThreads::Thread yields
the current thread and lets other threads take over the control of the processor.

�� The microSleep() static method of OpenThreads::Thread makes the
current thread sleep for a specified number of microseconds. It can be used in
single-threaded applications, too.

Time for action – using a separate data receiver thread
In this example, we will design a new thread with the OpenThreads library and use it to read
characters from the standard input. At the same time, the main process, that is, the OSG
viewer and rendering backend will try retrieving the input characters and displaying them on
the screen with the osgText library. The entire program can only quit normally when the data
thread and main process are both completed.

1.	 Include the necessary headers:

#include <osg/Geode>
#include <osgDB/ReadFile>
#include <osgText/Text>
#include <osgViewer/Viewer>
#include <iostream>

Chapter 12

[323]

2.	 Declare our new DataReceiverThread class as being derived from
OpenThreads::Thread. Two virtual methods should be implemented to ensure
that the thread can work properly: the cancel() method defines the cancelling
process of the thread, and the run() method defines what action happens from
the beginning to the end of the thread. We also define a mutex variable for inter-
process synchronization, and make use of the singleton pattern for convenience:

class DataReceiverThread : public OpenThreads::Thread
{
public:
 static DataReceiverThread* instance()
 {
 static DataReceiverThread s_thread;
 return &s_thread;
 }

 virtual int cancel();
 virtual void run();

 void addToContent(int ch);
 bool getContent(std::string& str);

protected:
 OpenThreads::Mutex _mutex;
 std::string _content;
 bool _done;
 bool _dirty;
};

3.	 The cancelling work is simple: set the variable _done (which is checked repeatedly
during the run() implementation to true) and wait until the thread finishes:

int DataReceiverThread::cancel()
{
 _done = true;
 while(isRunning()) YieldCurrentThread();
 return 0;
}

4.	 The run() method is the core of a thread class. It usually includes a loop in
which actual actions are executed all the time. In our data receiver thread, we use
std::cin.get() to read characters from the keyboard input and decide if it can
be added to the member string _content. When _done is set to true, the run()
method will meet the end of its lifetime, and so does the whole thread:

void DataReceiverThread::run()
{

Improving Rendering Efficiency

[324]

 _done = false;
 _dirty = true;
 do
 {
 YieldCurrentThread();

 int ch = 0;
 std::cin.get(ch);
 switch (ch)
 {
 case 0: break; // We don't want '\0' to be added
 case 9: _done = true; break; // ASCII code of Tab = 9
 default: addToContent(ch); break;
 }
 } while(!_done);
}

5.	 Be careful of the std::cin.get() function: it firstly reads one or more characters
from the user input, until the Enter key is pressed and a '\n' is received. Then
it picks characters one by one from the buffer, and continues to add them to the
member string. When all characters in the buffer are traversed, it clears the buffer
and waits for user input again.

6.	 The customized addToContent() method adds a new character to _content. This
method is sure to be called in the data receiver thread, so we have to lock the mutex
object while changing the _content variable, to prevent other threads and the
main process from dirtying it:

void DataReceiverThread::addToContent(int ch)
{
 OpenThreads::ScopedLock<OpenThreads::Mutex> lock(_mutex);
 _content += ch;
 _dirty = true;
}

7.	 The customized getContent() method is used to obtain the _content variable
and add it to the input string argument. This method, the opposite of the previous
addToContent() method, must only be called by the following OSG callback
implementation. The scoped locking operation of the mutex object will make the
entire work thread-safe, as is done in addToContent():

bool getContent(std::string& str)
{
 OpenThreads::ScopedLock<OpenThreads::Mutex> lock(_mutex);
 if (_dirty)
 {

Chapter 12

[325]

 str += _content;
 _dirty = false;
 return true;
 }
 return false;
}

8.	 The thread implementation is finished. Now let's go back to rendering. What we
want here is a text object that can dynamically change its content according to the
string data received from the main process. An update callback of the text object
is necessary to realize such functionality. In the virtual update() method of the
customized update callback (it is for drawables, so osg::NodeCallback is not
needed here), we simply retrieve the osgText::Text object and the receiver
thread instance, and then reset the displayed texts:

class UpdateTextCallback : public osg::Drawable::UpdateCallback
{
public:
 virtual void update(osg::NodeVisitor* nv,
 osg::Drawable* drawable)
 {
 osgText::Text* text =
 static_cast<osgText::Text*>(drawable);
 if (text)
 {
 std::string str("# ");
 if (DataReceiverThread::instance()->getContent(str))
 text->setText(str);
 }
 }
};

9.	 In the main entry, we first create the osgText::Text drawable and apply a
new instance of our text updating callback. The setAxisAlignment() here
defines the text as a billboard in the scene, and setDataVariance() ensures
that the text object is "dynamic" during updating and drawing. There is also a
setInitialBound() method, which accepts an osg::BoundingBox variable as
the argument. It forces the definition of the minimum bounding box of the drawable
and computes the initial view matrix according to it:

osg::ref_ptr<osgText::Text> text = new osgText::Text;
text->setFont("fonts/arial.ttf");
text->setAxisAlignment(osgText::TextBase::SCREEN);
text->setDataVariance(osg::Object::DYNAMIC);
text->setInitialBound(

Improving Rendering Efficiency

[326]

 osg::BoundingBox(osg::Vec3(), osg::Vec3(400.0f, 20.0f, 20.0f))
);
text->setUpdateCallback(new UpdateTextCallback);

10.	Add the text object to an osg::Geode node and turn off lighting. Before starting
the viewer, we also have to make sure that the scene is rendered in a fixed-size
window. That's because we have to also use the console window for keyboard entry:

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(text.get());
geode->getOrCreateStateSet()->setMode(
 GL_LIGHTING, osg::StateAttribute::OFF);

osgViewer::Viewer viewer;
viewer.setSceneData(geode.get());
viewer.setUpViewInWindow(50, 50, 640, 480);

11.	Start the data receiver thread before the viewer runs, and quit it after that:

DataReceiverThread::instance()->startThread();
viewer.run();
DataReceiverThread::instance()->cancel();
return 0;

12.	Two windows will appear if you are compiling your project with your subsystem
console. Set focus to the console window and type some characters. Press Enter
when you are finished, and then press Tab followed by Enter in order to quit the
receiver thread:

13.	You will notice that the same characters come out in the OSG rendering window.
This can be treated as a very basic text editor, with the text source in a separate
receiver thread, and the drawing interface implemented in the OSG scene graph:

Chapter 12

[327]

What just happened?
Introducing threads and multithreaded programming is beyond the scope of this book.
However, it is already very common that applications use separate threads to load huge
files from disk or from the Local Area Network (LAN). Other applications use threads to
continuously receive data from the network service and client computers, or user-defined
input devices including GPS and radar signals, which is of great speed and efficiency. Extra
data handling threads can even specify an affinity processor to work on, and thus make use
of today's dual-core and quad-core CPUs.

The OpenThreads library provides a minimal and complete object-oriented thread interface
for OSG developers, and even general C++ threading programmers. It is used by the
osgViewer library to implement multithreaded scene updating, culling, and drawing, which
is the secret of highly efficient rendering in OSG. Note here, that multithreaded rendering
doesn't simply mean executing OpenGL calls in different threads because the related
rendering context (HGLRC under Win32) is thread-specific. One OpenGL context can only
be current in one thread (using wglMakeCurrent() function). Thus, one OSG rendering
window which wraps only one OpenGL context will never be activated and accept OpenGL
calls synchronously in multiple threads. It requires an accurate control of the threading
model to make everything work well.

Improving Rendering Efficiency

[328]

Pop quiz – carefully blocking threads
There is a mutex object used both in the addToContent() and getContent() methods
of the example DataReceiverThread class. It can prevent different threads from visiting
the same data at the same time. Can you figure out what is the most likely time that the two
methods may simultaneous operate on the conflicted _content variable? And what may
happen if we don't use the mutex here?

Understanding multithreaded rendering
The traditional method of real-time rendering always involves three separate phases: user
updating (UPDATE), scene culling (CULL), and executing OpenGL calls (DRAW).

User updating include all kinds of dynamic data modifications and operations, like changing the
scene graph hierarchy, loading files, animating mesh vertices, and updating camera positions
and attitudes. It then sends the scene graph to the culling phase, within which the scene is
rebuilt, for the purpose of improving final rendering performance. Objects that are invisible
in the viewing frustum or hidden for any reason will be removed, and the rest are sorted by
rendering states and pushed into a drawing list. The list will be traversed in the final, drawing
phase, and all OpenGL commands will be issued to the graphics pipeline for processing.

A single processor system would need to process all three phases serially, which may cause
the one frame to be too long to fit user requirements.

In a system with multiple processors and multiple display devices, we can have more
parallelizable CULL and DRAW tasks to speed up the frame rate. Especially when managing
more than one rendering windows, it is necessary to have a new threading model with one
CULL and one DRAW phase for each window, and execute them concurrently. This is, of
course, more efficient than just using a single thread.

Time for action – switching between different threading models
OSG provides a very convenient interface for choosing a threading model. Different
threading models can be used in different circumstances, and have different efficiencies. In
this example, we are going to show the difference between three common threading models
when running a scene with a huge number of quad geometries, in three rendering windows
of an osgViewer::CompositeViewer, synchronously.

1.	 Include the necessary headers:

#include <osg/Group>
#include <osgDB/ReadFile>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/CompositeViewer>

Chapter 12

[329]

2.	 The quads can be generated with the osg::createTexturedQuadGeometry()
function. Their positions are decided simply by a random number generator. One
such quad doesn't consume too much system resource. But a considerable number
of these quads without using object sharing, will quickly waste system and video
card memory (because of the construction of each geometry's display list), which is
helpful for testing the system load capacity:

#define RAND(min, max) \
 ((min) + (float)rand()/(RAND_MAX+1) * ((max)-(min)))
osg::Geode* createMassiveQuads(unsigned int number)
{
 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 for (unsigned int i=0; i<number; ++i)
 {
 osg::Vec3 randomCenter;
 randomCenter.x() = RAND(-100.0f, 100.0f);
 randomCenter.y() = RAND(1.0f, 100.0f);
 randomCenter.z() = RAND(-100.0f, 100.0f);

 osg::ref_ptr<osg::Drawable> quad =
 osg::createTexturedQuadGeometry(
 randomCenter,
 osg::Vec3(1.0f, 0.0f, 0.0f),
 osg::Vec3(0.0f, 0.0f, 1.0f)
);
 geode->addDrawable(quad.get());
 }
 return geode.release();
}

3.	 The composite viewer requires a separate osgViewer::View instance for
the rendering windows. The window location and size are determined by the
setUpViewInWindow() method:

osgViewer::View* createView(int x, int y, int w, int h,
 osg::Node* scene)
{
 osg::ref_ptr<osgViewer::View> view = new osgViewer::View;
 view->setSceneData(scene);
 view->setUpViewInWindow(x, y, w, h);
 return view.release();
}

Improving Rendering Efficiency

[330]

4.	 In the main entry, we first use an argument parser to select a threading model. By
default, OSG will automatically choose the best threading strategy according to
the number of processors and rendering windows of the application, that is, the
AutomaticSelection case. But we can still specify a way to handle multithreaded
rendering from inbuilt ones, including SingleThreaded, ThreadPerContext, and
ThreadPerCamera:

osg::ArgumentParser arguments(&argc, argv);

osgViewer::ViewerBase::ThreadingModel th =
 osgViewer::ViewerBase::AutomaticSelection;
if (arguments.read("--single")) th =
 osgViewer::ViewerBase::SingleThreaded;
else if (arguments.read("--useContext")) th =
 osgViewer::ViewerBase::ThreadPerContext;
else if (arguments.read("--useCamera")) th =
 osgViewer::ViewerBase::ThreadPerCamera;

5.	 Create three rendering views and apply massive quad geometries to each of
them. Totally, 20 thousand quads are allocated in this example for the purpose
of illustrating different threading models:

osgViewer::View* view1 = createView(50, 50, 640, 480,
 createMassiveQuads(10000));
osgViewer::View* view2 = createView(50, 550, 320, 240,
 createMassiveQuads(5000));
osgViewer::View* view3 = createView(370, 550, 320, 240,
 createMassiveQuads(5000));
view1->addEventHandler(new osgViewer::StatsHandler);

6.	 Create a composite viewer and set the user-specified threading model.
Note that the setThreadingModel() method here not only works for
osgViewer::CompositeViewer, but is also available for more common
osgViewer::Viewer instances:

osgViewer::CompositeViewer viewer;
viewer.setThreadingModel(th);

viewer.addView(view1);
viewer.addView(view2);
viewer.addView(view3);
return viewer.run();

7.	 Compile the application (assuming that its name is MyProject.exe) and enter
the following command in console mode:

	 # MyProject.exe --single

Chapter 12

[331]

8.	 The result is shown in the following image. Notice that the frame rate is only 20 for
the single threaded model, in which the update, cull, and draw phases are executed
one by one in the same thread:

Improving Rendering Efficiency

[332]

9.	 Change the argument --single to --useContext and start the test program
again. This time you will find the frame rate has increased. This is because OSG
uses separate threads for culling and drawing besides the user update phase,
which improves the rendering performance a lot.

Chapter 12

[333]

10.	Change the command line to --useCamera and restart the program once more.
This is actually the default strategy for most multi-processor computers these days.
It should be even better than the second threading model, because it uses different
threads for cameras and rendering windows, and runs threads on separate CPUs to
obtain maximum efficiency:

Improving Rendering Efficiency

[334]

What just happened?
The SingleThreaded threading models can be demonstrated by the diagram below. The
CULL and DRAW phases in each rendering window (view) may have different aggregated
time, and one frame here is defined as the total time starting from the first view's CULL, and
to the end of the last view's DRAW. User updating operations are ignored here because they
always take the same aggregated time in all threading models:

The updating, culling, and drawing operations are always executed in one thread. If there are
multiple sub-views, that is, multiple culling and drawing tasks to finish, then they are going
to be issued one by one. This is the most inefficient model of rendering the scene in OSG, but
it is still useful for testing new functionalities. It also simplifies the integration with GUIs such
as MFC and Qt. Because we do not care about thread conflicts, you may just put the run()
method of osgViewer::Viewer or osgVIewer::CompositeViewer in a GUI timer event
callback, instead of using an additional thread, as we have done in Chapter 9, Interacting
with Outside Elements.

The ThreadPerContext model can be described by the following image:

Every sub-view of the composite viewer will have its own thread in which to execute culling
and drawing tasks. Because of the parallelization characteristic of threads, the execution
time of a frame will be shorter than the total time of the longest CULL and DRAW pair. After
all DRAW tasks are finished, the user update of the next frame will start immediately.

This is much better in rendering performance than the first single-threaded model. It
can even make use of multiple processors because each thread can occupy an individual
processor in order to maximize the use of hardware resources.

Chapter 12

[335]

However, an even better solution is the ThreadPerCamera model. This separates the CULL
phase of each view from the DRAW phase and implements them in threads, too. This means
we can have at least one CULL thread and one DRAW thread for each rendering window and
therefore can make full use of multi-processor systems. Because the culling operations must
be related with an osg::Camera node (it manages view and projection matrices for view-
frustum culling), we call this threading model a "thread per camera" model, as illustrated in
the following image:

In this threading model, the DRAW phase is considered as two parallel processes, dispatching
commands on the CPU side, and issuing a rendering buffer swap to execute them on the GPU
side. The time-cost of swapping buffer operations can be unified and executed after all of
the DRAW dispatching operations are done. But before that, this threading model starts the
user UPDATE phase of the next frame in advance. This exciting work improves the rendering
performance again, but may cause unexpected results if a user's updates change scene data
that is being dispatched. That is why we are going to set a dynamic flag for scene objects that
may be modified:

node->setDataVariance(osg::Object::DYNAMIC);

By default, OSG will suggest the ThreadPerCamera threading model, if a multi-processor
system is detected.

Dynamic scene culling
The culling technique can be described easily: don't draw things you can't see. We can
achieve this goal in two main ways: by reducing polygon faces that do not need to be
detailed, and ignoring objects that are invisible in the current viewport.

Improving Rendering Efficiency

[336]

The former is usually implemented by level-of-detail (LOD) algorithms, which in OSG is done
by the osg::LOD class. The latter, which is actually the definition of scene culling, will aim to
find objects in the scene graph that don't need to be rendered at all. There are several kinds
of culling techniques assigned in OSG:

�� Back face culling: This is implemented by the osg::CullFace class, which
encapsulates OpenGL's glCullFace() function. It removes all polygons facing
away from the camera from the rendering pipeline, thus reducing the memory
traffic. This technique works well, especially for manifold watertight objects, but
may be erroneous for transparent objects or objects with holes.

�� Small feature culling: This technique enables the removal of objects that are too
small to be seen, based on a visibility test, the outcome of which is the number
of pixels that the object would affect if drawn. If that number is lower than the
user-defined mini-pixel threshold, the object will be removed from the rendering
list.

�� View-frustum culling: The idea here is simply not to render what is outside of the
viewing volume (often a truncated pyramid, that is, a frustum) defined by the view
and projection matrices of the rendering window. This is one of the most efficient
methods in modern rendering applications.

�� Occlusion culling: This technique attempts to determine what objects are totally
invisible because they are behind other objects. We will discuss this method soon,
in the next section.

Note that the small feature culling method may cause actual geometry points to be not
renderable. To disable this feature, we can make use of the setCullingMode() method
of the camera node:

camera->setCullingMode(
 camera->getCullingMode() & ~osg::Camera::SMALL_FEATURE_CULLING);

Occluders and occludees
When rendering a complex scene, it is very common that two or more objects are
overlapped, from the perspective of the viewer. This could lead to an overdraw, which means
that pixels at the same location will be written to the frame buffer several times, while the
final image only shows the last one. This causes efficiency losses because of multiple drawing
that is not necessary (so called overdrawing).

The Occlusion culling technique simply increases the rendering performance by not
rendering geometries hidden by other objects that are closer to the camera. The objects that
cover other renderables are called occluders, and the rest of the scene graph can be treated
as occludees (but it's not necessary to use such an unfamiliar word).

Chapter 12

[337]

The general occlusion culling algorithm performs a visibility test on every object in the scene
(of course, they should pass the view-frustum culling method first). The algorithm checks
whether an object is occluded by an occlusion representation, which consists of some
kind of occlusion information, for instance, polygonal clipping volumes, that can be used as
occluders.

OSG provides the osg::OccluderNode class for implementing a basic occlude object.
It is derived from osg::Group, and will check the relation between its occlusion
representation and all scene nodes and objects except its children. This means that the
osg::OccluderNode's child nodes will never be occluded and can thus represent the
geometry of the occluder.

Time for action – adding occluders to a complex scene
The scene which demonstrates how to use occlusion culling should have two parts: a huge
number of geometries that must be culled sometime to improve the efficiency, and a few
good enough osg::OccluderNode instances as occluders. Here we are going to create
massive data once more, and create an occluder plane, which can speed up the rendering
by removing quads that are behind it from the graphics pipeline.

1.	 Include the necessary headers:

#include <osg/Geometry>
#include <osg/Geode>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>

2.	 The massive quads creation function is listed here again. It is really helpful in this
chapter's examples, but not good for practical use:

#define RAND(min, max) \
 ((min) + (float)rand()/(RAND_MAX+1) * ((max)-(min)))
osg::Geode* createMassiveQuads(unsigned int number)
{
 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 for (unsigned int i=0; i<number; ++i)
 {
 osg::Vec3 randomCenter;
 randomCenter.x() = RAND(-100.0f, 100.0f);
 randomCenter.y() = RAND(1.0f, 100.0f);
 randomCenter.z() = RAND(-100.0f, 100.0f);

 osg::ref_ptr<osg::Drawable> quad =
 osg::createTexturedQuadGeometry(
 randomCenter,
 osg::Vec3(1.0f, 0.0f, 0.0f),

Improving Rendering Efficiency

[338]

 osg::Vec3(0.0f, 0.0f, 1.0f)
);
 geode->addDrawable(quad.get());
 }
 return geode.release();
}

3.	 In the main entry, we first create the occluder node:

osg::ref_ptr<osg::OccluderNode> occluderNode = new
osg::OccluderNode;

4.	 The occlusion representation class is osg::ConvexPlanarOccluder,
which is actually made up of a convex clipping polygon (defined by the
getOccluder() method) with several holes (defined by the addHole()
method). The polygon and hole vertices are added by the add() method of the
osg::ConvexPlanarPolygon class. The occlusion representation must be set to
the occluder node with the setOccluder() method:

osg::ref_ptr<osg::ConvexPlanarOccluder> cpo = new
 osg::ConvexPlanarOccluder;
cpo->getOccluder().add(osg::Vec3(-120.0f, 0.0f,-120.0f));
cpo->getOccluder().add(osg::Vec3(120.0f, 0.0f,-120.0f));
cpo->getOccluder().add(osg::Vec3(120.0f, 0.0f, 120.0f));
cpo->getOccluder().add(osg::Vec3(-120.0f, 0.0f, 120.0f));
occluderNode->setOccluder(cpo.get());

5.	 We create a big geometry plane as the occlusion representation. To render its
shape in the scene along with the massive occludees, we have to add the geometry
that is created by osg::createTexturedQuadGeometry() as the occluder
node's child:

osg::ref_ptr<osg::Geode> occluderGeode = new osg::Geode;
occluderGeode->addDrawable(osg::createTexturedQuadGeometry(
 osg::Vec3(-120.0f, 0.0f,-120.0f),
 osg::Vec3(240.0f, 0.0f, 0.0f),
 osg::Vec3(0.0f, 0.0f, 240.0f))
);
occluderNode->addChild(occluderGeode.get());

Chapter 12

[339]

6.	 When constructing the scene graph, the group node of the 100,000 objects and the
occluder must be siblings under the same root node. We will also turn off lighting
here in order to focus on observing if there are any efficiency improvements using
occluders. After that, the osgViewer::StatsHandler is used to obtain scene
statistics, and we can start the viewer:

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(createMassiveQuads(100000));
root->addChild(occluderNode.get());
root->getOrCreateStateSet()->setMode(
 GL_LIGHTING, osg::StateAttribute::OFF);

osgViewer::Viewer viewer;
viewer.addEventHandler(new osgViewer::StatsHandler);
viewer.setSceneData(root.get());
return viewer.run();

7.	 Press the S key here to see the detailed frame rate. Drag the main camera with
your left mouse button pressed to rotate the whole world in your eyes. The plane
occluder can always cull away small quads that are totally hidden behind it, when
looking from the current view point:

Improving Rendering Efficiency

[340]

8.	 You may soon find that the maximum frame rate happens when the plane is
completely in front of the eye point (as shown in the previous image), and the
minimum one happens when the plane covers none of the massive number of
quads (as shown in the following image):

What just happened?
Somebody may think of implementing an algorithm that computes the occlusions between
each of the two objects in the scene. Any object that may be hidden by one or more objects
will thus be picked up and removed from the current drawing list. In this ideal situation, we
don't need the concepts of occluders or occludes any more.

Unfortunately, this imagination is nearly impossible at present. An algorithmic approach
to avoid inefficiency may cost too much in terms of speed. The previous example shows
the time-cost of the culling work. The developer is working on a graphics system with the
vertical synchronization (V-sync) at 60 Hz. The maximum frame rate should therefore be
equal or less than 60 fps (frames per second). But here the maximum frame rate (when the
occluder plane hides all other quads totally) is only about 40 fps, because of the dissipation
of comparing the plane with 100,000 objects. Thus, an actual ideal efficient occlusion culling
algorithm must perform simple enough tests, a limited number of times.

Chapter 12

[341]

Have a go hero – adding holes to the occluder
The osg::ConvexPlanarOccluder class, which is the occlusion representation
of osg::OccluderNode, accepts the osg::ConvexPlanarPolygon variable as
the clipping component (via the setOccluder() method). Besides, it also accepts a
number of holes to increase the complexity of the representation. Use the addHole()
method with an osg::ConvexPlanarPolygon parameter to configure the
osg::ConvexPlanarOccluder object, and don't forget to update the corresponding
geometry representation, which is often placed as the child of the occlude node.

Improving your application
There are a lot of tricks to improve the rendering performance of applications with a large
amount of data. But the essence of them is easy to understand: the smaller the number
of resources (geometries, display lists, texture objects, and so on) allocated, the faster and
smoother the user application is.

There are lots of ideas on how to find the bottleneck of an inefficient application. For
example, you can replace certain objects by simple boxes, or replace textures in your
application by 1x1 images to see if the performance can increase, thanks to the reduction of
geometries and texture objects. The statistics class (osgViewer::StatsHandler, or press
the S key in the osgviewer) can also provide helpful information.

To achieve a less-enough scene resource, we can refer to the following table and try to
optimize our applications if they are not running in good shape:

Problem Influence Possible solution

Too many geometries Low frame rate and
huge resource cost

Use LOD and culling techniques to reduce
the vertices of the drawables.

Use primitive sets and the index mechanism
rather than duplicate vertices.

Merge geometries into one, if possible. This
is because one geometry object allocates
one display list, and too many display lists
occupy too much of the video memory.

Share geometries, vertices, and nodes as
often as possible.

Improving Rendering Efficiency

[342]

Problem Influence Possible solution

Too many
dynamic objects
(configured with the
setDataVariance()
method)

Low frame rate
because the DRAW
phase must wait
until all dynamic
objects finish
updating

Don't use the DYNAMIC flag on nodes and
drawables that do not need to be modified
on the fly.

Don't set the root node to be dynamic unless
you are sure that you require this, because
data variance can be inherited in the scene
graph.

Too many texture objects Low frame rate and
huge resource cost

Share rendering states and textures as
much as you can. Lower the resolution and
compress them using the DXTC format if
possible.

Use osg::TextureRectangle to
handle non-power-of-two sized textures, and
osg::Texture2D for regular 2D textures.

Use LOD to simplify and manage nodes with
large-sized textures.

The scene graph structure
is "loose", that is, nodes
are not grouped together
effectively.

Very high cull and
draw time, and
many redundant
state changes

If there are too many parent nodes, each
with only one child, which means the scene
has as many group nodes as leaf nodes, and
even as many drawables as leaf nodes, the
performance will be totally ruined.

You should rethink your scene graph and
group nodes that have close features and
behaviors more effectively.

Loading and unloading
resources too frequently

Lower and lower
running speed and
wasteful memory
fragmentation

Use the buffer pool to allocate and release
resources. OSG has already done this to
textures and buffer objects, by default.

An additional helper is the osgUtil::Optimizer class. This can traverse the scene graph
before starting the simulation loop and do different kinds of optimizations in order to
improve efficiency, including removing redundant nodes, sharing duplicated states, checking
and merging geometries, optimizing texture settings, and so on. You may start the optimizing
operation with the following code segment:

osgUtil::Optimizer optimizer;
optimizer.optimize(node);

Some parts of the optimizer are optional. You can see the header file include/
osgUtil/Optimizer for details.

Chapter 12

[343]

Time for action – sharing textures with a customized callback
We would like to explain the importance of scene optimization by providing an extreme
situation where massive textures are allocated without sharing the same ones. We have a basic
solution to collect and reuse loaded images in a file reading callback, and then share all textures
that use the same image object and have the same parameters. The idea of sharing textures
can be used to construct massive scene graphs, such as digital cities; otherwise, the video card
memory will soon be eaten up and thus cause the whole application to slow down and crash.

1.	 Include the necessary headers:

#include <osg/Texture2D>
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/Group>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2.	 The function for quickly producing massive data can be used in this example, once
more. This time we will apply a texture attribute to each quad. That means that we
are going to have a huge number of geometries, and the same amount of texture
objects, which will be a heavy burden for rendering the scene smoothly:

#define RAND(min, max) \
 ((min) + (float)rand()/(RAND_MAX+1) * ((max)-(min)))
osg::Geode* createMassiveQuads(unsigned int number,
 const std::string& imageFile)
{
 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 for (unsigned int i=0; i<number; ++i)
 {
 osg::Vec3 randomCenter;
 randomCenter.x() = RAND(-100.0f, 100.0f);
 randomCenter.y() = RAND(1.0f, 100.0f);
 randomCenter.z() = RAND(-100.0f, 100.0f);

 osg::ref_ptr<osg::Drawable> quad =
 osg::createTexturedQuadGeometry(
 randomCenter,
 osg::Vec3(1.0f, 0.0f, 0.0f),
 osg::Vec3(0.0f, 0.0f, 1.0f)
);

 osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
 texture->setImage(osgDB::readImageFile(imageFile));
 quad->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, texture.get());

Improving Rendering Efficiency

[344]

 geode->addDrawable(quad.get());
 }
 return geode.release();
}

3.	 The createMassiveQuads() function is, of course, awkward and ineffective
here. However, it demonstrates a common situation: assuming that an application
needs to often load image files and create texture objects on the fly, it is necessary
to check if an image has been loaded already and then share the corresponding
textures automatically. The memory occupancy will be obviously reduced if there
are plenty of textures that are reusable. To achieve this, we should first record
all loaded image filenames, and then create a map that saves the corresponding
osg::Image objects.

4.	 Whenever a new readImageFile() request arrives, the osgDB::Registry
instance will try using a preset osgDB::ReadFileCallback to perform
the actual loading work. If the callback doesn't exist, it will call the
readImageImplementation() to choose an appropriate plug-in that will
load the image and return the resultant object. Therefore, we can take over the
reading image process by inheriting the osgDB::ReadFileCallback class and
implementing a new functionality that compares the filename and re-uses the
existing image objects, with the customized getImageByName() function:

class ReadAndShareImageCallback : public osgDB::ReadFileCallback
{
public:
 virtual osgDB::ReaderWriter::ReadResult readImage(
 const std::string& filename, const osgDB::Options* options
);

protected:
 osg::Image* getImageByName(const std::string& filename)
 {
 ImageMap::iterator itr = _imageMap.find(filename);
 if (itr!=_imageMap.end()) return itr->second.get();
 return NULL;
 }

 typedef std::map<std::string, osg::ref_ptr<osg::Image> >
ImageMap;
 ImageMap _imageMap;
};

Chapter 12

[345]

5.	 The readImage() method should be overridden to replace the current reading
implementation. It will return the previously-imported instance if the filename
matches an element in the _imageMap, and will add any newly-loaded image
object and its name to _imageMap, in order to ensure that the same file won't be
imported again:

osgDB::ReaderWriter::ReadResult ReadAndShareImageCallback::readIma
ge(
 const std::string& filename, const osgDB::Options* options)
{
 osg::Image* image = getImageByName(filename);
 if (!image)
 {
 osgDB::ReaderWriter::ReadResult rr;
 rr = osgDB::Registry::instance()->readImageImplementation(
 filename, options);
 if (rr.success()) _imageMap[filename] = rr.getImage();
 return rr;
 }
 return image;
}

6.	 Now we get into the main entry. The file-reading callback is set by the
setReadFileCallback() method of the osgDB::Registry class, which
is designed as a singleton. Meanwhile, we have to enable another important
run-time optimizer, named osgDB::SharedStateManager, that can be defined
by setSharedStateManager() or getOrCreateSharedStateManager().
The latter will assign a default instance to the registry:

osgDB::Registry::instance()->setReadFileCallback(
 new ReadAndShareImageCallback);
osgDB::Registry::instance()->getOrCreateSharedStateManager();

7.	 Create the massive scene graph. It consists of two groups of quads, each of which
uses a unified image file to decorate the quad geometry. In total, 1,000 quads will
be created, along with 1,000 newly-allocated textures. Certainly, there are too many
redundant texture objects (because they are generated from only two image files) in
this case:

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(createMassiveQuads(500, "Images/lz.rgb"));
root->addChild(createMassiveQuads(500, "Images/osg64.png"));

Improving Rendering Efficiency

[346]

8.	 The osgDB::SharedStateManager is used for maximizing the reuse of textures
and state sets. It is actually a node visitor, traversing all child nodes' state sets and
comparing them when the share() method is invoked. State sets and textures with
the same attributes and data will be combined into one:

osgDB::SharedStateManager* ssm =
 osgDB::Registry::instance()->getSharedStateManager();
if (ssm) ssm->share(root.get());

9.	 Finalize the viewer:

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

10.	Now the application starts with a large number of textured quads. With
the ReadAndShareImageCallback sharing image objects, and the
osgDB::SharedStateManager sharing textures, the rendering process can work
without a hitch. Try commenting out the lines of setReadFileCallback() and
getOrCreateSharedStateManager() and restart the application, and then see
what has happened. The Windows Task Manager is helpful in displaying the amount
of currently-used memory here:

Chapter 12

[347]

What just happened?
You may be curious about the implementation of osgDB::SharedStateManager. It
collects rendering states and textures that firstly appear in the scene graph, and then
replaces duplicated states of successive nodes with the recorded ones. It compares two
states' member attributes in order to decide whether the new state should be recorded
(because it's not the same as any of the recorded ones) or replaced (because it is a
duplication of the previous one).

For texture objects, the osgDB::SharedStateManager will determine if they are exactly
the same by checking the data() pointer of the osg::Image object, rather than by
comparing every pixel of the image. Thus, the customized ReadAndShareImageCallback
class is used here to share image objects with the same filename first, and the
osgDB::SharedStateManager shares textures with the same image object and
other attributes.

The osgDB::DatabasePager also makes use of osgDB::SharedStateManager to share
states of external scene graphs when dynamically loading and unloading paged nodes. This is
done automatically if getOrCreateSharedStateManager() is executed.

Have a go hero – sharing public models
Can we also share models with the same name in an application? The answer is absolutely
yes. The osgDB::ReadFileCallback could be used again by overriding the virtual method
readNode(). Other preparations include a member std::map for recording filename and
node pointer pairs, and a user-defined getNodeByName() method as we have just done in
the last example.

Paging huge scene data
Are you still struggling with the optimization of huge scene data? Don't always pay attention
to the rendering API itself. There is no "super" rendering engine in the world that can work
with unlimited datasets. Consider using the scene paging mechanism at this time, which can
load and unload objects according to the current viewport and frustum. It is also important
to design a better structure for indexing regions of spatial data, like quad-tree, octree,
R-tree, and the binary space partitioning (BSP).

Improving Rendering Efficiency

[348]

Making use of the quad-tree
A classic quad-tree structure decomposes the whole 2D region into four square children
(we call them cells here), and recursively subdivides each cell into four regions, until a cell
reaches its target capacity and stops splitting (a so-called leaf). Each cell in the tree either
has exactly four children, or has no children. It is mostly useful for representing terrains or
scenes on 2D planes.

The quad-tree structure is useful for view-frustum culling terrain data. Because the terrain
is divided into small pieces that are a part of it, we can easily render pieces of small data in
the frustum, and discard those that are invisible. This can effectively unload a large number
of chunks of a terrain from memory at a time, and load them back when necessary—which is
the basic principle of dynamic data paging. This process can be progressive: when the terrain
model is far enough from the viewer, we may only handle its root and first levels. But as it is
drawing near, we can traverse down to corresponding levels of the quad-tree, and cull and
unload as many cells as possible, to keep the load balance of the scene.

Time for action – building a quad-tree for massive rendering
This is the last example in our OSG beginners' book, in which we would like to show how
OSG handles massive data (often massive terrain data) with the quad-tree structure and
paged nodes (osg::PagedLOD). We are going to construct a terrain model with fake
elevation data, and use a recursion to build all child cells of a complete quad-tree. These
cells are saved into separate files and managed by the osgDB::DatabasePager, which is
introduced in brief in Chapter 5, Managing Scene Graph.

1.	 Include the necessary headers:

#include <osg/ShapeDrawable>
#include <osg/PagedLOD>
#include <osgDB/WriteFile>
#include <sstream>

2.	 Define some global variables. These will define the dimensions of a regularly-spaced
grid of elevation points, including the data pointer (g_data), intervals of X and
Y directions (g_dx and g_dy), rows and columns of the leaf cell in the quad-tree
(g_minCols and g_minRows), and rows and columns of the entire dataset
(g_numCols and g_numRows):

float* g_data = NULL;
float g_dx = 1.0f;
float g_dy = 1.0f;
unsigned int g_minCols = 64;

Chapter 12

[349]

unsigned int g_minRows = 64;
unsigned int g_numCols = 1024;
unsigned int g_numRows = 1024;

3.	 The following figure shows how variables work here:

4.	 These preset global values indicate that we have a 1024x1024 area to be rendered,
which contains over one million vertices. This already slows down the rendering
of normal geometries, but it's far from enough for representing a digital terrain.
Fortunately, we have the quad-tree and paging mechanism, which can solve the
massive data problem in a nearly perfect way.

5.	 We will first fill the elevation grid (g_data) with random points. This is done via
a simple createMassiveData() function. To retrieve an elevation at a certain
column and row, we have to define an additional getOneData() function. This
gets the minimum value between the input column/row number and the total
value with the osg::minimum() function, and then finds the elevation data
from the g_data pointer:

#define RAND(min, max) \
 ((min) + (float)rand()/(RAND_MAX+1) * ((max)-(min)))
void createMassiveData()
{
 g_data = new float[g_numCols * g_numRows];

Improving Rendering Efficiency

[350]

 for (unsigned int i=0; i<g_numRows; ++i)
 {
 for (unsigned int j=0; j<g_numCols; ++j)
 g_data[i*g_numCols + j] = RAND(0.5f, 0.0f);
 }
}

float getOneData(unsigned int c, unsigned int r)
{
 return g_data[osg::minimum(r, g_numRows-1) * g_numCols +
 osg::minimum(c, g_numCols-1)];
}

6.	 The createFileName() function is another important customized function for
naming paged data files. It will be used later in this example:

std::string createFileName(unsigned int lv,
 unsigned int x, unsigned int y)
{
 std::stringstream sstream;
 sstream << "quadtree_L" << lv << "_X" << x << "_Y" << y <<
".osg";
 return sstream.str();
}

7.	 The core of the quad-tree construction is the outputSubScene() function. This
should be called recursively to build all child cells of a quad-tree, until an end
condition is reached. The lv, x, and y parameters indicate the depth level of the
quad-tree cell, as well as the X/Y indices in the current level. The color parameter
is just used for distinguishing cells in a simple way:

osg::Node* outputSubScene(unsigned int lv,
 unsigned int x, unsigned int y,
 const osg::Vec4& color)
{
 …
}

8.	 The indices of the cell don't equal the real position of the elevation value in the
g_data pointer. Thus, we have to compute how many elevation points are
contained in the current cell, along with the indices of the start/end column and
row, and then save them for later use:

unsigned int numInUnitCol = g_numCols / (int)powf(2.0f,
 (float)lv);
unsigned int numInUnitRow = g_numRows / (int)powf(2.0f,
 (float)lv);

Chapter 12

[351]

unsigned int xDataStart = x * numInUnitCol,
 xDataEnd = (x+1) * numInUnitCol;
unsigned int yDataStart = y * numInUnitRow,
 yDataEnd = (y+1) * numInUnitRow;

9.	 Assuming that the root level of a quad-tree is 0, we have a formula that explains the
previous code segment: (Points in a cell) = (Total points) / (level-th
power of 2).

10.	We can easily figure out that a level 1 cell contains a quarter of all points, and a level
2 cell contains one sixteenth of them. That means the rendering of four level 1 cells
still requires all data to be drawn, if none of them are culled. So, is there a solution
that can reduce the vertex number of these lower levels, that is, to downsample the
height field in these cells? For example, each level 1 cell of a 1024x1024 dataset has
512x512 points. If these can be downsampled to 64x64, we will only have to render
no more than 20,000 points at one time.

11.	The answer is absolutely yes. As we have just discussed, the quad-tree can be
progressively traversed as if it is a LOD (level-of-detail) based graph. Low levels work
when the model is still far away and can't represent too many details, and leaf cells
will come with uncompressed data only when the viewpoint is near enough.

12.	We will create the downsampling height field for the current level using the
osg::HeightField class, which is derived from osg::Shape and can be used by
osg::ShapeDrawable. Its origin is defined as the bottom-left corner, and the skirt
height can prevent gaps between two terrain cells:

bool stopAtLeafNode = false;
osg::ref_ptr<osg::HeightField> grid = new osg::HeightField;
grid->setSkirtHeight(1.0f);
grid->setOrigin(osg::Vec3(g_dx*(float)xDataStart,
 g_dy*(float)yDataStart, 0.0f));

13.	We will first check to see if the current cell reaches the last level, by comparing
the start and end indices with the global g_minCols and g_minRows. If it does,
we simply allocate the height field with the computed columns and rows and X/Y
intervals, and read and set each point of the allocated elevation grid:

if (xDataEnd-xDataStart<=g_minCols &&
 yDataEnd-yDataStart<=g_minRows)
{
 grid->allocate(xDataEnd-xDataStart+1, yDataEnd-yDataStart+1
);
 grid->setXInterval(g_dx);
 grid->setYInterval(g_dy);
 for (unsigned int i=yDataStart; i<=yDataEnd; ++i)

Improving Rendering Efficiency

[352]

 {
 for (unsigned int j=xDataStart; j<=xDataEnd; ++j)
 {
 grid->setHeight(j-xDataStart, i-yDataStart,
 getOneData(j, i));
 }
 }
 stopAtLeafNode = true;
}

14.	Otherwise, we should obtain downsampling data and keep the height field to a
fixed, low resolution, using specific g_minCols and g_minRows variables. The
simplest method here is to pick one point and add it to the osg::HeightField
every few points. The X/Y intervals of the elevation grid should also be changed:

else
{
 unsigned int jStep = (unsigned int)ceilf(
 (float)(xDataEnd - xDataStart) / (float)g_minCols);
 unsigned int iStep = (unsigned int)ceilf(
 (float)(yDataEnd - yDataStart) / (float)g_minRows);

 grid->allocate(g_minCols+1, g_minRows+1);
 grid->setXInterval(g_dx * jStep);
 grid->setYInterval(g_dy * iStep);
 for (unsigned int i=yDataStart, ii=0; i<=yDataEnd;
 i+=iStep, ++ii)
 {
 for (unsigned int j=xDataStart, jj=0; j<=xDataEnd;
 j+=jStep, ++jj)
 {
 grid->setHeight(jj, ii, getOneData(j, i));
 }
 }
}

15.	Set the height field to an osg::ShapeDrawable instance, and set the color.
Add the shape to osg::Geode. If this is the leaf cell of the quad-tree, the
recursion will end:

osg::ref_ptr<osg::ShapeDrawable> shape =
 new osg::ShapeDrawable(grid.get());
shape->setColor(color);

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(shape.get());
if (stopAtLeafNode) return geode.release();

Chapter 12

[353]

16.	Now we construct the paged nodes for the OSG scene. A quad-tree cell always has
four children, except for leaf ones. Their levels and indices should be increased
properly before starting the next level's recursion call. We also specify four different
colors, red, green, blue and yellow, for rendering different child cells:

osg::ref_ptr<osg::Group> group = new osg::Group;
group->addChild(
 outputSubScene(lv+1, x*2, y*2, osg::Vec4(1.0f,0.0f,0.0f,1.0f))
);
group->addChild(
 outputSubScene(lv+1, x*2, y*2+1, osg::Vec4(0.0f,1.0f,0.0f,1.0f))
);
group->addChild(
 outputSubScene(lv+1, x*2+1,y*2+1,
osg::Vec4(0.0f,0.0f,1.0f,1.0f)));
group->addChild(
 outputSubScene(lv+1, x*2+1, y*2, osg::Vec4(1.0f,1.0f,0.0f,1.0f))
);

17.	The paged LOD node representing the current quad-tree level can be made up
of two children: a rough model (the downsampled height field) that is cached for
displaying at a far distance, and the fine "model" which actually consists of four
cells describing the next level in the quad-tree. Because the next level can still be
described as paged LOD nodes, we actually build a quad-tree style scene graph full
of osg::PagedLOD nodes. The group node of next level cells can be saved into a
separate file, with the filename being generated by createFileName():

osg::ref_ptr<osg::PagedLOD> plod = new osg::PagedLOD;

std::string filename = createFileName(lv, x, y);
plod->insertChild(0, geode.get());
plod->setFileName(1, filename);

osgDB::writeNodeFile(*group, filename);

18.	The paged LOD node must have a valid bounding sphere in order to make it correctly
pass the view-frustum culling. Here, we have to successively set the center mode to
user-defined, and define the center and radius of our customized bounding sphere.
After that, we will set the visibility ranges of two child levels of the LOD node. The
cutoff parameter is just an empirical value:

plod->setCenterMode(osg::PagedLOD::USER_DEFINED_CENTER);
plod->setCenter(geode->getBound().center());
plod->setRadius(geode->getBound().radius());

float cutoff = geode->getBound().radius() * 5.0f;
plod->setRange(0, cutoff, FLT_MAX);
plod->setRange(1, 0.0f, cutoff);
return plod.release();

Improving Rendering Efficiency

[354]

19.	 In the main entry, the createMassiveData() function must be the first thing
executed, in order to allocate the global terrain data. And we can add the root
of the quad-tree to an osg::Group root node and save it into a file, too:

createMassiveData();

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(
 outputSubScene(0, 0, 0, osg::Vec4(1.0f, 1.0f, 1.0f, 1.0f)));
osgDB::writeNodeFile(*root, "quadtree.osg");

delete g_data;
return 0;

20.	Assuming that the executable name is MyProject.exe. Now we can just enter
the console mode and enter:

MyProject.exe

osgviewer quadtree.osg

21.	The result is smooth and clear. We have just built a terrain model using customized
elevation points. Looking from far away, it is obviously divided into four pieces,
which is in fact the first four square cells of the quad-tree:

22.	Move towards the terrain and you will see more detailed height fields within
different cells of different levels:

Chapter 12

[355]

23.	The most detailed data will only be rendered when the viewer is very close to the
ground. This is because the last four leaf cells of the quad-tree can only be loaded
when the highest level of paged nodes is reached by the OSG backend:

Improving Rendering Efficiency

[356]

What just happened?
In this last example of this book, we haven't provided anything new, but have only made use of
the same, known node and drawable types (osg::PagedLOD and osg::HeightField) that
we have already seen elsewhere in the book, as well as a world famous algorithm—quad-tree,
to construct a complex scene graph that can perform dynamic scene paging, smoothly.

Obviously, there is a lot more work to do before we can put this small example into practical
use. Terrain data with non-power-of-two row or column numbers may produce incorrect
results at present. The concept of coordinate system datum (for instance, WGS84) is not
included, so geometric earth models will not be creatable. The randomly-generated height
data is also not ideal at all. Some .geotiff format imagery and elevation data may be good
enough as a replacement, if you have an interest in extending the example in any way.

Pop quiz – number of created levels and files
The quad-tree creation example generates 86 files at one time in order to construct a
complete quad-tree of four levels (L0-L3). Can you tell the reason why we have exactly four
levels of terrain cells, and how each of the 86 files indicate their locations and indices within
the tree hierarchy?

Have a go hero – testing a new terrain creation tool
Finally, we would like to introduce an independent terrain database creation tool named
VirtualPlanetBuilder (or VPB for short), which reads a wide range of geospatial imagery and
elevation data, and builds small pieces of terrain area with layers of paged LOD nodes. The
previous example code actually comes from the theory of the VPB project.

VPB mainly depends on the OSG project and the third-party GDAL project. VPB is
described and provided at: http://www.openscenegraph.org/projects/
VirtualPlanetBuilder.

And GDAL can be found at:http://www.gdal.org/.

After downloading the source code, use CMake to build native solutions or makefiles, choose
ALL_BUILD in your Visual Studio interface (or use make install in the UNIX shell), and
obtain the VPB libraries and utilities. Use the vpbmaster executable to quickly build an OSG
native format terrain from .geotiff files, such as:

vpbmaster -d dem_file.tif -t dom_file.tif -o output.osgb

Because of the ability to handle a multi-terabyte database, create tiles across networks
of computers, and read multi source imagery and DEM file formats, VPB can be used as
a complete terrain-creation tool. You will always have the time to taste it and see if it can
build the whole world for your applications. So good luck with it!

Chapter 12

[357]

A demo database generated by VPB can be found on the web. You may use the osgviewer
utility to view it, unless you don't have the osgdb_curl plug-in built (it requires the libcurl
library):

osgviewer http://www.openscenegraph.org/data/earth_bayarea/earth.ive

For more information about earth and terrain rendering, have a look at the osgEarth project
(http://osgearth.org/). This does a similar job, by alternative creating terrain tiles
offline or at run-time.

Summary
This beginners' book can only help you to develop a general ability to develop 3D
applications with OSG, as well as looking for resources and implementations in the source
code and community by themselves. But to master OSG's usage and construct your own
projects with it, the only way to Rome will be to practice, practice, and practice. It is also a
good practice to share your opinions, and contribute to the open source community all the
time, because discussions and communications are always necessary processes to improve
ourselves, too.

In this chapter, we specially covered:

�� Making use of the OpenThreads library to develop multithreaded programs

�� How to understand and choose different threading models in OSG, including the
single-threaded, thread-per-graphics-context, and thread-per-camera models

�� A basic occlusion culling implementation with the osg::OccluderNode class

�� A basic texture sharing implementation for different external files using the
osgDB::ReadFileCallback and osgDB::SharedStateManager

�� The quad-tree structure and its initial implementation for building large terrain data
in OSG, as well as a brief introduction of the professional creation tool VPB

Pop Quiz Answers

Chapter 2

Dependencies of osgviewer
It will certainly fail if you try to run the osgviewer executable and the model file on a clean
system without necessary dependencies. You will at least need the OpenThreads, osg,
osgDB, osgUtil, osgGA, osgText, and osgViewer libraries, as well as the osgdb_osg
and osgdb_deprecated_osg plugins to make this simple scene work. The situation can be
more complex if you are configuring a debug version of OSG (it may require additional C/C++
runtime libraries).

The difference between ALL_BUILD and 'build all'
The final outputs may be the same, but the process may not. The "batch building all"
operation means you have to check and build every project in the solution, including
ALL_BUILD and INSTALL. That will cause the projects handled by ALL_BUILD to be
built twice! Although they won't be actually compiled again if already up-to-date, it is
still a huge waste of time when compared with the standard steps.

Pop Quiz Answers

[360]

Chapter 3

Configuring OSG path options yourselves
OSG_INCLUDE_DIR can be set to the include directory in the installation folder.
OSG_LIBRARY must be set to the osg library (for example, osg.lib under Windows).
Here, OSG_LIBRARY_DEBUG means the debug version (always with a postfix of "d", for
example, osgd.lib). Others may be deduced by analogy.

Release a smart pointer
If the target object is not referenced by any other element before returning from the function,
it will actually be deleted at the end of the function because the local osg::ref_ptr<>
variable is out of scope. That makes the returned pointer invalid. The release() method
solves the problem here. However, if you have some other element whose life is beyond the
function referencing target before returning, try using target.get() instead, because the
reference count should not be cleared this time.

Chapter 4

Results of different primitive types
The OpenGL documentation and some web tutorials can explain them clearly:
http://www.opengl.org/sdk/docs/man/xhtml/glBegin.xml.

There is also an osggeometry example in the OSG source code, located at
examples\osggeometry.

Optimizing indexed geometries
If you are drawing in GL_TRIANGLES mode without indexing, there will be up to 24 vertices
allocated. GL_TRIANGLE_STRIPS works fine while triangles are connected in groups.
For the case of representing an octahedron, we could use a triangle strip primitive set
(2, 5, 3, 4, 1, 0, 2, 3, as shown in the figure in the Drawing an octahedron section) and two
single triangles (4, 0, 3, and 5, 2, 1) to implement the same result.

Appendix

[361]

Chapter 5

Fast dynamic casting
The asGroup() and asGeode() methods are virtual methods that could be re-implemented
by subclasses such as osg::Group and osg::Geode. These methods actually don't do
any runtime check and simply return NULL if not overridden, so they are always faster than
dynamic_cast<>. The limitation here is that they only convert nodes into specify types, so
if you are going to cast a certain node pointer to the osg::LOD type, use dynamic_cast<>
instead:

osg::LOD* lod = dynamic_cast<osg::LOD*>(node);

Matrix multiplications
There is a website that excellently introduces the concepts here, as well as explains the
reason why OSG does not use the column major and prefix notations that are introduced
in OpenGL books: http://www.openscenegraph.org/projects/osg/wiki/
Support/Maths/MatrixTransformations.

Chapter 6

Lights without sources
As lights are positional states in OpenGL, a light object attached to a node will always be
affected by the node's local matrix. That is to say, the light will follow the node and work as
a "headlight" of the moving vehicle. The osg::LightSource node can be used to fix the
position of the light, with the setReferenceFrame() method. A fixed light can be treated
as a "skylight" of the whole world.

Replacements of built-in uniforms
There are no standard ways to implement built-in uniforms. You could always use one or
more of your own uniforms to emulate them, for example, use multiple vec4 variables
(ambient, diffuse, specular, and so on) and float values (spot cut-off, attenuation) to deliver
light parameters. The book OpenGL Shading Language written by Randi J. Rost should be
good reading material for beginners.

Pop Quiz Answers

[362]

Chapter 7

Changing model positions in the HUD camera
It will use the projection matrix of its parent camera (or main camera) when there is no
preset one. A model filled the entire screen means that you can just wrap it up with a
truncated pyramid (perspective) or cube (orthographic). An upside down effect can be
implemented using:

setProjectionMatrixAsFrustum(left, right, top, bottom, near, far);
 // Swapped top and bottom

To transform a specified part of 3D scenes into 2D images, you have to carefully set the
view frustum. The following website may help in some ways: http://www.songho.ca/
opengl/gl_projectionmatrix.html.

Another way to display the same scene in different views
The following example code segments will show the same scene in two cameras:

osg::ref_ptr<osg::Camera> camera1 = new osg::Camera;
camera1->setViewport(0, 0, 400, 600);
camera1->addChild(scene);
osg::ref_ptr<osg::Camera> camera2 = new osg::Camera;
camera2->setViewport(400, 0, 400, 600);
camera2->addChild(scene);

Consider setting a view matrix (using absolute or relative coordinates, as you wish) for each
and then adding all sub-cameras to a root node.

Chapter 8

Adding or setting callbacks
Each nested callback is handled in the traverse() method of the last one, recursively.
Reading the source code in src/osg/NodeCallback.cpp will also be helpful here. It
is recommended to use addUpdateCallback() to add new callback objects in most
situations because there may be other callbacks applied to the same node.

Appendix

[363]

Choosing the alpha setter and the callback
Consider using RGBA textures with alpha values. Sometimes they are more preferred to be
used to implement blending and transparent effects.

All kinds of update callbacks can be used to achieve fade-in and fade-out effects; just use a
member variable in the callback class to record the material pointer.

As fade-in means to change the alpha value from 0 to 1, a fade-out effect should simply
change it from 1 to 0. So the only line of code to change in the example is:

float alpha = 1.0f - _motion->getValue();

Chapter 9

Handling events within nodes
Node callbacks can directly perform node operations according to future user events, for
example, moving the node when the user is pressing a key. Event handlers are more generic.
They are useful in configuring global settings and handling events for all kinds of scene
elements.

In this example, event callback is easier to implement than event handlers, but remember,
too many callbacks may also cause performance problems.

Global and node-related events
Not at all. Timer and picking are all global behaviors that are not related to a certain node,
so it is confusing if we implement them in a node callback without any more operations to
the node itself.

Chapter 10

Getting rid of pseudo-loaders
OSG will look for plugins libraries according to the extension of the file. That said, the
filename movie.avi.ffmpeg will be regarded as a .ffmpeg file and will be sent to the
osgdb_ffmpeg plugins (with the same name), but never to the osgdb_avi plugins. So the
fact is that we failed to find a suitable plugins to handle filenames, but not that the pseudo-
loader lost its capability.

Pop Quiz Answers

[364]

To make full use of your "own" osgdb_avi plugins (it can handle more than AVI files, in
fact), you may read the Handling the data stream section in this chapter and try obtaining
the osgDB::ReaderWriter pointer from the plugins for use.

Understanding the inheritance relations
The wrapper will still work, but properties such as node mask, state set, and applied
callbacks will not be recorded again, because they are declared in the osg::Node class. Try
using setNodeMask() to set a different mask to the ExampleNode instance and save it.
See if there is any difference between using and not using osg::Node in the inheritance
relations string of the wrapper.

Chapter 11

Text positions and the projection matrix
That is related to the view and projection matrix of the camera. As we could see in the
example code, the HUD camera is using the absolute reference frame (not affected by
parent ones) and the identity view matrix (the camera is facing towards the negative Z axis),
which means that texts in the XOY plane can be fully displayed in the camera's view. While
projected into a 2D orthographic camera, the text position should be set according to the
clipping planes (0, 0) - (1024, 768). The bottom-right corner is near the coordinate (1024, 0)
in this situation.

Chapter 12

Carefully blocking threads
The getContent() method is located in the text's update callback, so it will be called
every frame while rendering. addContent() is always called when the thread is running
and the user is providing input via the console. That means that the conflict of these two
methods can occur all the time. Without a mutex or other protections, we can never
determine what will happen (it may work for a while, receive unexpected characters
sometime, or even crash).

Appendix

[365]

Number of created levels and files
The total number of rows/columns is 1024, and the final number of each cell is 64. As every
quad-tree cell can be replaced with 2x2 sub-cells while going nearer, we can easily deduce
the size of cells in each level:

�� Level 0 is 1024x1024 (1 cell)

�� Level 1 is 512x512 (4 cells)

�� Level 2 is 256x256 (16 cells)

�� Level 3 is 128x128 (64 cells).

There is actually a level 4 (64x64), but it is not paged. So we finally have 85 paged files
(1 + 4 + 16 + 64), and one root file for scheduling them.

Index
Symbols
2D textures

about 145
applying 143-145
loading 143-145

3DC Point cloud plug-in. See osgdb_3dc plug-in
3D texts

creating 300-303
.ini configuration file 20
<osgDB/ReadFile> header 47
.osg file format 264
<osgViewer/Viewer> header 47
--single argument 332
--useCamera command 333
--useContext argument 332

A
AC3D plug-in. See osgdb_ac plug-in
accept() method 110
acceptsExtension() method 276
Acrobat PDF plug-in. See osgdb_pdf plug-in
addChannel() method 220
addChild() method 94, 96, 101, 104
addDrawable() method 63, 292
addEventHandler() method 232
addFileExtensionAlias() method 265
addFileName() method 218
addImageFile() method 214
addImage() method 214
addParticleSystem() method 308
addPrimitiveSet() method 68, 71
addToContent() method 324
addUniform() method 154
addUpdateCallback() method 194

aircrafts
drawing, on loaded terrain 186-190

ALL_BUILD
and ‘build all’, differences 38

allocateImage() method 141
alpha attribute 251
anaglyph stereo scenes

rendering 183, 184
animation channels

managing 220-224
animation path

using 205-207
API documentation 24
Apple Quicktime plug-in. See osgdb_quicktime

plug-in
applications

rendering performance, improving 341, 342
apply() method 82 117
array data

storing 66
AutoCAD 8
Autodesk 3DS plug-in. See osgdb_3ds plug-in
Autodesk DXF plug-in. See osgdb_dxf plug-in
Autodesk FBX plug-in. See osgdb_fbx plug-in
Autodesk FBX SDK

URL 267
AXIAL_ROT enumeration 292

B
back face culling 336
banners

creating 293-295
basic shapes

rendering 63
simple objects, creating 64

[368]

Bezier curve
generating 158-161

billboard
about 292
creating, in scene 292
massive trees, simulating 296

binaries 23
binary space partitioning (BSP) 347
bin subfolder 39
Biovision Motion plug-in. See osgdb_bvh plug-in
blue attribute 250
boost library 48
boost*shared_ptr<> class template 48
‘build all’

and ALL_BUILD, differences 38
BUILD group, options

BUILD_OSG_APPLICATIONS 36
BUILD_OSG_EXAMPLES 36

BUILD_OSG_APPLICATIONS 36
BUILD_OSG_EXAMPLES 36

C
callbacks

camera callback after drawing the
sub-graph 195

camera callback before drawing the
sub-graph 195

cull callback 194
drawable cull callback 195
drawable event callback 195
drawable update callback 194
event callback 194
state attribute event callback 195
state attribute update callback 195
uniform event callback 195
uniform update callback 195
update callback 194

camera
setting, as main camera 253

Camera class 165, 166
camera order

rendering 167
cancel() method 323
Carbon Graphics plug-in. See osgdb_geo plug-in
cartoon cow

implementing 154-156

cartoon shading 157
center() method 116
cessna.osg file 14
Cessna structure

about 47
analyzing 118-120

chain-of-responsibility design pattern 265
characters

loading 225-228
rendering 225-228
structure, analyzing 228

check box option 35
child nodes

about 8, 167
grouping 8
managing 48
translations, performing for 101-103

CMake
about 31, 46
OSG applications, creating 44-46
running, in GUI mode 32-35
starting 31

CMAKE_BUILD_TYPE 36
CMAKE_DEBUG_POSTFIX 36
CMake group, options

CMAKE_BUILD_TYPE 36
CMAKE_DEBUG_POSTFIX 36
CMAKE_INSTALL_PREFIX 36

CMAKE_INSTALL_PREFIX 36
CMakeLists.txt file

creating 44
CMake, options

WIN32_USE_DYNAMICBASE 36
WIN32_USE_MP 36

CMake wiki
URL 45

Coin3D
URL 267

COLLADA
URL 266

COLLADA DOM plug-in. See osgdb_dae plug-in
color buffer 146
color, vertex attribute 67
command-line arguments

declaration 55
parsing 55

[369]

complex key-frame animations
creating 218, 219

complex scene
occluders, adding to 337-340

composite viewer
multiple scenes, rendering at a time 176, 177
multi-viewing 176, 177
using 175

computeBound() constant method 86
computeBound() method 89
conflicted modifications

avoiding 198, 199
ControlPoint class 218
coordinate system, intersection strategy

about 243
MODEL 244
PROJECTION 244
VIEW 244
WINDOW 244

CorelDraw 8
createAnimationPath() function 221
createGraphicsContext() method 250
createQuad() function 295
createSpotLight() function 215
cross-platform building 31
cubes 76, 77
cull callback 194
culling techniques, OSG

about 336
back face 336
occlusion 336
small feature 336
view-frustum 336

CULL phase 328, 334
cull traversal 98, 315
CurrentThread() method 322
customized callbacks

textures, sharing with 343-347
customized event handlers

keyboard events, handling 233, 234
mouse events, handling 233, 234

customized events
adding 239

Cygwin 44

D
DataReceiverThread class 323
data stream

handling 278, 279
DCMTK

URL 266
deep copy 109
Delta 3D

URL 13
depth attribute 251
depth buffer 147
depth-first search 98
Designer Workbench plug-in. See osgdb_dw

plug-in
developer files 24
DirectDraw Surface plug-in. See osgdb_dds

plug-in
directed acyclic graph (DAG) 8
DirectShow plug-in. See osgdb_directshow

plug-in
DirectX SDK

URL 266
dirtyBound() method 202
dirty() command 203
dirtyDisplayList() method 202
discrete LOD 107
display lists 62 62
done() method 172
DOT graph plug-in. See osgdb_dot plug-in
doubleBuffer attribute 251
DOUBLECLICK event 233
double dispatch mechanism 116
DRAG event 233
drawable classes 62
drawables

about 62
implementing 86

drawArrays() method 85
drawImplementation() constant method 86
drawImplementation() method 65, 86
drawing

colored quad 68
octahedron 73-75

drawing types
specifying 68

[370]

draw() method 86
DRAW phase 328, 334, 335
draw traversal 99
DriveManipulator 171
dynamic_cast<> operator 232
DYNAMIC object 199

E
ease motions

about 204
back function 204
bounce effect function 204
circle function 204
cubic function (y = t3) 204
elastic bounce function 204
exponent function 204
linear interpolation 204
quad function (y = t2) 204
quart function (y = t4) 204
sine function 204

EmitVertex() function 159
enumerations

AXIAL_ROT 292
POINT_ROT_EYE 292
POINT_ROT_WORLD 292

environment variables
about 24, 25
configuring 40

ESRI Shapefile plug-in. See osgdb_shp plug-in
event callback 194
event handlers 237
event traversal 98, 232, 237
event types, OSG

about 233, 234
DOUBLECLICK 233
DRAG 233
FRAME 233
KEYDOWN 233
KEYUP 233
MOVE 233
PUSH 233
RELEASE 233
SCROLL 233
USER 234

extra plug-ins 24

F
FaceCollector structure 84
FFmpeg

URL 267
FFmpeg library 270
FFmpeg plug-in. See osgdb_ffmpeg plug-in
fileExists() method 276
file I/O plug-ins, OSG 264
files

reading, from internet 271, 272
find_package() macro 45, 88
first in first out (FIFO) list 239
fixed-function effects, OSG 131-133
fixed-function light sources, OSG 136
flashing spotlight

rendering 215-218
Flight Gear

URL 13
FlightManipulator 171
fog coordinate, vertex attribute 67
fog effect

applying 134
fragment shaders 152, 155
frame buffer 61, 185
frame buffer object(FBO) 186
FRAME event 233 242
frame() method 172, 199, 254
FreeType

about 276, 296
URL 267

FreeType plug-in. See osgdb_freetype plug-in
FreeType support

adding, for OSG 276
functor 81, 194

G
garbage collection

need for 50
working 50

GDAL
about 356
URL 267

GDAL plug-in. See osgdb_gdal
geode 62
Geode 62

[371]

geometries
modifying 199-202
selecting 245-248
selecting, in rectangular region 249

geometry attributes
rereading 81, 82

geometry node. See Geode
geometry shader

about 152, 158
GL_LINE_STRIP_ADJACENCY_EXT primitive

type 161
working with 158

geom variable 80
getAmbient() method 136
getAnimationList() method 220
getBound() method 116, 178
getChild() method 94
getDiffuse() method 136
getDrawable() method 63
getEventQueue() method 250
getEventType() method 233
getImage() method 214
getLightNum() method 136
getMatrix() method 101, 207, 238
get() method 48
getModKeyMask() method 234
GetNumberOfProcessors() function 322
getNumChildren() method 94
getNumDrawables() method 63
getNumImages() method 214
getNumParents() method 95, 103
getNumPrimitiveSets() 68
getOrCreateKeyframeContainer() method 219
getOrCreateStateSet() method 124
getParentalNodePaths() method 95, 116
getParent() method 94, 103
getPrimitiveSet() 68
getValue() method 209
glBegin() pair 62, 65
glClearColor() function 166
glClearDepth() function 166
glClear() function 166
glCopyTexSubImage() method 186
glDisable() function 124
glDrawArrays() entries 68
glDrawElements() entries 68
glDrawElements() function 72

glEnable() function 124
glEnd() pair 62, 65
glFog() function 135
GL_GEOMETRY_INPUT_TYPE_EXT parameter

158
GL_GEOMETRY_OUTPUT_TYPE_EXT parameter

158
GL_GEOMETRY_VERTICES_OUT_EXT parameter

158
glider

lighting 129, 130
glMultMatrix() function 165
global display settings

changing 179
global multisampling

enabling 180, 181
glOrtho() function 165
glPolygonMode() function 126
GL_POLYGON primitive 78
GL_QUADS mode 68
glReadPixels() method 185
glRotate() 165
GLSL 152
glTexImage*() method 185
glTranslate() 165
gluLookAt() 165
gluPerspective() function 165
gluScaleImage() function 146
GNU compiler collection (gcc)

used, for generating packages 38
graphical user interface. See GUI
graphics context

about 249
attaching, to camera 252
creating 252

Graphics Interchange format plug-in.
See osgdb_gif plug-in

graphics shaders
using 161

Graphviz
URL 266

green attribute 250
group nodes 8
GUI 232
GUI events 231, 232
GUI mode

CMake, running 32-35

[372]

H
handle() method 233
heads-up display camera. See HUD camera
height attribute 250
Hello World example

improving 47
hierarchical graph 8
HUD camera

about 168, 297
creating 168, 169
model positions, changing 170

I
ILM OpenEXR plug-in. See osgdb_exr plug-in
immediate mode 62
include subfolder 40
indexing primitives

about 72
indexed geometries, optimizing 76

in-graphics shaders
animating 213

inheritedWindowData attribute 251
insertChild() method 94
insert() method 205
installation, OSG 21-23
instance() method 265
intersection strategy 243, 244
Inventor plug-in. See osgdb_iv plug-in
inverse() method 100
invert() method 100
I/O serialization 284
isPlaying() method 220
ITK

URL 266

J
JasPer

URL 267
JPEG 2000 plug-in. See osgdb_jp2 plug-in
JPEG plug-in. See osgdb_jpeg plug-in

K
keyboard events

handling, with customized event handlers 233,
234

KEYDOWN event 233
key-frame class

DoubleKeyframe 219
FloatKeyframe 219
MatrixKeyframe 219
QuatKeyframe 219
Vec2Keyframe 219
Vec3Keyframe 219
Vec4Keyframe 219

KeySwitchMatrixManipulator 171
KEYUP event 233

L
leaf nodes 8, 78
level-of-detail technique. See LOD
libcurl

about 266
adding, to OSG 272-275

libraries, OpenSceneGraph (OSG)
OpenThreads library 10
osgDB library 10
osg library 10
osgUtil library 10

lib subfolder 40
light sources

creating, in scene 137-140
Lightwave 3D Object plug-in. See osgdb_lwo

plug-in
Lightwave 3D Scene plug-in. See osgdb_lws

plug-in
linear interpolation 203
linear interpolation motion object

creating 204
local coordinate system 164
LOD 107
LOD Cessna

constructing 108, 109
log file

saving 58, 59

[373]

M
Mac OS X ImageIO plug-in. See osgdb_imageio

plug-in
mailing list

osg-submissions 16
osg-users 16

main camera node 167
make install command 46
makeRotate() method 100
makeScale() method 100
makeTranslate() method 100
managed entities

tracing 52, 53
manipulators

DriveManipulator 171
FlightManipulator 171
KeySwitchMatrixManipulator 171
NodeTrackerManipulator 171
SphericalManipulator 171
TerrainManipulator 171
TrackballManipulator 171

Maya 8
Maya2OSG 319
memory management

about 48
allocation 48
deallocation 48
garbage collector 48
need for 48

microSleep() method 322
Microsoft DirectX plug-in. See osgdb_x plug-in
MinGW 44
mis-compiled parts

checking 39
MODEL coordinate system 244
model filename

reading, from command line 55, 56
model matrix 164
models

adding, to scene graph 96, 97
loading, at runtime 110, 111
transformation matrix, changing of 234-237

model-view matrix 99, 101, 164, 236
mouse events

handling, with customized event
handlers 233, 234

MOVE event 233
movies

playing, on textures 214
Mozilla Gecko plug-in. See osgdb_gecko plug-in
multi-pass rendering 8
multithreaded rendering 328
mutex variable 323
MVPW matrix 164

N
NEMA DICOM plug-in. See osgdb_dicom plug-in
Netpbm plug-in. See osgdb_pnm plug-in
new file format

designing 279-283
parsing 279-283

NodeKits
about 291, 318
customizing 112-115
Maya2OSG 319
osgART 318
osgAudio 318
osgBullet 318
osgCairo 318
osgcal 318
osgCompute 318
osgEarth 318
osgIntrospection 318
osgManipulator 318
osgMaxExp 318
osgModeling 318
osgNV 318
osgOcean 319
osgPango 319
osgQt 319
osgSWIG 319
osgVirtualPlanets 319
osgVisual 319
osgVolume 319
osgWidgets 319
osgXI 319
VirtualPlanet 319

nodekits, OpenSceneGraph (OSG)
osgAnimation library 10
osgFX library 10
osgGA library 10
osgManipulator library 10

[374]

osgParticle library 10
osgQt library 11
osgShadow library 11
osgSim library 11
osgTerrain library 11
osgText library 11
osgViewer library 11
osgVolume library 11
osgWidget library 11

nodes
switching, in update traversal 195-197

NodeTrackerManipulator 171
non-full screen window

viewing in 175
normalized device coordinate system 164
normal, vertex attribute 67
notifer

redirecting 57
tracing 57

O
occluders

about 336
adding, to complex scene 337-340

occlusion culling 336
occlusion culling algorithm 337
octahedron

drawing 73-75
octree 347
OGR plug-in. See osgdb_ogr plug-in
on-demand rendering scheme 172
OpenFlight plug-in. See osgdb_openflight

plug-in
OpenGL

Bezier curve, generating 158-161
objects, drawing 62
state machine, encapsulating 124
vertex attribute 67

OpenGL drawing calls
creating 87-90
using 87

OpenGL shading language. See GLSL
OpenGL teapot, creating

OpenGL drawing calls, creating 87-90
Open Inventor 8

OpenInventor
URL 267

OpenSceneGraph (OSG) architecture 12
OpenSceneGraph (OSG), benefits

hardware portability 13
high scalibility 12
latest activity 13
open source 13
rigorous structure 12
software portability 13
superior performance 12

OpenThreads 322
OpenThreads::Barrier 322
OpenThreads::Condition 322
OpenThreads library 10

about 327
new thread, designing 322, 323

OpenThreads::Mutex 322
OpenThreads::Thread class

about 322
methods 322

OpenVRML
URL 270

operator() method 194, 209
operator*() method 100
OSG

3D texts, creating 300-303
about 231
architecture 12
benefits 12
billboards, creating in scene 292
conflicted modifications, avoiding 198, 199
culling techniques 335, 336
customized events, adding 239
development 9
discussion groups 16
environment variables, configuring 40
event types 233, 234
file I/O plug-ins 264
fixed-function effects 131-133
fixed-function light sources 136
forum 16
FreeType support, adding 276
installer, URL 20
installer, using 20
installing 21-23

[375]

integrating, into window 254-259
intersection strategy 243, 244
libcurl support, adding for 273-275
libraries 10
need for 12
origin 9
osgconv, playing with 28
osgviewer, dependencies 28
osgviewer, playing with 26, 27
picking functionality 243
polygonal techniques, using 77
shadow, creating on ground 310-315
system requisites 20
texts, creating 296-299
threading models, selecting 328-334
users 13
utilities, running 26

OSG 3.0
plug-ins 266-270

osgAnimation::Animation class 220
osgAnimation::BasicAnimationManager

class 220
osgAnimation library 10, 204
osgAnimation namespace 234
osg::AnimationPathCallback object 205
osg::AnimationPath class 205, 234
osg::AnimationPath::ControlPoint class 205
osg::AnimationPath object 205
osgAnimation::Vec3LinearChannel class 220
OSG applications

creating, CMake used 44-46
osg::ArgumentParser class 55, 56
osg::Array class 66
osgART 318
osgAudio 318
osg::AutoTransform class 295
osg::BillBoard class 292
OSG binary format, deprecated plug-in. See

osgdb_ive plug-in
osg::BlendFunc class 209

using 149
osg::BoundingBox 86
osg::BoundingSphere class 116
osgBullet 318
osgCairo 318
osgcal 318
osg::Camera class 165, 249

OSG components
ALPHAFUNC 131
BLENDFUNC 131
CLIPPLANE 131
COLORMASK 131
CULLFACE 132
DEPTH 132
FOG 132
FRONTFACE 132
LIGHT 132
LIGHTMODEL 132
LINESTIPPLE 132
LINEWIDTH 132
LOGICOP 132
MATERIAL 132
POINT 132
POINTSPRITE 132
POLYGONMODE 132
POLYGONOFFSET 132
POLYGONSTIPPLE 132
SCISSOR 132
SHADEMODEL 133
STENCIL 133
TEXENV 133
TEXGEN 133

osgCompute 318
osgCompute project 161
osgconv

playing with 28
osg::ConvexPlanarOccluder class 341
osg::createTexturedQuadGeometry() function

293, 329
osgCUDA project 161
osgdb_3dc plug-in 266
osgdb_3ds plug-in 266
osgdb_ac plug-in 266
osgdb_bmp plug-in 266
osgdb_bsp plug-in 266
osgdb_bvh plug-in 266
osgdb_curl plug-in 266, 272
osgdb_dae plug-in 266
osgdb_dds plug-in 266
osgdb_dicom plug-in 266
osgdb_directshow plug-in 266
osgdb_dot plug-in 266
osgdb_dw plug-in 266
osgdb_dxf plug-in 267

[376]

osgdb_exr plug-in 267
osgdb_fbx plug-in 267
osgdb_ffmpeg plug-in 267
osgDB::findDataFile() function 283
osgdb_freetype plug-in 267, 296
osgdb_gdal plug-in 267
osgdb_gecko plug-in 267
osgdb_geo plug-in 267
osgDB::getLowerCaseFileExtension() function

283
osgdb_gif plug-in 267
osgdb_hdr plug-in 267
osgdb_imageio plug-in 267
osgdb_ive plug-in 267
osgdb_iv plug-in 267
osgdb_jp2 plug-in 267
osgdb_jpeg plug-in 268
osgDB library 10, 263, 264
osgdb_lwo plug-in 268
osgdb_lws plug-in 268
osgdb_md2 plug-in 268
osgdb_mdl plug-in 268
osgdb_obj plug-in 268
osgdb_ogr plug-in 268
osgdb_openflight plug-in 268
osgDB::Options class 277
osgdb_osg plug-in 268
osgdb_p3d plug-in 268
osgdb_pdf plug-in 268
osgdb_pfb plug-in 268
osgdb_pic plug-in 268
osgdb_ply plug-in 268
osgdb_png plug-in 268, 293
osgdb_pnm plug-in 269
osgdb_pov plug-in 269
osgdb_qfont plug-in 269
osgdb_QTKit plug-in 269
osgdb_quicktime plug-in 269
osgDB::ReaderWriter class

about 276, 278
methods 276, 277

osgDB::ReaderWriter class, methods
acceptsExtension() 276
fileExists() 276
readImage() 277
readNode() 276
supportsExtension() 276

writeImage() 277
writeNode() 277

osgDB::readImageFile() function 140
osgDB::readNodeFile() function 15, 55, 96 97,

140, 271
osgDB::readShaderFile() function 153
osgDB::Registry class 265
osgdb_rgb plug-in 269
osgdb_rot plug-in 269
osgdb_scale plug-in 269
osgdb_shp plug-in 269
osgdb_stl plug-in 269
osgdb_svg plug-in 269
osgdb_tga plug-in 269
osgdb_tiff plug-in 269
osgdb_trans plug-in 269
osgdb_txf plug-in 269
osgdb_txp plug-in 269
osgdb_vnc plug-in 270
osgdb_vrml plug-in 270
osgdb_vtf plug-in 270
osgdb_xine plug-in 270
osgdb_x plug-in 270
osg::DeleteHandler class 54
osg::DisplaySettings class 179, 182, 250, 252
osg::Drawable::AttributeFunctor 81
osg::Drawable base class 63, 65
osg::Drawable class 62, 66, 124
osg::Drawable::CullCallback 194
osg::Drawable::EventCallback 194
osg::Drawable object 62
osg::Drawable pointer 63
osg::Drawable::UpdateCallback 194
osg::DrawArrays 72, 73
osg::DrawArrays class 68
osg::DrawArrays instance 70
osg::DrawElements*classes 72, 76
osg::DrawElementsUInt 74
osg::DrawElementsUInt class 72, 73
osg::DrawElementsUInt primitive set 74, 77
osgEarth 318
osgEarth project

URL 357
OSG extendable format plug-in. See

osgdb_osg plug-in
OSG_FILE_PATH 40
OSG_FILE_PATH environment variable 14

[377]

osgFX::Effect class 315
osgFX library 9, 10, 315
osgGA::CameraManipulator class 238
osgGA::CameraManipulator object 170
osgGA::CameraManipulator subclass 170
osgGA::EventQueue

about 239
methods 239

osgGA::GUIActionAdapter 232
osgGA::GUIEventAdapter class 232
osgGA::GUIEventHandler

about 232
arguments 232

osgGA::GUIEventHandler handler 170
osgGA library 10
osg::Geode 62
osg::Geode class 62, 63, 97, 292
osg::Geode instance 63
osg::Geode object 63, 64, 70
osg::Geoemtry object 80
osg::Geometry class 66, 76, 145, 159
osg::Geometry method 71
osg::Geometry object 68, 69, 78
osg::Geometry& reference parameter 78
osg::GLBeginEndAdapter class 65
osg::GLBeginEndAdapter object 65
osg::GraphicsContext class 250
osg::GraphicsContext::Traits class 250
osg::Group class

about 94, 97
public methods 94

OSG group, options
OSG_MSVC_VERSIONED_DLL 36

OSG GUI abstraction library. See osgGA library
osg::Image class

about 140
methods 140

osg::ImageSequence class 214
osg::ImageStream class 214
osgIntrospection 318
osg library 10
osg::Light class 136
osg::LightSource class 136, 139
osg::LineWidth class 158
osg::LOD class 107, 336
osgManipulator 318
osgManipulator library 9, 10

osg::Material class 209
osg::Matrix class

about 100
methods 100

osg::Matrixf class 101
osg::Matrix parameter 165
osg::MatrixTransform class 165 101
osg::MatrixTransform node 207, 220
osg::Matrix variable 165
osgMaxExp 318
osgModeling 318
OSG_MSVC_VERSIONED_DLL 36
OSG native scenes

serializing 283, 284
osg::NodeCallback class 194
osg::Node class 47, 49

about 94, 96
state switching animations, implementing 105

osg::NodeVisitor class 117, 243
OSG notifier mechanism 57
osg::notify() function 57
OSG_NOTIFY_LEVEL 40
osgNV 318
osgNV project 162
osg::OccluderNode class 337
osgOcean 319
osgOcean project 162
osgPango 319
osgParticle::AccelOperator class class 307
osgParticle::Counter controller 304
osgParticle::Emitter class 304
osgParticle library 10 303
osgParticle::ModularEmitter class

about 304
sub-controllers 304

osgParticle::Particle class 303
osgParticle::ParticleSystem class 303
osgParticle::Placer controller 304
osgParticle::RandomRateCounter class 307
osgParticle::Shooter controller 304
osg::PolygonMode class 126, 127
osg::PositionAttitudeTransform class 165
osg::PositionAttitudeTransform node 207
osgPPU project 162
osg::PrimitiveSet 68
osg::PrimitiveSet class 68
osg::PrimitiveSet pointer 68

[378]

osg::Program class 158
OSG programming

example 14, 15
memory management 48

osg::ProxyNode node 110, 111
osgQt 319
osgQt library 11
osg::Referenced class 48, 49, 94
osg::Referenced class, methods

ref() 49
referenceCount() 49
unref() 49

osg::ref_ptr<> class 47, 48
osg::ref_ptr<> class, member functions

get() 48
operator->() 49
operator!() 49
operator!=() 49
operator*() 49
operator=() 49
operator==() 49
release() 49
valid() 49

osg::ref_ptr<> smart pointer 63, 64
osg::RenderInfo& parameter 86
OSG_ROOT 40
OSG_ROOT environment variable 46
osg::setNotifyHandler() function 58
osg::Shader class 152
osgShadow library 9, 11
osgShadow::ShadowedScene 310
osg::ShapeDrawable class 65, 245
osg::ShapeDrawable instance 63
osg::ShapeDrawable object 64
osg::Shape subclass 64
osgSim library 11
osg::SmoothingVisitor 77
osg::StateAttribute class 124, 126
osg::StateAttribute::OVERRIDE flag 128
osg::StateAttribute::PROTECTED flag 128
osg::StateSet class

about 125, 147
methods 125
using 124

osg-submissions mailing list 16
osgSWIG 319
osg::Switch class 104, 106

osgTerrain library 11
osgText::Font instance 296
osgText library 9, 11 296
osgText::readFontFile() function 296, 297
osgText::Text3D class 300
osgText::TextBase class 296, 300
osgText::Text class

about 296
methods 296

osg::Texture2D class 146
osg::Texture class

about 142
subclasses 142

osg::TextureRectangle class 146
osg::Transform class 99, 165
osg::TriangleFunctor<> functor class 82
osg::Uniform class 153
osg-users mailing list 16
osgUtil::IntersectionVisitor class 243
osgUtil library 10, 243
osgUtil::LineSegmentIntersector class 243
osgUtil::Optimizer class 342
osgUtil::Simplifier 77
osgUtil::Simplifier class 108, 110
osgUtil::SmoothingVisitor 77
osgUtil::TangentSpaceGenerator 77
osgUtil::Tessellator 77
osgUtil::Tessellator class 78, 81
osgUtil::TriStripVisitor 77
osgUtil::TriStripVisitor classes 78
osg::Vec3Array class 73
osgversion command 38
osgviewer

command, for loading picture 28
command-line arguments 28
F key 27
I key 27
playing with 26, 27
S key 27
T key 27
W key 27

osgviewer command 38
osgViewer::CompositeViewer class

about 175, 328, 334
addView() method 175
classremoveView() method 175

osgViewer::GraphicsWindow class 250

[379]

osgViewer library 9, 11, 231
osgviewer utility 271
osgViewer::Viewer class 167, 172, 232, 334
osgViewer::Viewer instance 15
osg::Viewport object 165
osgVirtualPlanets 319
osgVisual 319
osgVolume 319
osgVolume library 11
osgWidget library 11
osgWidgets 319
osgXI 319
ossimPlanet

URL 13
other general attributes, vertex attribute 67
OVERRIDE flag 129

P
packages

generating, GNU compiler collection (gcc) used
38

generating, Visual Studio used 37, 38
UNIX makefile used 38, 39

PagedLOD class
working with 112

parent management methods
about 94
getNumParents() 95
getParent() 94
getParentalNodePaths() 95

parent nodes
about 8
managing 94, 95

particle fountain
implementing, in scene 305-309

particles 303
pause() method 214
PCI-Express graphics card 20
PC-Paint plug-in. See osgdb_pic plug-in
Performer plug-in. See osgdb_pfb plug-in
picking functionality 243
pixel buffer 186
playAnimation() method 220
play() method 214
plug-ins, OSG 3.0

about 266

handling 265
osgdb_3dc 266
osgdb_3ds 266
osgdb_ac 266
osgdb_bmp 266
osgdb_bsp 266
osgdb_bvh 266
osgdb_curl 266
osgdb_dae 266
osgdb_dds 266
osgdb_dicom 266
osgdb_directshow 266
osgdb_dot 266
osgdb_dw 266
osgdb_dxf 267
osgdb_exr 267
osgdb_fbx 267
osgdb_ffmpeg 267
osgdb_freetype 267
osgdb_gdal 267
osgdb_gecko 267
osgdb_geo 267
osgdb_gif 267
osgdb_hdr 267
osgdb_imageio 267
osgdb_iv 267
osgdb_ive 267
osgdb_jp2 267
osgdb_jpeg 268
osgdb_lwo 268
osgdb_lws 268
osgdb_md2 268
osgdb_mdl 268
osgdb_obj 268
osgdb_ogr 268
osgdb_openflight 268
osgdb_osg 268
osgdb_p3d 268
osgdb_pdf 268
osgdb_pfb 268
osgdb_pic 268
osgdb_ply 268
osgdb_png 268
osgdb_pnm 269
osgdb_pov 269
osgdb_qfont 269
osgdb_QTKit 269

[380]

osgdb_quicktime 269
osgdb_rgb 269
osgdb_rot 269
osgdb_scale 269
osgdb_shp 269
osgdb_stl 269
osgdb_svg 269
osgdb_tga 269
osgdb_tiff 269
osgdb_trans 269
osgdb_txf 269
osgdb_txp 269
osgdb_vnc 270
osgdb_vrml 270
osgdb_vtf 270
osgdb_x 270
osgdb_xine 270
searching 265

POINT_ROT_EYE enumeration 292
POINT_ROT_WORLD enumeration 292
polygon

tessellating 78-80
polygonal techniques

osgUtil::Simplifier 77
osgUtil::SmoothingVisitor 77
osgUtil::TangentSpaceGenerator 77
osgUtil::Tessellator 77
osgUtil::TriStripVisitor 77
polygon, tessellating 78-81
using 77

polygon mode states
traversing, in imaginary scene graph 128

polygon rasterization mode
selecting, for loaded model 126, 127

Portable Network Graphics plug-in. See
osgdb_png plug-in

PositionAttitudeTransform class
using 104

position, vertex attribute 67
postMult() method 100
POV-Ray plug-in. See osgdb_pov plug-in
prebuilt packages

issues 30
preMult() method 100
Present3D plug-in. See osgdb_p3d plug-in
primitive functor

customizing 82

triangle faces, collecting 82, 84
primitive types

results 71
Producer library 9
PROJECTION coordinate system 244
projection matrix

about 164
specifying 165

project wizard
solution, creating with one click 29, 30
using 29

PROTECTED flag 129
pseudo-loader

about 270
files, reading from Internet 271, 272

PUSH event 233
pyramids 76, 77

Q
Qt font engine plug-in. See osgdb_qfont plug-in
QTKit media plug-in. See osgdb_QTKit plug-in
quadBufferStereo attribute 251
quad-tree structure

about 348
building, for massive rendering 348-356
using 348

Quake2 models plug-in. See osgdb_md2 plug-in

R
Radiance HDR plug-in. See osgdb_hdr plug-in
radius() method 116
read() function 55, 56
readImage() method 277
readNode() method

about 276
implementing 277

realize() method 172
real-time shadows 310
red attribute 250
referenceCount() method 49
reference cycle 51
ref() method 49
registerAnimation() method 220
Release distribution 38
RELEASE event 233

[381]

release() method 49, 54
removeChild() method 94
removeChildren() method 94
removeDrawable() 63
removeDrawable() method 63
removeEventHandler() method 232
removePrimitiveSet() 68
rendering 123, 325, 326
rendering attributes 124
rendering middleware 8
rendering modes 125
rendering order

about 146
handling 147
translucent effect, achieving 148-152

rendering states
about 124, 208
changing 208
fading in 209-211
setting 124

rendering-to-textures technique 254
render states

inheriting 128
render-to-textures camera 193
render-to-textures technique

about 184, 185
implementing 185-190

reset() method 208
retained rendering 8
retessellatePolygons() method 77
rewind() method 214
right-handed view coordinate system 164
root node 167

about 8
using 47

Rotation plug-in. See osgdb_rot plug-in
R-tree 347
RTTI 98
run() method 172
run-time type information. See RTTI

S
sample data 24
samplers

DoubleLinearSampler 219
FloatStepSampler 219

MatrixLinearSampler 219
QuatSphericalLinearSampler 219
Vec2LinearSampler 219
Vec3LinearSampler 219
Vec4LinearSampler 219

samples attribute 251
Scalar Vector Graphics plug-in. See osgdb_svg

plug-in
Scale plug-in. See osgdb_scale plug-in
scene

billboard, creating in 292
light sources, creating in 137-140

scene culling phase. See CULL phase
scene graph 194

about 8, 93
models, adding to 96, 97
structures, visiting 117
traversing 98, 99

scene graph, traversing
about 98, 99
cull traversal 98
draw traversal 99
event traversal 98
update traversal 98

SCROLL event 233
search box option 35
secondary color, vertex attribute 67
seek() method 214
separate data receiver thread

using 322-326
serializable object. See serializers
serializers

about 284
creating 284
creating, for user defined classes 285-287

setAllowEventFocus() method 178, 236
setAmbient() method 136
set*Array() method 66
setAttributeAndModes() method 125, 127
setAttribute() method 125
setAxisAlignment() function 325
setButton() method 239
setByMatrix() method 238
setCameraManipulator() method 170
setCharacterSize() method 296
setClearAccum() method 166
setClearColor() method 166

[382]

setClearDepth() method 166
setClearMask() method 166
setClearStencil() method 166
setColor() method 64
setDataVariance() function 325
setDataVariance() method 199
setDepthBuffer() method 179
setDiffuse() method 136
setDoubleBuffer() method 179
setEventType() method 239
setFileName() method 110, 218
setFilter() method 146
setFogCoordBinding() 67
setFont() method 296
setGraphicsContext() method 249
setImageFile() method 214
setImage() method 142, 214, 218
setInitialBound() method 325
setLength() method 214
setLightNum() method 136
setLoopMode() method 205, 223
setMatrix() method 101
setMinimumNumAlphaBits() method 179
setMode() method 125, 127, 218, 292
setName() method 220
setNewChildDefaultValue() method 104
setNodeMask() method

dabout 248, 314
using 315

setNormalBinding 67
setNormalBinding() method 69
setNormal() method 292
setNumMultiSamples() method 179, 180, 252
setParameter() method 158
setPause() method 208
setPlayMode() method 223
setPosition() method 296, 303
SetProcessorAffinityOfCurrentThread()

function 322
setProjectionMatrixAsFrustum() method 165
setProjectionMatrixAsOrtho2D() method 165
setProjectionMatrixAsOrtho() method 165
setProjectionMatrixAsPerspective() method 165
setProjectionMatrix() method 165
setRenderingHint() method 147, 150, 152
setRenderOrder() method 167
setRenderTargetImplementation() method 186

setResizeNonPowerOfTwoHint() method 146
setRunMaxFrameRate() method 172
setSceneData() method 47, 170
setSecondaryColorBinding() 67
setShaderSource() method 152
setShape() method 63
setStateSet() method 124
setStateSetModes() method 136
setStereo() method 182
setStereoMode() method 182
setTargetName() method 220
setText() method 296
setTimeMultiplier() method 208, 214
setTimeOffset() method 208
setUpdateCallback() method 194, 197, 201, 220
setUpViewFor3DSphericalDisplay() method 175
setUpViewInWindow() method 175
setUpViewOnSingleScreen() method 175
setUseDisplayList() method 203
setUseVertexBufferObjects() 203
setValue() method 104
setVertexArray() method 71
setVertexAttribBinding() 67
setViewMatrixAsLookAt() method 165
setViewMatrix() method 165
setViewport() method 165
setWindingType() 81
setWrap() method 146
SGI Images plug-in. See osgdb_rgb plug-in
shadow

about 310
casting 311-315
creating, on ground 310-315
receiving 311-315

shadow mapping 313
shallow copy 109
share subfolder 40
simulation loop

about 170
customizing 172, 174
digging into 170, 172

single viewer
using 170

slerp() method 205
small feature culling 336
smart pointer

about 47, 208, 219

[383]

issues 51
need for 50

special effects
implementing 315-317

spherical linear interpolation 205
SphericalManipulator 171
Stanford Triangle Format plug-in. See osgdb_ply

plug-in
state machine

about 124
encapsulating 124
working 124

state set 128
state switching animations

implementing 105
std::cin.get() function 323
std::ofstream class 58
std::vector 69
stencil attribute 251
stencil buffer 146, 313
Stereolithography plug-in. See osgdb_stl plug-in
stereo visualization

about 182
anaglyph stereo scenes, rendering 183, 184

stopAnimation() method 220
supportsExtension() method 276
SVN repository 31
SwitchingCallback class 196
switch node 197

animating 113-115

T
Tagged Image File plug-in. See osgdb_tiff plug-in
TeapotDrawable object 89
TerrainManipulator 171
TerraPage plug-in. See osgdb_txp plug-in
tessellating

polygon 78-80
texel 145
text

about 296
creating 296-299
creating, in world space 301-303

text box option 35
textur coordinate, vertex attribute 67
Textured Font plug-in. See osgdb_txf plug-in

texture element. See texel
texture mapping

2D textures, applying 143-145
2D textures, loading 143-145
about 141
performing, steps 141, 142

texture mapping unit 125
textures

sharing, with customized callback 343-347
texture samplers 154
third-party dependencies

configuring 272
threading model

selecting 328-334
threads

applications 327
characters, reading from standard

input 323, 324
TimeHandler class 242
TrackballManipulator 171
tracker node

creating 116
traits

configuring, of rendering window 251-254
transformation matrix

changing, of models 234-237
transformation nodes

about 99, 100
animating 205

Translation plug-in. See osgdb_trans plug-in
translucent effect

achieving 148-152
traverse() method 112
traverse() virtual method 195
Truevision Targa plug-in. See osgdb_tga plug-in

U
uniforms

about 153
using 154

unref() method 49
unregisterAnimation() method 220
UNSPECIFIED object 202
update callback 194, 203, 242
update() method 201
UPDATE phase 328, 334

[384]

update traversal 98, 194, 238
user-defined classes

serializers, creating for 285-287
USER event 234
users, OpenSceneGraph

Boeing 13
Delta 3D 13
Flight Gear 13
Intra 13
Magic Earth 13
NASA 13
Norcontrol 13
ossimPlanet 13
Virtual Terrain Project 13
VR Juggler 13

user timer
creating 239-242

user updating phase. See UPDATE phase
utilities

running 26

V
valid() method 49
Valve BSP plug-in. See osgdb_bsp plug-in
Valve MDL plug-in. See osgdb_mdl plug-in
Valve Texture plug-in. See osgdb_vtf plug-in
varyings 153
vertex 66
vertex array 62, 75
vertex array mechanism 300
vertex attributes

about 153
color 67
fog coordinate 67
normal 67
other general attributes 67
position 67
secondary color 67
text coordinates 67

vertex buffer object (VBO) 62
vertex shaders 152
VIEW coordinate system 244
view-frustum culling 335-348
view matrix 164
virtual method 194
VirtualPlanet 319

VirtualPlanetBuilder. See VPB
Virtual Terrain Project

URL 13
visitor pattern 99, 116
visitor subclass

creating 117
Visual Studio

used, for generating packages 37, 38
Visual Studio project wizard 24
VNC Client plug-in. See osgdb_vnc plug-in
VPB 356
VR Juggler

URL 13
VRML 8
VRML plug-in. See osgdb_vrml plug-in

W
Wavefront OBJ plug-in. See osgdb_obj plug-in
Web data with URL plug-in. See osgdb_curl

plug-in
wglChoosePixelFormatARB() function 182
widget element 232
width attribute 250
WIN32 group, options

WIN32_USE_DYNAMICBASE 36
WIN32_USE_MP 36

WIN32_USE_DYNAMICBASE 36
WIN32_USE_MP 36
window

OSG, integrating into 254-259
WINDOW coordinate system 244
windowDecoration attribute 250
windowName attribute 250
Windows Bitmap plug-in. See osgdb_bmp

plug-in
world coordinate system 164
writeImage() method 277
writeNode() method 277

X
x attribute 250
Xine plug-in. See osgdb_xine plug-in
XULRunner

URL 267

[385]

Y
y attribute 250
YieldCurrentThread() method 322

Z
Zlib

about 270
URL 270

Thank you for buying
OpenSceneGraph 3.0: Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Blender 3D 2.49 Architecture, Buildings, and
Scenery
ISBN: 978-1-84951-048-6 Paperback: 376 pages

Create realistic models of building exteriors and
interiors, the surrounding environment, and scenery.

1.	 Study modeling, materials, textures, and light basics
in Blender

2.	 Learn special tricks and techniques to create
walls, floors, roofs, and other specific architectural
elements

3.	 Create realistic virtual tours of buildings and scenes

Blender 3D 2.49 Incredible Machines
ISBN: 978-1-847197-46-7 Paperback: 316 pages

Modeling, rendering, and animating realistic
machines with Blender 3D

1.	 Walk through the complete process of building
amazing machines

2.	 Model and create mechanical models and vehicles
with detailed designs

3.	 Add advanced global illumination options to the
renders created in Blender 3D using YafaRay and
LuxRender

Please check www.PacktPub.com for information on our titles

Away3D 3.6 Essentials
ISBN: 978-1-84951-206-0 Paperback: 416 pages

Take Flash to the next dimension by creating
detailed, animated, and interactive 3D worlds with
Away3D

1. Create stunning 3D environments with highly
detailed textures

2. Animate and transform all types of 3D objects,
including 3D Text

3. Eliminate the need for expensive hardware with
proven Away3D optimization techniques, without
compromising on visual appeal

OGRE 3D 1.7 Beginner's Guide
ISBN: 978-1-84951-248-0 Paperback: 300 pages

Create real time 3D applications using OGRE 3D from
scratch

1. Motivate students from all backgrounds,
generations, and learning styles

2. When and how to apply the different learning
solutions with workarounds, providing alternative
solutions

3. Easy-to-follow, step-by-step instructions with
screenshots and examples for Moodle's powerful
features

4. Especially suitable for university and professional
teachers

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: The Journey into OpenSceneGraph
	A quick overview of rendering middleware
	Scene graphs
	The Birth and development of OSG
	Components
	Why OSG?
	Who uses OSG?
	Have a quick taste
	Time for action – say "Hello World" OSG style
	Live in community
	Summary

	Chapter 2: Compilation and Installation of OpenSceneGraph
	System requirements
	Using the installer
	Time for action – installing OSG
	Running utilities
	Time for action – playing with osgviewer
	Using the project wizard
	Time for action – creating your solution with one click
	Prebuilts making trouble?
	Cross-platform building
	Starting CMake
	Time for action – running CMake in GUI mode
	Setting up options
	Generating packages using Visual Studio
	Time for action – building with a Visual Studio solution
	Generating packages using gcc
	Time for action – building with a UNIX makefile
	Configuring environment variables
	Summary

	Chapter 3: Creating Your First OSG Program
	Constructing your own projects
	Time for action – building applications with CMake
	Using a root node
	Time for action – improving the "Hello World" example
	Understanding memory management
	ref_ptr<> and Referenced classes
	Collecting garbage: why and how
	Tracing the managed entities
	Time for action – monitoring counted objects
	Parsing command-line arguments
	Time for action – reading the model filename from the
	command line
	Tracing with the notifier
	Redirecting the notifier
	Time for action – saving the log file
	Summary

	Chapter 4: Building Geometry Models
	How OpenGL draws objects
	Geode and Drawable classes
	Rendering basic shapes
	Time for action – quickly creating simple objects
	Storing array data
	Vertices and vertex attributes
	Specifying drawing types
	Time for action – drawing a colored quad
	Indexing primitives
	Time for action – drawing an octahedron
	Using polygonal techniques
	Time for action – tessellating a polygon
	Rereading geometry attributes
	Customizing a primitive functor
	Time for action – collecting triangle faces
	Implementing your own drawables
	Using OpenGL drawing calls
	Time for action – creating the famous OpenGL teapot
	Summary

	Chapter 5: Managing Scene Graph
	The Group interface
	Managing parent nodes
	Time for action – adding models to the scene graph
	Traversing the scene graph
	Transformation nodes
	Understanding the matrix
	The MatrixTransform class
	Time for action – performing translations of child nodes
	Switch nodes
	Time for action – switching between the normal and
	damaged Cessna
	Level-of-detail nodes
	Time for action – constructing a LOD Cessna
	Proxy and paging nodes
	Time for action – loading a model at runtime
	Customizing your own NodeKits
	Time for action – animating the switch node
	The visitor design pattern
	Visiting scene graph structures
	Time for action – analyzing the Cessna structure
	Summary

	Chapter 6: Creating Realistic Rendering Effects
	Encapsulating the OpenGL state machine
	Attributes and modes
	Time for action – setting polygon modes of different nodes
	Inheriting render states
	Time for action – lighting the glider or not
	Playing with fixed-function effects
	Time for action – applying simple fog to models
	Lights and light sources
	Time for action – creating light sources in the scene
	The Image class
	The basis of texture mapping
	Time for action – loading and applying 2D textures
	Handling rendering order
	Time for action – achieving the translucent effect
	Understanding graphics shaders
	Using uniforms
	Time for action – implementing a cartoon cow
	Working with the geometry shader
	Time for action – generating a Bezier curve
	Summary

	Chapter 7: Viewing the World
	From world to screen
	The Camera class
	Rendering order of cameras
	Time for action – creating an HUD camera
	Using a single viewer
	Digging into the simulation loop
	Time for action – customizing the simulation loop
	Using a composite viewer
	Time for action – rendering more scenes at one time
	Changing global display settings
	Time for action – enabling global multisampling
	Stereo visualization
	Time for action – rendering anaglyph stereo scenes
	Rendering to textures
	Frame buffer, pixel buffer, and FBO
	Time for action – drawing aircrafts on a loaded terrain
	Summary

	Chapter 8: Animating Scene Objects
	Taking references to functions
	List of callbacks
	Time for action – switching nodes in the update traversal
	Avoiding conflicting modifications
	Time for action – drawing a geometry dynamically
	Understanding ease motions
	Animating the transformation nodes
	Time for action – making use of the animation path
	Changing rendering states
	Time for action – fading in
	Playing movies on textures
	Time for action – rendering a flashing spotlight
	Creating complex key-frame animations
	Channels and animation managers
	Time for action – managing animation channels
	Loading and rendering characters
	Time for action – creating and driving a character system
	Summary

	Chapter 9: Interacting with
Outside Elements
	Various events
	Handling mouse and keyboard inputs
	Time for action – driving the Cessna
	Adding customized events
	Time for action – creating a user timer
	Picking objects
	Intersection
	Time for action – clicking and selecting geometries
	Windows, graphics contexts, and cameras
	The Traits class
	Time for action – configuring the traits of a rendering window
	Integrating OSG into a window
	Time for action – attaching OSG with a window handle in Win32
	Summary

	Chapter 10: Saving and Loading Files
	Understanding file I/O plugins
	Discovery of specified extension
	Supported file formats
	The pseudo-loader
	Time for action – reading files from the Internet
	Configuring third-party dependencies
	Time for action – adding libcurl support for OSG
	Writing your own plugins
	Handling the data stream
	Time for action – designing and parsing a new file format
	Serializing OSG native scenes
	Creating serializers
	Time for action – creating serializers for user-defined classes
	Summary

	Chapter 11: Developing Visual Components
	Creating billboards in a scene
	Time for action – creating banners facing you
	Creating texts
	Time for action – writing descriptions for the Cessna
	Creating 3D texts
	Time for action – creating texts in the world space
	Creating particle animations
	Time for action – building a fountain in the scene
	Creating shadows on the ground
	Time for action – receiving and casting shadows
	Implementing special effects
	Time for action – drawing the outline of models
	Playing with more NodeKits
	Summary

	Chapter 12: Improving Rendering Efficiency
	OpenThreads basics
	Time for action – using a separate data receiver thread
	Understanding multithreaded rendering
	Time for action – switching between different threading models
	Dynamic scene culling
	Occluders and occludees
	Time for action – adding occluders to a complex scene
	Improving your application
	Time for action – sharing textures with a customized callback
	Paging huge scene data
	Making use of the quad-tree
	Time for action – building a quad-tree for massive rendering
	Summary

	Appendix: Pop Quiz Answers
	Chapter 2
	Dependencies of osgviewer
	The difference between ALL_BUILD and 'build all'

	Chapter 3
	Configuring OSG path options yourselves
	Release a smart pointer

	Chapter 4
	Results of different primitive types
	Optimizing indexed geometries

	Chapter 5
	Fast dynamic casting
	Matrix multiplications

	Chapter 6
	Lights without sources
	Replacements of built-in uniforms

	Chapter 7
	Changing model positions in the HUD camera
	Another way to display the same scene in different views

	Chapter 8
	Adding or setting callbacks
	Choosing the alpha setter and the callback

	Chapter 9
	Handling events within nodes
	Global and node-related events

	Chapter 10
	Getting rid of pseudo-loaders
	Understanding the inheritance relations

	Chapter 11
	Text positions and the projection matrix

	Chapter 12
	Carefully blocking threads
	Number of created levels and files

	Index

