

OpenSceneGraph 3
Cookbook

Over 80 recipes to show advanced 3D programming
techniques with the OpenSceneGraph API

Rui Wang
Xuelei Qian

BIRMINGHAM - MUMBAI

OpenSceneGraph 3 Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2012

Production Reference: 1280212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-688-4

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

Credits

Authors
Rui Wang

Xuelei Qian

Reviewers
Vincent Bourdier

Torben Dannhauer

Chris 'Xenon' Hanson

Acquisition Editor
Usha Iyer

Lead Technical Editor
Meeta Rajani

Technical Editors
Kedar Bhat

Mehreen Shaikh

Project Coordinator
Alka Nayak

Proofreaders
Mario Cecere

Aaron Nash

Indexers
Monica Ajmera Mehta

Hemangini Bari

Tejal Daruwale

Graphics
Valentina D'Silva

Manu Joseph

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Rui Wang is a software engineer at Beijing Crystal Digital Technology Co. Ltd., and the
manager of osgChina, the largest OSG discussion website in China. He is one of the most
active members of the official OSG community, who contributes to the OSG project regularly.
He translated Paul Martz's "OpenSceneGraph Quick Start Guide" into Chinese in 2008, and
wrote his own Chinese book "OpenSceneGraph Design and Implementation" in 2009. And
in 2010, he wrote the book "OpenSceneGraph 3.0 Beginner's Guide", which is published
by Packt Publishing, along with Xuelei Qian. He is also a novel writer and guitar lover in his
spare time.

I’d like to express my deepest respect to Robert Osfield and the entire
OpenSceneGraph community for their continuous contribution and support
to this marvelous open source project. Many thanks to the Packt team for
the great efforts to make another OpenSceneGraph book published. And
last but not least, I’ll extend my heartfelt gratitude to my family, for your
timeless love and spiritual support.

Xuelei Qian received his Ph.D. degree in applied graphic computing from the University of
Derby in 2005. From 2006 to 2008, he worked as a postdoctoral research fellow in the Dept.
of Precision Instrument and Mechanology at Tsinghua University. Since 2008, he has been
appointed by the School of Scientific Research and Development of Tsinghua University.
He is also the Deputy Director of Overseas R&D Management Office of Tsinghua University
and Deputy Secretary in General of University-Industry Cooperation Committee,
Tsinghua University.

I will dedicate this book to my family because of all the wonderful things
they do for me and supporting me all the way.

About the Reviewers

Vincent Bourdier, a twenty-six years old developer, is a French 3D passionate. After self
tuition in 3D modeling and programming, he went to the UTBM (University of Technology
of Belfort Montbeliard) in 2003 and received an engineering degree in computer sciences,
specializing in imagery, interaction, and virtual reality. A computer graphics and passionate
about image processing, he remains curious about new technologies in domains such as AI,
Cmake, Augmented reality, and others.

He has been working as a 3D developer at Global Vision Systems (Toulouse, France) since
2008. He is now technical leader on a 3D real-time engine using OpenSceneGraph.

Global Vision Systems (http://www.global-vision-systems.com) is a software
developer and publisher, offering innovative Human Machine Interfaces for Aeronautics,
Space, Plant, and Process supervision.

I would like to thank my parents for their encouragement even if they don't
understand a word of my job, my employers for this opportunity to live my
passions and to give me challenges to meet, and all the people from the
OpenSceneGraph mailing list for their help and advices, especially Robert
Osfield, the OpenSceneGraph fundator.

http://www.global-vision-systems.com/

Torben Dannhauer was born in Germany in 1982 and has been working as a freelancer
in software development since 2000. He has also provided web and e-mail hosting since
2005. From 2003 until 2009, he studied mechanical engineering, specializing in flight
system dynamics and information technology at University of Technology in Munich.

In his term thesis, he developed an airport traffic simulation tool that was also his first
experience with OpenGL with which he visualized the simulation results. In his diploma thesis,
he analysed the usability of game engines to serve as visualization software for full flight
simulators considering qualification requirements. During the thesis, he decided to start the
development of a rudimentary but open source visualization framework, which is based on
OpenSceneGraph: osgVisual (www.osgvisual.org).

osgVisual is designed to provide all necessary elements for implementing a visualization
software with multiple rendering hosts, projected on curved screens with multiple video
channels. After finishing his studies, he still developed the tool, initially as a freelancer, later
on as a hobby; nevertheless osgVisual is still under construction and will be for long time.

During his studies, he also started in 2006, to develop software for Chondrometrics GmbH
(www.chondrometrics.com), a company providing medical data processing. At the end
of 2009, he moved to Ainring (Germany) which is located near to Salzburg (Austria) to join
Chondometrics part time and do a Ph.D. in medical science at Paracelsus Medical University
Salzburg (www.pmu.ac.at).

Torben is experienced in C/C++ with and without Qt. He programmed PHP for a long time
and has expertise in Linux and Windows operating systems. Due to his web and e-mail
hosting, he knows Postfix & Co in detail and speaks SQL. Last but not least, he develops
OpenSceneGraph applications, mostly related to osgVisual.

In his spare time he loves rowing, mountain biking, and skiing with his partner and friends.

I would like to thank Prof. Dr. Holzapfel (Institute of Flight System Dynamics,
University of Technology, Munich) for the initial funding of the osgVisual
project. It is great to learn OpenSceneGraph and develop an open source
application on a paid basis.

Chris 'Xenon' Hanson is co-founder of 3D and digital imaging companies, 3D Nature and
AlphaPixel, and is a veteran of the OpenSceneGraph community. Chris has worked on the
OpenGL SuperBible, OpenGL Distilled, and OpenCL in Action. His goal in life is to ski all seven
continents and build giant intergalactic fighting robots.

I would like to thank my wife Mindy and son Rhys for putting up with the late
nights and potato gun explosions.

http://www.osgvisual.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Customizing OpenSceneGraph 7

Introduction 7
Checking out the latest version of OSG 8
Configuring CMake options 14
Building common plugins 18
Compiling and packaging OSG on different platforms 22
Compiling and using OSG on mobile devices 25
Compiling and using dynamic and static libraries 29
Generating the API documentation 30
Creating your own project using CMake 33

Chapter 2: Designing the Scene Graph 37
Introduction 37
Using smart and observer pointers 40
Sharing and cloning objects 43
Computing the world bounding box of any node 47
Creating a running car 51
Mirroring the scene graph 56
Designing a breadth-first node visitor 58
Implementing a background image node 61
Making your node always face the screen 64
Using draw callbacks to execute NVIDIA Cg functions 67
Implementing a compass node 74

ii

Table of Contents

Chapter 3: Editing Geometry Models 81
Introduction 81
Creating a polygon with borderlines 82
Extruding a 2D shape to 3D 86
Drawing a NURBS surface 89
Drawing a dynamic clock on the screen 96
Drawing a ribbon following a model 101
Selecting and highlighting a model 106
Selecting a triangle face of the model 110
Selecting a point on the model 114
Using vertex-displacement mapping in shaders 119
Using the draw instanced extension 124

Chapter 4: Manipulating the View 129
Introduction 129
Setting up views on multiple screens 130
Using slave cameras to simulate a power-wall 133
Using depth partition to display huge scenes 139
Implementing the radar map 143
Showing the top, front, and side views of a model 148
Manipulating the top, front, and side views 152
Following a moving model 155
Using manipulators to follow models 159
Designing a 2D camera manipulator 162
Manipulating the view with joysticks 166

Chapter 5: Animating Everything 171
Introduction 171
Opening and closing doors 172
Playing a movie in the 3D world 177
Designing scrolling text 180
Implementing morph geometry 183
Fading in and out 187
Animating a flight on fire 190
Dynamically lighting within shaders 194
Creating a simple Galaxian game 198
Building a skeleton system 206
Skinning a customized mesh 211
Letting the physics engine be 215

iii

Table of Contents

Chapter 6: Designing Creative Effects 227
Introduction 227
Using the bump mapping technique 229
Simulating the view-dependent shadow 233
Implementing transparency with multiple passes 237
Reading and displaying the depth buffer 241
Implementing the night vision effect 245
Implementing the depth-of-field effect 249
Designing a skybox with the cube map 257
Creating a simple water effect 262
Creating a piece of cloud 266
Customizing the state attribute 273

Chapter 7: Visualizing the World 279
Introduction 279
Preparing the VirtualPlanetBuilder (VPB) tool 280
Generating a small terrain database 283
Generating terrain database on the earth 287
Working with multiple imagery and elevation data 290
Patching an existing terrain database with newer data 293
Building NVTT support for device-independent generation 296
Using SSH to implement cluster generation 298
Loading and rendering terrain from the Internet 301

Chapter 8: Managing Massive Amounts of Data 305
Introduction 305
Merging geometry data 306
Compressing texture 310
Sharing scene objects 316
Configuring the database pager 321
Designing a simple culling strategy 324
Using occlusion query to cull objects 331
Managing scene objects with an octree algorithm 333
Rendering point cloud data with draw instancing 342
Speeding up the scene intersections 347

Chapter 9: Integrating with GUI 353
Introduction 353
Integrating OSG with Qt 354
Starting rendering loops in separate threads 359
Embedding Qt widgets into the scene 361

iv

Table of Contents

Embedding CEGUI elements into the scene 365
Using the osgWidget library 374
Using OSG components in GLUT 379
Running OSG examples on Android 383
Embedding OSG into web browsers 386
Designing the command buffer mechanism 392

Chapter 10: Miscellaneous Discussion in Depth
This chapter is not present in the book but is available as a free download
at the following link: http://www.packtpub.com/sites/default/files/
downloads/6884_Chapter10.pdf.

Introduction
Playing with the Delaunay triangulator
Understanding and using the pseudo loaders
Managing customized data with the metadata system
Designing customized serializers
Reflecting classes with serializers
Taking a photo of the scene
Designing customized intersectors
Implementing the depth peeling method
Using OSG in C# applications
Using osgSwig for language binding
Contributing your code to OSG
Playing with osgEarth: another way to visualize the world
Use osgEarth to display a VPB-generated database

Index 397

Preface
During the last 12 years, OpenSceneGraph, which is one of the best 3D graphics programming
interfaces in the world, has grown up so rapidly that it has already become the industry's
leading open source scene graph technology. The latest distribution, OpenSceneGraph 3.0,
now runs on all Microsoft Windows platforms, Apple Mac OS X, iOS (including iPhone and
iPad), GNU/Linux, Android, IRIX, Solaris, HP-UX, AIX, and FreeBSD operating systems, with
the efforts of 464 contributors around the world, and over 5,000 developers of the osg-users
mailing list/forum and diverse and growing communities.

In the year 2010, I wrote the book "OpenSceneGraph 3.0 Beginner’s Guide” with the help
of Dr. Xuelei Qian. It was published by Packt Publishing, and could help the readers gain
an overview of scene graphs and the basic concepts in OpenSceneGraph. But one book is
far less than enough, especially for those who want to continuously study this high-quality
library in depth and play with some state-of-art techniques. So the book "OpenSceneGraph
3 Cookbook” comes onto the scene, with over 80 recipes demonstrating how to make use of
some advanced API features and create programs for industrial demands.

In this book, we will work on different goals, which originate from actual projects and
customer needs, and try to make use of the cutting-edge graphics techniques, or integrate
with other famous and stable libraries to satisfy various multi-level and multi-aspect demands.

Some of the recipes are too long and too complicated to fit into any of the chapters, so
they will only appear in the source code package, which can be downloaded from the Packt
website, or the author's Github repository as described later.

What this book covers
Chapter 1, Customizing OpenSceneGraph, introduces some advance topics about the
configuration and compilation, including build steps on mobile devices and the automatic
generation of the API documentation.

Chapter 2, Designing the Scene Graph, explains the management of scene graph, as well as
the implementation of user-node functionalities in various ways.

Preface

2

Chapter 3, Editing Geometry Models, shows how to create polygonal meshes and make them
animated. It also introduces some solutions for modifying existing geometric properties.

Chapter 4, Manipulating the View, discusses the topics of multi-screen and multi-view
rendering, and the camera manipulation using input devices such as the joysticks.

Chapter 5, Animating Everything, introduces almost all kinds of real-time animation
implementations as well as the integration of physics engines.

Chapter 6, Designing Creative Effects, discusses some cutting-edge techniques about
realistic rendering with GPU and shaders. It also demonstrates a common way to create
post-processing framework for complicated scene effects.

Chapter 7, Visualizing the World, is a totally independent chapter that demonstrates the
generation of landscape pieces and even the entire earth, using VirtualPlanetBuilder.

Chapter 8, Managing Massive Amounts of Data, shows some advanced ways to manage
massive data in OpenSceneGraph applications, with the help of some modern hardware
features such as occlusion query and draw instancing.

Chapter 9, Integrating with GUI, covers the integration of OpenSceneGraph and other graphics
user interfaces (GUI), including 2D and 3D widgets, mobile programs, and web browsers.

Chapter 10, Miscellaneous Discussion in Depth, introduces a few complicated demands that a
developer may face in actual situations, and provides in-depth solutions for them. This chapter
is not present in the book but is available as a free download at the following link: http://
www.packtpub.com/sites/default/files/downloads/6884_Chapter10.pdf.

What you need for this book
To use this book, you will need a graphic card with robust OpenGL support, with the latest
OpenGL device driver installed from your graphics hardware vendor.

You will need to download OpenSceneGraph 3.0.1 from http://www.openscenegraph.
org. Some recipes may require the latest developer version. The CMake utility is also
necessary for compiling OpenSceneGraph and the source code of this book. You may
download it from http://www.cmake.org/.

You will also need a working compiler which transforms C++ source code into executable files.
Some recommended ones include: gcc (on Unices), XCode (on Mac OS X), and mingw32 and
Visual Studio (on Windows).

http://www.openscenegraph.org/projects/osg/wiki/Downloads
http://www.openscenegraph.org/projects/osg/wiki/Downloads
http://www.cmake.org/

Preface

3

Who this book is for
This book is intended for software developers, researchers, and students who are already
familiar with the basic concepts of OpenSceneGraph and can write simple programs with
it. A basic knowledge of C++ programming is also expected. Some experience of using and
integrating platform-independent APIs is also useful, but is not required.

General real-time computer graphics knowledge would be sufficient. Some familiarity with
3D vectors, quaternion numbers, and matrix transformations is helpful.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: “For Debian and Ubuntu users, make sure you have
the root permission and type the command apt-get in the terminal as shown in the following
command line.”

A block of code is set as follows:

// Create the text and place it in an HUD camera
osgText::Text* text = osgCookBook::createText(
 osg::Vec3(50.0f, 50.0f, 0.0f), "", 10.0f);
osg::ref_ptr<osg::Geode> textGeode = new osg::Geode;
textGeode->addDrawable(text);

Any command-line input or output is written as follows:

sudo apt-get install subversion

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “You may easily download
the binary packages of specified platform in the Binary Packages section”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

You can also download the latest version of the source code package at the author's GitHub
repository https://github.com/xarray/osgRecipes. All recipes of this book are
included in this link, as well as more OSG-related examples written by the author and
other contributors.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata section
of that title.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/xarray/osgRecipes

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Customizing

OpenSceneGraph

In this chapter, we will cover:

 f Checking out the latest version of OSG
 f Configuring CMake options
 f Building common plugins
 f Compiling and packaging OSG on different platforms
 f Compiling and using OSG on mobile devices
 f Compiling and using dynamic and static libraries
 f Generating the API documentation
 f Creating your own project using CMake

Introduction
OpenSceneGraph, which will also be abbreviated as OSG in the following parts of this book,
is one of the best open source, high performance 3D graphics toolkits. It is designed to run
under different operation systems, and even mobile platforms. The CMake build system
(http://www.cmake.org/) is used to configure its compilation process and generate
native makefiles, as well as packaging the binaries and development files.

OSG also contains hundreds of plugins for reading and writing files. Some of the plugins
require providing external dependencies, and some may not be workable under specified
platforms. Meanwhile, there are plenty of options to enable or disable while you are
compiling OSG from the source code. These options are designed and implemented using
CMake scripts, with which we could also create our own projects and provide different
choices to the team or the public (if you are working on open source projects) too.

http://www.cmake.org/
http://www.cmake.org/

Customizing OpenSceneGraph

8

We are going to talk about the following concepts in this chapter: The customization of the
OpenSceneGraph library from source code, the understanding of basic CMake scripts, and
the construction of your own programs by reusing them.

Of course, you may select to directly download the prebuilt binaries, which is already
configured in an irrevocable way, to save your time of compiling and start programming
at once. The OpenSceneGraph official download link is:

http://www.openscenegraph.org/projects/osg/wiki/Downloads

Binaries provided by the AlphaPixel, including Windows, Mac OS X, and Linux versions,
can be found at:

http://openscenegraph.alphapixel.com/osg/downloads/free-
openscenegraph-binary-downloads

And the online installer for Windows developers is located at:

http://www.openscenegraph.org/files/dev/OpenSceneGraph-Installer.exe

Checking out the latest version of OSG
The first step we should do to customize the OpenSceneGraph library is to obtain it. Yes, you
may simply get the source code of a stable version from the official download link we just
introduced; otherwise, you could also find all kinds of developer releases in the following page:

http://www.openscenegraph.org/projects/osg/wiki/Downloads/
DeveloperReleases

Developer releases, with an odd minor version number (the first decimal place), always
contains some new functionalities but haven't undergone different test rounds. For instance,
2.9.12 is a developer release, and it is one of the stepping stones towards the next stable
release, that is, OpenSceneGraph 3.0.

Pay attention to the phrase 'new functionalities' here. Yes, that is what we really care about in
this cookbook. It would be boring if we still focus on some very basic scene graph concepts
such as group nodes and state sets. What we want here will be the latest features of OSG and
OpenGL, as well as examples demonstrating them. So we will try to acquire the latest version
of the source code too, using the source control service.

For beginners of OSG programming, please refer to the book "OpenSceneGraph 3.0:
Beginner's Guide", Rui Wang and Xuelei Qian, Packt Publishing. Some other good resources
and discussions can be found in the "osg-users" mailing list and Paul Martz's website
(http://www.osgbooks.com/).

http://www.openscenegraph.org/projects/osg/wiki/Downloads
http://www.openscenegraph.org/projects/osg/wiki/Downloads
http://openscenegraph.alphapixel.com/osg/downloads/free-openscenegraph-binary-downloads
http://openscenegraph.alphapixel.com/osg/downloads/free-openscenegraph-binary-downloads
http://openscenegraph.alphapixel.com/osg/downloads/free-openscenegraph-binary-downloads
http://www.openscenegraph.org/files/dev/OpenSceneGraph-Installer.exe
http://www.openscenegraph.org/files/dev/OpenSceneGraph-Installer.exe
http://www.openscenegraph.org/projects/osg/wiki/Downloads/DeveloperReleases
http://www.openscenegraph.org/projects/osg/wiki/Downloads/DeveloperReleases
http://www.openscenegraph.org/projects/osg/wiki/Downloads/DeveloperReleases
http://www.osgbooks.com/
http://www.osgbooks.com/

Chapter 1

9

Getting ready
You have to make use of the Subversion tool, which is a popular revision-control system used
by OSG. Its official website is:

http://subversion.apache.org/

You can easily download the binary packages of the specified platform in the Binary
Packages section, which are mostly maintained by some third-party organizations and
persons. Of course, you may also compile Subversion from source code if you have interest.

For Debian and Ubuntu users, make sure you have the root permission and type the
command apt-get in the terminal as shown in the following command line:

sudo apt-get install subversion

The hash sign (#) here indicates the prompt before the command. It may change due to
different platforms.

For Windows users, a GUI client named TortoiseSVN is preferred. It is built against
a stable enough version of Subversion, and provides easy access to different source
control operations. You may download it from:

http://tortoisesvn.net/downloads.html

How to do it...
We will take Ubuntu and Windows as examples to check out the latest OSG source code with
Subversion. Users of other platforms should first find the correct location of the executable file
(usually named svn) and follow the steps with appropriate permissions.

We will split the recipe into two parts—for Ubuntu users and Windows users.

Be aware of the phrase 'check out'. It can be explained as downloading files
from the remote repository. Another important word that you need to know is
'trunk'. It is the base of a project for the latest development work. So, 'check
out the trunk' means to download the cutting-edge version of the source code.
This is exactly what we want in this recipe.

http://subversion.apache.org/
http://subversion.apache.org/
http://tortoisesvn.net/downloads.html
http://tortoisesvn.net/downloads.html

Customizing OpenSceneGraph

10

For Ubuntu users
1. Check out the OpenSceneGraph trunk by typing the following command in the

terminal (you may have to add sudo at the beginning to run as an administrator):
svn checkout
http://www.openscenegraph.org/svn/osg/OpenSceneGraph/trunk
OpenSceneGraph

2. The first argument, checkout indicates the command to use. The second argument
is the remote link to check out from. And the third one, OpenSceneGraph is the local
path, in which downloaded files will be saved. Subversion will automatically create the
local sub-directory if it does not exist.

3. Now you can take a look into the local directory ./OpenSceneGraph. It contains the
entire source code of the latest OSG now! Before configuring and compiling it, there
is no harm in checking the source information first. Run the following command in
the directory:

 # cd OpenSceneGraph

 # svn info

Chapter 1

11

4. This screenshot shows some useful information: URL is the remote address from
which you checked the source code out; Revision is an automatically increasing
number which could indicate the version of the code.

When discussing issues with anyone in the forum or
in the mail list, it is quite helpful if you can provide
the revision number of your OSG library.

5. Remember that OSG is growing all the time. The source code you have checked out
may be outdated in the next few days, or even in the next hour. The source tree may
be modified to add new features or make fixes to previous functionalities. If you want
to update these changes, go to the local directory and type the following:

 # cd OpenSceneGraph

 # svn update

Nothing will happen if no changes are made after the last updating. And there will be
conflicts if you have altered some of the source code locally. In that case, you should
consider removing these modified files and re-update the trunk to recover them. If
you are going to commit your changes to the official OpenSceneGraph developer
team, use the "osg-submissions" mailing list instead.

Customizing OpenSceneGraph

12

For Windows users
1. It will be a little easier to check out and update the trunk if you are using TortoiseSVN.

Right click on the desktop or in a specified folder and you will see an SVN Checkout
menu item, if TortoiseSVN is installed properly. Click on it and fill in the pop up dialog
as shown in the following screenshot:

2. The most important options here are URL of repository and Checkout directory. Be
sure to paste the following address to the former and specify an empty local folder for
the latter:

 http://www.openscenegraph.org/svn/osg/OpenSceneGraph/trunk

3. Everything will be done automatically after you click on OK and you will soon find the
source code in the right place. Right click on the newly created directory, and there is
a new SVN Update menu item. Use it to update to the latest trunk version.

Chapter 1

13

How it works...
Source code control is pretty useful when you are working with a team and have to share
sources with other developers. Of course, we may put all source files in one folder on the
network driver for everyone to visit and edit. But there may be serious conflicts if more than
one developer is modifying the same file at the same time. And in such cases, someone's
changes will definitely be lost.

The solution is to save recently added files on a remote server, which cannot be modified
directly. Each developer can have an own copy on the local disk by performing the checkout
operation. Developers who have the 'write' permission can commit their code to the server,
and the server will synchronize all changes to every other owner's copy when they perform the
update operation.

This is what the OSG developer team actually does. Everyone can use the Subversion tool to
clone a copy of the latest source code and keep it fresh, but only a few core developers have
the rights to upload their code, and help more contributors to submit their code.

There's more...
The Subversion tool can be used to manage the OSG sample data and some other
OSG-related projects as well. Some commands will be listed here for convenience.

Here is the command to obtain the latest sample data (you could also set the environment
variable OSG_FILE_PATH to the local path here):

svn checkout
http://www.openscenegraph.org/svn/osg/OpenSceneGraph-Data/trunk
OpenSceneGraph-data

VirtualPlanetBuilder is a terrain database-creation tool which will be used for managing and
rendering massive paged data. We are going to demonstrate it in Chapter 7. Here it is so you
can check it out for later use:

svn checkout
http://www.openscenegraph.org/svn/VirtualPlanetBuilder/trunk
VirtualPlanetBuilder-trunk

Besides checking out the source code and updating it with Subversion, sometimes you may
also want to export the whole source code directory to a clean one, that is, to clone the source
code. The export command will work for you here, for example:

svn export this_folder/OpenSceneGraph-trunk
/another_folder/cloned-trunk

Customizing OpenSceneGraph

14

Remember, don't directly copy the directory. Subversion puts a lot of
hidden folders (named .svn) inside to help manage the source code.
And it is really a waste if we copy these to the target directory too.

It is certainly beyond this book to introduce all other SVN commands one by one. Some
additional books would be of help if you are interested in this famous source control system,
such as "Version Control with Subversion", Ben Collins-Sussman, O'Reilly Media. The online
version can be found at http://svnbook.red-bean.com).

Configuring CMake options
If you have an experience of compiling OSG from the source code, you should already be
familiar with the CMake system and the cmake-gui GUI tool. This book is neither a CMake
tutorial book nor a step-by-step OSG compilation guide. Here we will quickly go through the
configuration process, and tell you how to make use of some key options to change the
behaviors and results.

Again, to come to understand what should be done before and after the configuration
procedure, please refer to the book "OpenSceneGraph 3.0: Beginner's Guide", Rui Wang
and Xuelei Qian, Packt Publishing.

Getting ready
At the least you should have the OSG source code, the CMake software, and a workable C++
compiler. GCC is the most common compiler for GNU and BSD operating systems, including
most Linux distributions. Windows developers may choose Visual Studio or MinGW, or use
Cygwin to construct a Linux-like environment. For Mac OS X users, XCode is preferred as the
kernel developing toolkit.

CMake binary packages for various systems are available at:
http://www.cmake.org/cmake/resources/software.html

You may also use the apt-get command here to install the cmake (command-line mode)
and cmake-gui (GUI mode) utilities separately:

sudo apt-get install cmake

sudo apt-get install cmake-gui

You must have the OpenGL library before compiling OSG. This is certainly the bottom line.
Install it with apt-get if you don't have it by executing the following commands:

sudo apt-get install libgl1-mesa-dev

sudo apt-get install libglu1-mesa-dev

http://svnbook.red-bean.com
http://svnbook.red-bean.com
http://www.cmake.org/cmake/resources/software.html

Chapter 1

15

How to do it...
The cmake-gui utility has a similar user interface under every platform. And the configuring
steps are of little difference too. We will only introduce the Ubuntu case in this recipe.

1. Run cmake-gui with administrator permission. Drag and drop CMakeLists.txt
from OSG root directory to the GUI window. You will see the text boxes of source and
build destinations changed immediately.

2. Edit the Where to build the binaries box and specify a different place for the
generated makefiles or project files, that is, an out-of-source build. That is
because the SVN checkout operation will establish the source directory with
an update and revision information of every file. Any newly added items will be
marked and considered as 'to be committed to remote repository later', therefore,
an out-of-source build will prevent the generated project and temporary files from
being recorded improperly.

Customizing OpenSceneGraph

16

3. Click on Configure and select a generator corresponding to your system (Unix
Makefiles for Ubuntu). After checking the system automatically, you will see a lot
of options appear in the GUI. Click on Finish as shown in the following screenshot:

4. Next, check the Grouped checkbox to put the options in a more readable order. All
the options shown here are marked with red at present, which means that they are
not set yet. Change one or more of these options and click on Configure to confirm
them. New unset options may appear as the results of previous choices. All you have
to do is to confirm them until there are no red items, and click on Generate to finish
it up.

The default values of the configuration options are good enough. So we can just leave
them except for setting up the build type (debug or release libraries) and the install
prefix under which all OSG binaries and development files will be installed.

Chapter 1

17

5. The CMAKE_BUILD_TYPE item in the CMake group is used for deciding the build
type. Input Debug in the Value column if you want a debug version of libraries and
binaries. Input Release or leave it blank if not. By default, it is just empty (if you are
using a Visual Studio generator under Windows, it contains multiple configurations).

6. The CMAKE_INSTALL_PREFIX item, which is also in the CMake group, will help
specify the base installation path. By default, it is set to /usr/local. Type the
value manually or use the browse button on the right-hand side to make decisions.

7. Confirm and generate the makefiles. Have a look into the target directory and if you
like, do make and make install now (but you may have to do this again and again
during the next few recipes).

Customizing OpenSceneGraph

18

There's more...
CMake supports various kinds of generators, each of which could be used under one or more
specified platforms. The following table will provide more details about creating OSG makefiles
or solutions using different generators:

Generator Platform Required environment Result

MinGW Makefiles Windows MinGW Makefiles for use with
mingw32-make

NMake Makefiles Windows Visual Studio 7/8/9/10 Makefiles for use with
nmake

Unix Makefiles Windows

Linux

Mac OS X

GCC and G++

(available for Cygwin users
under Windows)

Standard Unix
makefiles

Visual Studio

(Specify the version
number)

Windows Visual Studio 7/8/9/10

(Previous versions are
not suitable for compiling
OSG)

Visual Studio solutions

CodeBlocks

(Specify the makefile
type: MinGW, NMake,
or Unix)

Windows

Linux

Mac OS X

Code::Blocks IDE Code::Blocks projects

XCode Mac OS X Apple XCode XCode projects

Building common plugins
OSG works with hundreds of kinds of plugins with a uniform prefix osgdb_*. Most of
them can read specified file formats (mainly models and images) into scene objects, and
some can also write the nodes or images back to files. The plugin mechanism brings us
a lot of convenience as it handles file extensions and chooses a corresponding reader/
writer for us internally. Developers will only have to call the osgDB::readNodeFile() or
osgDB::readImageFile() method with the filename while writing OSG-based applications.

In this recipe, we are going to configure CMake options to build with the most common
plugins. For general plugins, such as BMP, DDS, and the native OSG format reader/writer, the
build process will be faithfully executed and they will always be generated without doubts. But
for plugins requiring external dependencies, such as DAE (requires Collada DOM) and JPEG
(requires libJPEG), CMake scripts will automatically remove the plugin sub-directories from
the build queue in case the third-party includes a path and libraries are not specified correctly.

Chapter 1

19

It is impossible to get all the plugins built under a certain platform. But we still have some very
common plugins depending on external libraries. It is really a pity to leave them alone and
thus lose some good features, such as FreeType font support and network data transferring
with libCURL. To avoid missing them, there are two rules to follow: First, download or compile
the development packages of external libraries; then, set related options while configuring
OSG with CMake.

Getting ready
We will first make a list of the most practical plugins, download their dependent libraries, and
set them up in the cmake-gui window. The list includes curl, freetype, gif, jpeg, png,
Qt, and zlib plugins.

Have a look at the book "OpenSceneGraph 3.0: Beginner's Guide", Rui
Wang and Xuelei Qian, Packt Publishing, in case you are interested in other
plugins too. In Chapter 10, you will find a complete list of file I/O plugins
currently supported by OSG.

How to do it...
Thanks to the apt-get tool, we can make things easier under Ubuntu as follows:

1. Download all the binary packages of external dependencies with the
apt-get command:

 # sudo apt-get install libcurl4-openssl-dev

 # sudo apt-get install libfreetype6-dev

 # sudo apt-get install libgif-dev

 # sudo apt-get install libjpeg62-dev

 # sudo apt-get install libpng12-dev

 # sudo apt-get install zlib1g-dev

2. Download Qt online installer from:
 http://qt.nokia.com/downloads/sdk-linux-x11-32bit-cpp

3. Make it executable and run it to download and install Qt SDK:
 # sudo chmod u+x Qt_SDK_Lin32_online_v1_1_1_en.run

 # sudo ./Qt_SDK_Lin32_online_v1_1_1_en.run

http://qt.nokia.com/downloads/sdk-linux-x11-32bit-cpp
http://qt.nokia.com/downloads/sdk-linux-x11-32bit-cpp

Customizing OpenSceneGraph

20

4. Now it's time to configure these libraries using cmake-gui. Just reopen the GUI
window and click on the Configure button. Check on the Advanced checkbox to
show all the options and check into related groups, including CURL, FREETYPE,
GIFLIB, JPEG, QT, PNG, and ZLIB. If you see nothing unexpected, you will happily
find that every *_INCLUDE_DIR and *_LIBRARY is set correctly. CMake has
already queried these installed libraries and got them ready for compiling
corresponding plugins.

5. Generate makefiles, and enjoy the compiling work again. It will take much shorter
time to finish the entire process this time, unless you remove the build directory
containing all the intermediate object files.

How it works...
Let us see what these plugins do and where to learn about their dependencies:

 f osgdb_curl: This plugin can provide OSG with network transferring functionalities. It
helps fetch data from HTTP and FTP servers and use local file readers to parse them.
It requires libCURL as the dependence. Binary packages and source code can be
downloaded from http://curl.haxx.se/download.html.

http://curl.haxx.se/download.html
http://curl.haxx.se/download.html

Chapter 1

21

 f osgdb_freetype: This plugin is important as it provides osgText with the ability
of displaying TrueType fonts (TTF, TTC formats, and so on). The FreeType library is
necessary, which could be downloaded from http://freetype.sourceforge.
net/download.html.

 f osgdb_gif: This plugin reads GIF and animated GIF images, with GifLib
(http://sourceforge.net/projects/giflib/) as dependence.

 f osgdb_jpeg: This plugin reads JPG and JPEG images, with libJPEG
(http://www.ijg.org/) as dependence.

 f osgdb_png: This plugin reads PNG images, with Zlib and libPNG
(http://www.libpng.org/pub/png/libpng.html) as dependence.

 f osgQt: The osgQt library can be used for OSG and Qt integration and QFont support.
It requires the Qt toolkit (http://qt.nokia.com/downloads/). Don't miss it
as we will talk about some interesting implementations about Qt and OSG in the
following chapters.

 f Zlib: The Zlib library is used widely as the dependence of core libraries and
plugins. For example, the osgDB library and the native IVE format can depend on
Zlib to support file compression. And the osgdb_png plugin needs it too. Its official
website is http://zlib.net/.

There's more...
For Windows users, it may not be simple to get all these dependencies at once. And to
compile them from source code one-by-one is a really harrowing experience for some people
(but for somebody else, it may be exciting. Tastes differ!). The following link may be helpful as
it contains Win32 ports of some GNU libraries (FreeType, Giflib, libJPEG, libPNG, and Zlib):

http://gnuwin32.sourceforge.net/packages.html

Win32 binaries of libCurl and Qt can be found on their own websites.

CMake may not work like a charm under Windows systems, that is, it can hardly find
installed libraries automatically. Specify the ACTUAL_3DPARTY_DIR option in Ungrouped
Entries to the root path of uncompressed binaries and development files, and reconfigure
to see if it works. Also, you can refer to Chapter 10 of the "OpenSceneGraph 3.0: Beginner's
Guide" book.

http://freetype.sourceforge.net/download.html
http://sourceforge.net/projects/giflib/
http://sourceforge.net/projects/giflib/
http://www.ijg.org/
http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html
http://qt.nokia.com/downloads/
http://zlib.net/
http://gnuwin32.sourceforge.net/packages.html
http://gnuwin32.sourceforge.net/packages.html

Customizing OpenSceneGraph

22

Compiling and packaging OSG on different
platforms

You must be familiar with the compilation of OSG under Unix-like systems by simply inputting
the following commands in a terminal:

sudo make

sudo make install

Of course, the prerequisite is that you must have already configured OSG with cmake-gui or
some other command-line tools and generated the makefiles as well. If not, then you may first
read the book "OpenSceneGraph 3.0: Beginner's Guide", Rui Wang and Xuelei Qian, Packt
Publishing, for basic knowledge about compiling OSG.

For Windows and Mac OS X users, we always have some slightly different ways to do this
because of the wide use of IDEs (Integrated Development Environment), but we may also
build from makefiles by specifying the generator type in the CMake configuration window.

Another interesting topic here is the packaging of built binaries. It may automatically
create RPM, DEB, and GZIP packages under Linux, and even self-extracting installer
sunder Windows.

Getting ready
The packaging feature is implemented by the CPack packaging system integrated with
CMake, so you don't have to download or install it on your own. TGZ (.tar.gz) is chose
as the default package format under Linux and ZIP is the default one under Windows.

WinZIP (http://www.winzip.com/win/en/index.htm) is required by CPack to generate
ZIP files. And if you want a cool self-extracting installer/uninstaller, you may get the NSIS
(Nullsoft Scriptable Install System) from:

http://nsis.sourceforge.net/Download

Set the environment variable PATH to include the location of the executables, and CPack will
automatically find and make use of each of them.

http://www.winzip.com/win/en/index.htm
http://www.winzip.com/win/en/index.htm
http://nsis.sourceforge.net/Download
http://nsis.sourceforge.net/Download

Chapter 1

23

How to do it...
Under any UNIX-link systems, to enable packaging, you have to open cmake-gui and set
BUILD_OSG_PACKAGES to ON. Looking at the option CPACK_GENERATOR in Ungrouped
Entries, you can just keep the default value TGZ, or change it to RPM or DEB if you wish to.
Corresponding software must be installed to ensure the package generator works.

After that, there is nothing besides make to build OSG libraries. Open a terminal and type
make in the build folder to compile the OSG library, or use the generated solution file if you
are using Visual Studio products. But instead of installing to a specific directory, this time
you could make a series of .tar archives containing OSG binaries, development files, and
applications and share these developer files with others. Just type the following:

sudo make package_openscenegraph-all

Windows users may open the generated Visual Studio solution. Build the sub-project
ALL_BUILD and click on INSTALL to compile one-by-one and install all targets. But similarly,
they could also select to build the sub-project Package openscenegraph-all instead of
clicking on INSTALL. This will result in a series of zipped files or NSIS installers.

Customizing OpenSceneGraph

24

For Mac OSX users, start XCode and open OpenSceneGraph.xcodeproj from the build
directory. Choose Targets in the Groups & Files view and build ALL_BUILD and install in that
order. Again, it is possible to choose package_ALL after all libraries built, if you have already
had CPack options set before.

How it works...
Generated packages may differ as the result of changing CMake options. The following
table shows what you will get after the make package operation. The prefix (for example,
openscenegraph-all-3.0.0-Linux-i386-Release-*) of each package file is just
ignored here.

Chapter 1

25

Package name Required option Description
libopenthreads None The OpenThreads library file
libopenthreads-dev None The OpenThreads include

files and static-link libraries
libopenscenegraph None The OpenSceneGraph core

library files
libopenscenegraph-dev None The OpenSceneGraph include

files and static-link libraries
openscenegraph BUILD_APPLICATIONS Applications (osgviewer,

osgversion, and so on)

openscenegraph-
examples

BUILD_EXAMPLES Examples

openthreads-doc BUILD_DOCUMENTATION The OpenThreads reference
documentation

openscenegraph-doc BUILD_DOCUMENTATION The OpenSceneGraph
reference documentation

Compiling and using OSG on mobile devices
It is really exciting to know that the latest OSG supports some of the most popular mobile
platforms. After preparing necessary environments and changing some CMake options, we
can then easily build OSG for iOS and Android systems, including iPhone, iPad, most Android
based devices, and their simulators.

Remember, your mobile device must support OpenGL ES (OpenGL for Embedded Systems)
to run any OSG applications. And there are also various API redefinitions and limitations
that will make some functionalities work improperly. Fortunately, Google Android provides
SDKs, simulators, and GLES libraries for development. So it will be an excellent example for
demonstrating how to compile and use OSG on mobile devices.

Getting ready
Download Android SDK and Android NDK from their official websites:

http://developer.android.com/sdk/index.html

http://developer.android.com/sdk/ndk/index.html

Remember that you need NDK r4 or a later version to make the compilation successful.
However, the SDK version doesn't matter most of the time.

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/ndk/index.html

Customizing OpenSceneGraph

26

A very important note before you are going on: At present, some Tegra devices, including
Acer IconiaTab and Motorola XOOM, are unable to work with NEON extensions. But OSG
at present doesn't provide direct options to disable NEON, so the only way to get these
devices to work with OSG libraries in the future is to comment the following line
in PlatformSpecifics/Android/modules.mk.in:

LOCAL_ARM_NEON := true

And compile OSG following the instructions in the next section.

How to do it...
You have to make changes in CMake options to let OSG realize that it is going to work under
GLES v1 or v2, and must be cross-compiled with the C++ compiler provided by Android NDK.

In this recipe, we will only show how to configure OSG with GLES v1 support.

1. Start cmake-gui and reset the options in the group OSG as shown in the table:

Option name Value Description
DYNAMIC_OPENSCENEGRAPH OFF Don't build dynamic libraries on Android
DYNAMIC_OPENTHREADS OFF Don't build dynamic libraries on Android
OSG_BUILD_PLATFORM_ANDROID ON Enable to build OSG for Android
OSG_CPP_EXCEPTIONS_
AVAILABLE

OFF Disable the use of C++ exceptions

OSG_GL1_AVAILABLE OFF No support for OpenGL 1.x
OSG_GL2_AVAILABLE OFF No support for OpenGL 2.x
OSG_GL3_AVAILABLE OFF No support for OpenGL 3.x
OSG_GLES1_AVAILABLE ON Add supports for OpenGL ES 1.x
OSG_GLES2_AVAILABLE OFF No support for OpenGL ES 2.x
OSG_GL_DISPLAYLISTS_
AVAILABLE

OFF No support for display lists

OSG_WINDOWING_SYSTEM None Android has its own windowing system, so
don't use any others here

2. Configure the ANDROID_NDK option which appears after you press Configure. Make
sure the ndk_build executable is in your NDK installation path (we suppose it is
Your_NDK_Root) and specify Your_NDK_Root as the value.

3. Configure the OpenGL include directory and libraries in the OPENGL group to support
GLES v1:

Chapter 1

27

Option name Value
OPENGL_INCLUDE The parent directory of EGL. You can find it at Your_NDK_Root/

platforms/android-9/arch-arm/usr/include. Your_
NDR_Root and android-9 may differ according to your NDK
installation.

OPENGL_egl_
LIBRARY

The libEGL library. You can find it at Your_NDK_Root/
platforms/android-9/arch-arm/usr/lib.

OPENGL_gl_LIBRARY The libGLESv1_CM library (may differ). You can find it at Your_
NDK_Root/platforms/android-9/arch-arm/usr/lib.

OPENGL_glu_
LIBRARY

Don't set it. GLES can't use the GLU library.

4. Nearly done! Now reset all the third-party library options (such as the JPEG, PNG
groups, and so on) to NOTFOUND. That is because all of them have to be rebuilt with
the Android compiler first, and there may be several limitations and errors. We are not
going to discuss this painful process in this book.

5. Now simply run the following command:
 # sudo make

6. If you want to add some NDK building options, such as -B (to do a complete
rebuild) or NDK_DEBUG=1 (to generate debugging code), use the ndk_build
executable directly:

 # Your_NDK_Root/ndk_build NDK_APPLICATION_MK=Application.mk

7. Now wait for the libraries to finish compiling.

Customizing OpenSceneGraph

28

There's more...
We won't discuss any examples on Android here; this will be done in the Chapter 9, Integrating
with GUI.

If you want to compile OSG with GLES v2, remember to handle the following CMake options in
addition to the preceding table, besides enabling OSG_GLES2_AVAILABLE (but they must be
turned on if you choose GLES v1):

Option name Value Description
OSG_GLES1_AVAILABLE OFF No support for OpenGL ES 1.x
OSG_GL_MATRICES_AVAILABLE OFF No support for OpenGL matrix functions
OSG_GL_VERTEX_FUNCS_
AVAILABLE

OFF No support for OpenGL vertex functions

OSG_GL_VERTEX_ARRAY_FUNCS_
AVAILABLE

OFF No support for OpenGL vertex array functions

OSG_GL_FIXED_FUNCTION_
AVAILABLE

OFF No support for all fixed functions

Maybe you are interested in how to configure OSG to use OpenGL ES instead of the standard
OpenGL and GLU libraries. The following link will point out the main difference between the
options of GLES v1 and GLES v2:

http://www.openscenegraph.org/projects/osg/wiki/Community/OpenGL-ES

OSG can also work under Mac OS X to support iOS, and thus support iPhone, iPad, and
other Apple devices with GLES. Check the option OSG_BUILD_PLATFORM_IPHONE or
OSG_BUILD_PLATFORM_IPHONE_SIMULATOR and specify the iOS SDK location. Follow
the discussions on "osg-users" mailing list and try to work out the compilation yourselves.

The OpenGL ES development files are always necessary when you are developing on mobile
devices. And for Windows users, there are some other OpenGL ES emulators for you to test if
OSG and your applications work under such environments.

ARM OpenGL ES 2.0 Emulator can be found at http://www.malideveloper.com/
developer-resources/tools/opengl-es-20-emulator.php.

Qualcomm Adreno SDK can be found at
http://developer.qualcomm.com/showcase/adreno-sdk.

NVIDIA Tegra's x86 Windows OpenGL ES 2.0 Emulator can be found at http://developer.
download.nvidia.com/tegra/files/win_x86_es2emu_v100.msi.

http://www.openscenegraph.org/projects/osg/wiki/Community/OpenGL-ES
http://www.malideveloper.com/developer-resources/tools/opengl-es-20-emulator.php
http://www.malideveloper.com/developer-resources/tools/opengl-es-20-emulator.php
http://developer.qualcomm.com/showcase/adreno-sdk
http://developer.qualcomm.com/showcase/adreno-sdk
http://developer.download.nvidia.com/tegra/files/win_x86_es2emu_v100.msi
http://developer.download.nvidia.com/tegra/files/win_x86_es2emu_v100.msi

Chapter 1

29

Compiling and using dynamic and static
libraries

The main difference between dynamic and static libraries is how they are shared in
applications. Dynamic libraries (or shared libraries) allow many programs to use the
same library at the same time, but static ones don't.

By default, OSG generates dynamic libraries such as libosg.so under Linux or osg.
dll under Windows. The executable only record required routines in a library and all actual
modules will be loaded at runtime. This enables multiple executables to make use of only
one library, rather than compiling the library code into each program. But it also brings
disadvantages such as dependency and distribution problems.

With static linking, target executables will include every referenced part of external libraries
and object files at compile time, and there will be no extra shared files. This ensures that
all the dependencies are loaded with the correct version. You may not be bothered by the
installation of your applications again, as end users won't complain that a DLL file not
found error is not displayed while using static-linked executables.

Of course, static libraries always make the result a larger size. Fortunately, OSG provides
both static and dynamic linking options. It's up to the developers to decide which would win
in their case.

Getting ready
Start the cmake-gui utility. Now we are going to configure the build system to generate static
or dynamic version of OSG libraries. Be careful; each time you switch between static and
dynamic, the whole project including libraries, plugins, and applications will be rebuilt. So it
is clever to make a static-build and a dynamic-build directory separately, if you want
to update both configurations.

How to do it...
It is actually very easy to build static-link version of OSG libraries. We will assume you have
already had a static-build directory for the building process.

1. Start cmake-gui and find the DYNAMIC group. It contains two options (checked by
default)—DYNAMIC_OPENTHREADS and DYNAMIC_OPENSCENEGRAPH. Unmark them
and confirm your changes.

2. That's enough! Let us generate the makefiles/solutions and start the native
compilation work.

Customizing OpenSceneGraph

30

3. After the files are installed, go to the specified path and see what you have now.
You will find that there are no .so or .dll files, and all the plugins are created
as static-link libraries (.a or .lib), as well as the core libraries.

There's more...
This is what we have just described before—static linking doesn't require extra shared objects
any more. All modules referred to by the executable will be directly included at compiling time.

While using static-linked plugins for programming, you must add corresponding file to
the dependence list, and declare them in the global scope of the source code, which
forces the compiler to look for modules in external dependencies. This can be done with
a USE_OSGPLUGIN() macro. Another important macros include USE_DOTOSGWRAPPER_
LIBRARY(), USE_SERIALIZER_WRAPPER_LIBRARY(), and USE_GRAPHICSWINDOW().
The first two can register native OSG and OSGB formats into your executable, and the last
will specify the right windowing system to use. Without dynamic loading of files and dynamic
allocating of global proxy variables, OSG wasn't able to automatically check for them this time.

The example osgstaticviewer, if you enabled BUILD_OSG_EXAMPLES in the BUILD
group, could be a good example for such developing instructions.

Generating the API documentation
Before we start discussing this recipe, open the following link and have a look at it:

http://www.openscenegraph.org/documentation/
OpenSceneGraphReferenceDocs/

Some of you may say: "Oh, this is a wonderful reference guide for me during the programming
work. It's impossible to keep all the classes in mind, and it's really rough to search for one
method or function in the vast source directory. I'd love to have such a handy API document.
But how did you make it, and how do you keep it fresh?"

Believe it or not, all this documenting work could be done by automatic generators, for
example, Doxygen in our case. It will parse the source code and comments in prescribed
forms, and output formatted results to HTML pages, or even CHM files.

And with the well-written build scripts, OSG can create such API documentation with the
Doxygen tool in a very simple way.

http://www.openscenegraph.org/documentation/OpenSceneGraphReferenceDocs/
http://www.openscenegraph.org/documentation/OpenSceneGraphReferenceDocs/
http://www.openscenegraph.org/documentation/OpenSceneGraphReferenceDocs/

Chapter 1

31

Getting ready
Download the Doxygen tool first, and you can generate beautiful documents from the source
code. The download link is:

http://sourceforge.net/projects/doxygen/files/

There is a dot utility created by the Graph Visualization Software. It can draw some types of
hierarchical graphs and thus makes life more colorful. The toolkit can be found at:

http://www.graphviz.org/Download..php

Ubuntu users can install these two utilities with the apt-get command directly by running
the following two command lines:

sudo apt-get install doxygen

sudo apt-get install graphviz

Lastly, Windows users may choose to compile a CHM file. Microsoft HTML Workshop is
required in this situation. If you don't have one, download it at:

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=00535334-
c8a6-452f-9aa0-d597d16580cc

How to do it...
1. Start the cmake-gui window. Don't worry about a completely new compilation,

which may take another few hours again. This time we are going to configure options
for documentation building only.

2. Find the BUILD group and click on BUILD_DOCUMENTATION. Click on Configure for
more choices.

3. A new group named DOXYGEN appears after reconfiguring. Look into the group and
ensure that the doxygen and dot executables are set properly. Windows users may
have to specify the locations of doxygen.exe and dot.exe manually.

4. Another group DOCUMENTATION is used to decide whether we should build with
the option HTML_HELP (CHM file). Selecting it means we are going to compile
HTML documents into a CHM file. It requires hhc.exe from the HTML Workshop
as the executable.

5. For Windows users only, set up the location of hhc.exe and the Html Help SDK
library. The latter can be found in the Windows SDK distribution.

http://sourceforge.net/projects/doxygen/files/
http://sourceforge.net/projects/doxygen/files/
http://www.graphviz.org/Download..php
http://www.graphviz.org/Download..php
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=00535334-c8a6-452f-9aa0-d597d16580cc
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=00535334-c8a6-452f-9aa0-d597d16580cc
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=00535334-c8a6-452f-9aa0-d597d16580cc

Customizing OpenSceneGraph

32

6. The common make and make install commands won't affect the generation
of API documents. Use the following commands to obtain the OpenThreads and
OpenSceneGraph API documents:

 # sudo make doc_openthreads

 # sudo make doc_openscenegraph

7. Use any browser to open the index.html file in the
/doc/OpenSceneGraphReferenceDocs/ folder in your
build directory. See what great work you have just done!

There's more...
If you have generated Visual Studio solution files, find the sub-project DoxygenDoc and
build it separately. The ALL_BUILD and INSTALL projects, which must be run to compile
and install all OSG libraries and applications, can never affect the compilation of documents,
and vice versa. So you may build the API documents without building OSG.

Chapter 1

33

Interested in the generation of API documents? Or do you want your own
project to be documented in such an automatic process too? Change your
commenting habit from now on. Doxygen will try to recognize some special
forms of comments and create great-looking and practical reference manuals
for you. See the link below for more details:
http://www.stack.nl/~dimitri/doxygen/manual.html

Creating your own project using CMake
Now, you may have a question like the following—since CMake is a really powerful tool for
constructing self-adaptive build systems, is it possible that I could make use of it?

In this recipe, we will create a small enough script file, in which we will design the
compilation strategy of a small project with several source files. Our goal is to detect the
OSG installation, set up the include directory, and link libraries to the project, and finally
generate an executable file in the user-defined path. This build script (in fact only one
CMakeLists.txt file) will be used throughout this book.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Getting ready
While CMake and the OpenSceneGraph libraries are all installed, you don't have to prepare
anything before writing scripts. Open a text editor, such as Visual Studio, UltraEdit, or even
Notepad! Make a new folder for your project; save the script file as .txt and go ahead.

http://www.stack.nl/~dimitri/doxygen/manual.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://www.packtpub.com
http://www.packtpub.com/support

Customizing OpenSceneGraph

34

How to do it...
Let us start coding in a plain text file named CMakeLists.txt. The name must not be
changed because CMake will use it for parsing scripts.

1. Set the common parts of the script, including the project name, postfix of Debug
outputs, and CMake version configurations:
PROJECT(OSG_Cookbook)

CMAKE_MINIMUM_REQUIRED(VERSION 2.4.7)
SET(CMAKE_DEBUG_POSTFIX "d" CACHE STRING "add a postfix for
 Debug mode, usually d on windows")

set cmake policy
IF(COMMAND CMAKE_POLICY)
 CMAKE_POLICY(SET CMP0003 NEW)
ENDIF(COMMAND CMAKE_POLICY)

2. Add necessary definitions and C++ compiling flags as you wish:
IF(WIN32)
 IF(MSVC)
 ADD_DEFINITIONS(-D_SCL_SECURE_NO_WARNINGS)
 ADD_DEFINITIONS(-D_CRT_SECURE_NO_DEPRECATE)
 ENDIF(MSVC)
ELSE(WIN32)
 SET(CMAKE_CXX_FLAGS "-W -Wall -Wno-unused")
ENDIF(WIN32)

3. Find and set the OpenSceneGraph to include the directory and library path in some
predicted locations, which will be used as external dependencies of your application.
If not found, users who configure the CMake options of your project must specify
them manually to make the generator work.
find include directory by looking for certain header file
FIND_PATH(OPENSCENEGRAPH_INCLUDE_DIR osg/Referenced
 PATHS
 $ENV{OSG_ROOT}/include
 /usr/include
 /usr/local/include
)

find library directory by looking for certain library file
FIND_PATH(OPENSCENEGRAPH_LIB_DIR libso.so osg.lib
 PATHS
 $ENV{OSG_ROOT}/lib

Chapter 1

35

 /usr/lib
 /usr/local/lib
)

apply them to following projects
INCLUDE_DIRECTORIES(${OPENSCENEGRAPH_INCLUDE_DIR})
LINK_DIRECTORIES(${OPENSCENEGRAPH_LIB_DIR})

4. Set up your own project files here. We would just take osggeometry.cpp as an
example. It can be located at examples/osggeometry of the OpenSceneGraph
source code. Just copy the .cpp file to your project's folder:
SET(EXAMPLE_NAME cookbook_01_01)
SET(EXAMPLE_FILES osggeometry.cpp)

ADD_EXECUTABLE(${EXAMPLE_NAME} ${EXAMPLE_FILES})
SET_TARGET_PROPERTIES(${EXAMPLE_NAME} PROPERTIES
 DEBUG_POSTFIX "${CMAKE_DEBUG_POSTFIX}")

5. Link necessary OSG libraries to the project. The library path is already set before
so we don't have to specify the exact file path again. We also want to install the
executable to specified directory after build. So here is the installing script too:
TARGET_LINK_LIBRARIES(${EXAMPLE_NAME}
 debug osg${CMAKE_DEBUG_POSTFIX} optimized osg
 debug osgUtil${CMAKE_DEBUG_POSTFIX} optimized osgUtil
 debug osgViewer${CMAKE_DEBUG_POSTFIX} optimized osgViewer
 debug osgDB${CMAKE_DEBUG_POSTFIX} optimized osgDB
 debug osgGA${CMAKE_DEBUG_POSTFIX} optimized osgGA
 debug OpenThreads${CMAKE_DEBUG_POSTFIX}
 optimized OpenThreads
)
INSTALL(TARGETS ${EXAMPLE_NAME} RUNTIME DESTINATION
 ${CMAKE_INSTALL_PREFIX}/bin)

Customizing OpenSceneGraph

36

6. Now use cmake-gui to open it and generate the makefiles or solution files as below.
Now we have a cool enough framework for creating cross-platform applications in the
following chapters!

How it works...
Unfortunately, we don't have space to introduce CMake variables, functions, and grammars. It
really requires some hundred pages to make you a CMake expert. Besides the CMake official
website, the OSG source code also provides some good code snippets. And you may find a
large amount of other information on the Internet, simply using CMake or CMakeLists as
the searching keyword.

The book "Mastering CMake", Ken Martin and Bill Hoffman, Kitware, Inc., is also valuable
for reading.

2
Designing the
Scene Graph

In this chapter, we will cover:

 f Using smart and observer pointers

 f Sharing and cloning objects

 f Computing the world bounding box of any node

 f Creating a running car

 f Mirroring the scene graph

 f Designing a breadth-first node visitor

 f Implementing a background image node

 f Making your node always face the screen

 f Using draw callbacks to execute NVIDIA Cg functions

 f Implementing a compass node

Introduction
In this chapter, we will show a series of interesting topics about configuring the scene graph
and implementing some special effects with simple but effective methods. We assume that
you have already understood the concepts of group nodes, leaf nodes (geodes), and parent
and child interfaces. If not, you can read the book "OpenSceneGraph 3.0: Beginner's Guide",
Rui Wang and Xuelei Qian, Packt Publishing, first. So the main objective of the following few
recipes will be to use nodes and callbacks in a flexible way.

Designing the Scene Graph

38

Before we start, it is necessary to prepare some common functions and classes for use.
These utilities can be used to quickly create nodes, event handlers, and other scene objects.
As we have just started with the book, we will learn to handle some real programming
cases; there will be only three components in the "common use" domain. The first one is
the createHUDCamera() function:

osg::Camera* createHUDCamera(double left, double right, double
bottom, double top)
{
 osg::ref_ptr<osg::Camera> camera = new osg::Camera;
 camera->setReferenceFrame(osg::Transform::ABSOLUTE_RF);
 camera->setClearMask(GL_DEPTH_BUFFER_BIT);
 camera->setRenderOrder(osg::Camera::POST_RENDER);
 camera->setAllowEventFocus(false);
 camera->setProjectionMatrix(
 osg::Matrix::ortho2D(left, right, bottom, top));
 camera->getOrCreateStateSet()->setMode(
 GL_LIGHTING, osg::StateAttribute::OFF);
 return camera.release();
}

This function will create an ordinary camera node which will be rendered on the top after
the main scene is drawn. It can be used to display some heads-up display (HUD) texts
and images. You may visit the following link to learn more about the concept of HUD:
http://en.wikipedia.org/wiki/HUD_(video_gaming)

And it is necessary to have a function for creating HUD texts. Its content is shown in the
following block of code:

osg::ref_ptr<osgText::Font> g_font = osgText::readFontFile("fonts/
 arial.ttf");
osgText::Text* createText(const osg::Vec3& pos, const std::string&
 content, float size)
{
 osg::ref_ptr<osgText::Text> text = new osgText::Text;
 text->setDataVariance(osg::Object::DYNAMIC);
 text->setFont(g_font.get());
 text->setCharacterSize(size);
 text->setAxisAlignment(osgText::TextBase::XY_PLANE);
 text->setPosition(pos);
 text->setText(content);
 return text.release();
}

Of course, it is already designed to work with the HUD camera node smoothly.

http://en.wikipedia.org/wiki/HUD_(video_gaming)
http://en.wikipedia.org/wiki/HUD_(video_gaming)

Chapter 2

39

The last useful tool to implement is a picking-up handler with which we can quickly select a
node or drawable displayed on the screen and retrieve information and parent node paths.
It must be derived for practical use.

class PickHandler : public osgGA::GUIEventHandler
{
public:
 // This virtual method must be overrode by subclasses.
 virtual void doUserOperations(
 osgUtil::LineSegmentIntersector::Intersection&) = 0;

 virtual bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa)
 {
 if (ea.getEventType()!=osgGA::GUIEventAdapter::RELEASE
 ||ea.getButton()!=osgGA::GUIEventAdapter::LEFT_MOUSE_BUTTON
 ||!(ea.getModKeyMask()&osgGA::GUIEventAdapter::MODKEY_CTRL))
 return false;

 osgViewer::View* viewer = dynamic_cast<osgViewer::View*>(&aa);
 if (viewer)
 {
 osg::ref_ptr<osgUtil::LineSegmentIntersector>
 intersector = new osgUtil::LineSegmentIntersector
 (osgUtil::Intersector::WINDOW, ea.getX(), ea.getY());
 osgUtil::IntersectionVisitor iv(intersector.get());
 viewer->getCamera()->accept(iv);

 if (intersector->containsIntersections())
 {
 osgUtil::LineSegmentIntersector::Intersection&
 result = *(intersector->getIntersections().begin());
 doUserOperations(result);
 }
 }
 return false;
 }
};

When you are clicking on the screen to select an object, you must press Ctrl at the same time
to distinguish the selecting operation with normal scene navigating.

All these utilities will be placed in the osgCookbook namespace to avoid ambiguous issues.
And we will directly call them in a unified form such as the osgCookBook::createText()
method, assuming that you have already put them in a suitable place for use.

Also, go through the code bundle of this chapter for the source code.

Designing the Scene Graph

40

Using smart and observer pointers
You should be familiar with the smart pointer osg::ref_ptr<>, which manages allocated
objects using reference counting, and deletes them when the counting number decreases to
0. In this case, osg::ref_ptr<> is actually a strong pointer that contributes to the life of
the managed object.

This time we will come across another type of smart pointer, that is, the weak pointer. A weak
pointer, that is, osg::observer_ptr<> in the OSG core library, doesn't own the object and
won't change the reference counting number irrespective of it being attached or detached.
But it has a property that when the object is deleted or recycled, it will be notified and set to
NULL automatically to avoid using invalid pointers.

How to do it...
An interactive program will be created in this recipe to show the main feature of
the osg::observer_ptr<> template class that checks if the pointer is valid or
not spontaneously:

1. Include necessary headers:
 #include <osg/ShapeDrawable>
 #include <osg/Geode>
 #include <osgViewer/Viewer>

2. We are going to have a RemoveShapeHandler class derived from the
osgCookBook::PickHandler auxiliary class. It simply checks and
removes the picked drawable from its parent:
class RemoveShapeHandler : public osgCookBook::PickHandler
{
 virtual void doUserOperations(osgUtil::LineSegmentIntersector::
 Intersection& result)
 {
 if (result.nodePath.size()>0)
 {
 osg::Geode* geode = dynamic_cast<osg::Geode*>(
 result.nodePath.back());
 if (geode) geode->removeDrawable(
 result.drawable.get());
 }
 }
};

Chapter 2

41

3. The ObserveShapeCallback class is used here to keep two drawables with the
osg::observer_ptr<> template class. As a weak pointer, it will automatically
reset the pointer to NULL if the referenced object is recycled for some reason. And
the member _text variable here will record these changes and display them on
the screen:
class ObserveShapeCallback : public osg::NodeCallback
{
public:
 virtual void operator()(osg::Node* node, osg::NodeVisitor* nv)
 {
 std::string content;
 if (_drawable1.valid()) content += "Drawable 1; ";
 if (_drawable2.valid()) content += "Drawable 2; ";
 if (_text.valid()) _text->setText(content);
 }

 osg::ref_ptr<osgText::Text> _text;
 osg::observer_ptr<osg::Drawable> _drawable1;
 osg::observer_ptr<osg::Drawable> _drawable2;
};

4. In the main entry, we will first build the scene graph. It contains a HUD camera with
text, and two basic drawables for use in this experiment:
// Create the text and place it in an HUD camera
osgText::Text* text = osgCookBook::createText(osg::Vec3(
 50.0f, 50.0f, 0.0f), "", 10.0f);
osg::ref_ptr<osg::Geode> textGeode = new osg::Geode;
textGeode->addDrawable(text);

osg::ref_ptr<osg::Camera> hudCamera =
 osgCookBook::createHUDCamera(0, 800, 0, 600);
hudCamera->addChild(textGeode.get());

// Create two simple shapes and add both, as well as the camera,
// to the root node
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(new osg::ShapeDrawable(new
 osg::Box(osg::Vec3(-2.0f,0.0f,0.0f), 1.0f)));
geode->addDrawable(new osg::ShapeDrawable(new osg::Sphere(osg::Ve
 c3(2.0f,0.0f,0.0f), 1.0f)));

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(hudCamera.get());
root->addChild(geode.get());

Designing the Scene Graph

42

5. Create the update callback for the root node (or any other node in this case). Set up
its public member variables in the following way:
osg::ref_ptr<ObserveShapeCallback> observerCB =
 new ObserveShapeCallback;
observerCB->_text = text;
observerCB->_drawable1 = geode->getDrawable(0);
observerCB->_drawable2 = geode->getDrawable(1);
root->addUpdateCallback(observerCB.get());

6. Add the RemoveShapeHandler instance for interacting with drawables and start
the viewer:
osgViewer::Viewer viewer;
viewer.addEventHandler(new RemoveShapeHandler);
viewer.setSceneData(root.get());
return viewer.run();

7. Press Ctrl and click on one of the shapes to remove it from the scene graph, and
you will see that the text shown at the bottom is changed immediately. The observer
pointer that has already found the shape is not referenced by other objects anymore
and, therefore, resets itself to avoid dangling pointer problems.

How it works...
The RemoveShapeHandler here re-implements the doUserOperation() method of its
parent class to check if a shape is picked, and un-references it from the parent osg::Geode
node. As no other smart pointers are referencing the shape, it is actually deleted from the
system memory. The osg::observer_ptr<> template class, as a weak pointer will only
observe the node's allocation and destroy it, and will automatically switch its data to NULL
to prevent further improper usages.

Chapter 2

43

The weak pointer is a great feature if we are going to observe or use a node in callbacks or
user processes, without adding redundant references to it. Using a raw pointer is troublesome
here because you have to always ensure the object is still valid; otherwise, your program may
get crashed at once.

In multi-threaded applications, it is safe to use the lock() method to convert the weak
pointer to a temporary strong pointer, to prevent synchronous object deletion in other
threads. The code segments could be as follows:

// Define a member variable using osg::observer_ptr<>.
osg::observer_ptr<osg::Node> _memberNode;

// In a thread, when we want to obtain the member node.
osg::ref_ptr<osg::Node> tempRefOfNode;
if (_memberNode.lock(tempRefOfNode))
{
 osg::Node* realNode = tempRefOfNode.get();
 // Do something to the realNode.
 // Don't worry if it is unreferenced or deleted in
 // other threads, because tempRefOfNode can ensure
 // it works during the lifetime of the smart pointer.
}

There's more...
You may refer to the Boost library and read some more about its shared_ptr (strong
pointer) and weak_ptr implementations at the following sites:

http://www.boost.org/doc/libs/1_46_1/libs/smart_ptr/shared_ptr.htm

http://www.boost.org/doc/libs/1_46_1/libs/smart_ptr/weak_ptr.htm

And the MSDN site also contains the similar classes for use:

http://msdn.microsoft.com/en-us/library/bb982026.aspx

http://msdn.microsoft.com/en-us/library/bb982126.aspx

Sharing and cloning objects
The sharing of nodes and drawables is an important optimization for a huge 3D application
based on OSG. But sometimes, duplicating a node without sharing any memory chunks
between the previous node and the new one is also useful for handling user data. In this
example, we will show both implementations in one interactive program and explain the
main difference of the scene graphs we have.

http://msdn.microsoft.com/en-us/library/bb982026.aspx
http://msdn.microsoft.com/en-us/library/bb982026.aspx
http://msdn.microsoft.com/en-us/library/bb982126.aspx
http://msdn.microsoft.com/en-us/library/bb982126.aspx

Designing the Scene Graph

44

How to do it...
We will clone a simple ball shape twice, each with a different mechanism (shallow copy or
deep copy). The user can press Ctrl and click on a ball to change its color. Shallow copied
balls will change together because they point to the same memory address, but a deep
copied one will not.

1. Include necessary headers:
#include <osg/ShapeDrawable>
#include <osg/Geode>
#include <osg/MatrixTransform>
#include <osgViewer/Viewer>

2. This time we want to pick up any drawable and change its color if possible. The
SetShapeColorHandler class here will do this for us. Every time we choose an
osg::ShapeDrawable object, its color will be inverted. Thus we can quickly find
out all the nodes that are sharing the same drawable:
class SetShapeColorHandler : public osgCookBook::PickHandler
{
 virtual void doUserOperations(osgUtil::LineSegmentIntersector
 ::Intersection& result)
 {
 osg::ShapeDrawable* shape = dynamic_cast<osg::ShapeDrawable*>
 (result.drawable.get());
 if (shape) shape->setColor(osg::Vec4(
 1.0f, 1.0f, 1.0f, 2.0f) - shape->getColor());
 }
};

3. The createMatrixTransform() function here will just create a transformation
node at a specified position, and add an osg::Geode node as its child:
osg::Node* createMatrixTransform(osg::Geode* geode,
 const osg::Vec3& pos)
{
 osg::ref_ptr<osg::MatrixTransform> trans =
 new osg::MatrixTransform;
 trans->setMatrix(osg::Matrix::translate(pos));
 trans->addChild(geode);
 return trans.release();
}

Chapter 2

45

4. In the main entry, create a basic sphere and disable the use of display lists on it.
That is because its color may be dynamically changed later in the simulation loop:
osg::ref_ptr<osg::ShapeDrawable> shape = new osg::ShapeDrawable(
 new osg::Sphere);
shape->setColor(osg::Vec4(1.0f, 1.0f, 0.0f, 1.0f));
shape->setDataVariance(osg::Object::DYNAMIC);
shape->setUseDisplayList(false);

5. Now we will demonstrate different cloning types here. The original geode1 including
the changeable sphere is duplicated into geode2 (shallow copy) and geode3 (deep
copy). And all the three nodes are added to the root node with a proper translation:
osg::ref_ptr<osg::Geode> geode1 = new osg::Geode;
geode1->addDrawable(shape.get());

osg::ref_ptr<osg::Geode> geode2 = dynamic_cast<osg::Geode*>(
 geode1->clone(osg::CopyOp::SHALLOW_COPY));
osg::ref_ptr<osg::Geode> geode3 = dynamic_cast<osg::Geode*>(
 geode1->clone(osg::CopyOp::DEEP_COPY_ALL));

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(createMatrixTransform(geode1.get(),
 osg::Vec3(0.0f, 0.0f, 0.0f)));
root->addChild(createMatrixTransform(geode2.get(),
 osg::Vec3(-2.0f, 0.0f, 0.0f)));
root->addChild(createMatrixTransform(geode3.get(),
 osg::Vec3(2.0f, 0.0f, 0.0f)));

6. Before starting the viewer, don't forget to add the handler, with which you may click
on the spheres to make the world colorful:
osgViewer::Viewer viewer;
viewer.addEventHandler(new SetShapeColorHandler);
viewer.setSceneData(root.get());
return viewer.run();

Designing the Scene Graph

46

7. You will soon realize the fact that geode1 (at the middle) and geode2 (at the left
side) will act together when you pick either of them (press Ctrl at the same time).
But geode3 (at the right side) is independent all the time.

How it works...
The geode3 node is deep copied so that if its member variables point to any objects, the
allocated memories of these objects will be copied too. Instead, a shallow copy means
the copied member pointers will share the same memory chunks with original ones. The
difference between them can be seen in the following diagram:

Sphere

object

Cloned

object

geode2 geode3geode1

The clone() method here will allocate a new object of the same type by calling the copy
constructor. This is just a one-line implementation:

virtual osg::Object* clone(const osg::CopyOp& copyop) const
 { return new YourClass(*this, copyop); }

YourClass here means any class name used as OSG scene objects. And you can read the
content of src/osg/CopyOp.cpp of the OSG source code for details about the second
argument copyop.

Chapter 2

47

Computing the world bounding box of
any node

You may have already known that a node uses bounding sphere instead of the
axis-aligned box by learning some other books and tutorials. You may also learn that
the osg::ComputeBoundsVisitor class can compute the bounding box by traversing
the node and its sub-graph. But in this recipe, we will introduce some more details about
the whole computation process and the local-to-world transformation used here.

How to do it...
We will create a simple scene with animations and compute the bounding box of some objects
in realtime, with the resultant bounding box displayed.

1. Include necessary headers:
#include <osg/ComputeBoundsVisitor>
#include <osg/ShapeDrawable>
#include <osg/AnimationPath>
#include <osg/MatrixTransform>
#include <osg/PolygonMode>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. The BoundingBoxCallback class can compute the real-world bounding box for us.
We will have to pass a list of nodes to it and expand the world box by adding the local
bound of each node one by one:
class BoundingBoxCallback : public osg::NodeCallback
{
public:
 virtual void operator()(osg::Node* node, osg::NodeVisitor* nv)
 {

 }

 osg::NodePath _nodesToCompute;
};

Designing the Scene Graph

48

3. In the operator() implementation, we will do the trick: The
osg::ComputeBoundsVisitor class calculates the bounding box of a node
in its parent's reference frame. Then we must re-compute the vertices in the
world coordinates before adding them to the world box variable using the
localToWorld matrix:
osg::BoundingBox bb;
for (unsigned int i=0; i<_nodesToCompute.size(); ++i)
{
 osg::Node* node = _nodesToCompute[i];
 osg::ComputeBoundsVisitor cbbv;
 node->accept(cbbv);

 osg::BoundingBox localBB = cbbv.getBoundingBox();
 osg::Matrix localToWorld = osg::computeLocalToWorld(
 node->getParent(0)->getParentalNodePaths()[0]);
 for (unsigned int i=0; i<8; ++i)
 bb.expandBy(localBB.corner(i) * localToWorld);
}

4. Apply the result (world coordinates) to the transformation node and make it visible in
the whole scene:
osg::MatrixTransform* trans =
 static_cast<osg::MatrixTransform*>(node);
trans->setMatrix(
 osg::Matrix::scale(bb.xMax()-bb.xMin(), bb.yMax()-bb.yMin(),
 bb.zMax()-bb.zMin()) *
 osg::Matrix::translate(bb.center()));

5. We would like to create a function named createAnimationPath() for creating
animation path here, and make the computation of the bounding box more dynamic:
osg::AnimationPath* createAnimationPath(float radius, float time)
{
 osg::ref_ptr<osg::AnimationPath> path =
 new osg::AnimationPath;
 path->setLoopMode(osg::AnimationPath::LOOP);

 unsigned int numSamples = 32;
 float delta_yaw = 2.0f * osg::PI/((float)numSamples - 1.0f);
 float delta_time = time / (float)numSamples;
 for (unsigned int i=0; i<numSamples; ++i)
 {
 float yaw = delta_yaw * (float)i;

Chapter 2

49

 osg::Vec3 pos(sinf(yaw)*radius, cosf(yaw)*radius, 0.0f);
 osg::Quat rot(-yaw, osg::Z_AXIS);
 path->insert(delta_time * (float)i,
 osg::AnimationPath::ControlPoint(pos, rot));
 }
 return path.release();
}

6. In the main entry, we first create the scene with a Cessna flying in a circle, a truck,
and the example terrain. All the model files can be found in the OSG sample dataset:
osg::ref_ptr<osg::MatrixTransform> cessna =
 new osg::MatrixTransform;
cessna->addChild(
 osgDB::readNodeFile("cessna.osgt.0,0,90.rot"));

osg::ref_ptr<osg::AnimationPathCallback> apcb =
 new osg::AnimationPathCallback;
apcb->setAnimationPath(createAnimationPath(50.0f, 6.0f));
cessna->setUpdateCallback(apcb.get());

osg::ref_ptr<osg::MatrixTransform> dumptruck =
 new osg::MatrixTransform;
dumptruck->addChild(osgDB::readNodeFile("dumptruck.osgt"));
dumptruck->setMatrix(osg::Matrix::translate(0.0f, 0.0f, -100.0f));

osg::ref_ptr<osg::MatrixTransform> models =
 new osg::MatrixTransform;
models->addChild(cessna.get());
models->addChild(dumptruck.get());
models->setMatrix(osg::Matrix::translate(0.0f, 0.0f, 200.0f));

7. The Cessna and the truck will be added for computing the world bounding box in a
complex way:
osg::ref_ptr<BoundingBoxCallback> bbcb =
 new BoundingBoxCallback;
bbcb->_nodesToCompute.push_back(cessna.get());
bbcb->_nodesToCompute.push_back(dumptruck.get());

8. Construct the box shape for representing the bound in the scene graph:
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(new osg::ShapeDrawable(new osg::Box));

osg::ref_ptr<osg::MatrixTransform> boundingBoxNode =
 new osg::MatrixTransform;

Designing the Scene Graph

50

boundingBoxNode->addChild(geode.get());
boundingBoxNode->setUpdateCallback(bbcb.get());
boundingBoxNode->getOrCreateStateSet()->setAttributeAndModes(
 new osg::PolygonMode(osg::PolygonMode::FRONT_AND_BACK,
 osg::PolygonMode::LINE));
boundingBoxNode->getOrCreateStateSet()->setMode(
 GL_LIGHTING, osg::StateAttribute::OFF);

9. Build the scene and start the viewer:
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(models.get());
root->addChild(osgDB::readNodeFile("lz.osgt"));
root->addChild(boundingBoxNode.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

10. You will see that the wireframe box is changing its size while the Cessna is moving.
But it exactly contains the Cessna and the truck models all the time, as shown in the
following screenshot:

Chapter 2

51

11. Try commenting the line inputted in step 3 in the following type:

osg::Matrix localToWorld;/* = osg::computeLocalToWorld(
 node->getParent(0)->getParentalNodePaths()[0]); */

Then rebuild to see the difference. Can you figure out the reason for the change?

How it works...
Every node in the scene graph has its own local coordinate system. When you translate
and rotate a transformation node, it means that you change its position and attitude in its
parent's coordinate system. This makes all the transformations occur in local space rather
than the world one. And the matrix applied to the node can also be treated as the transpose
matrix that maps the node space to its parent's space.

To compute the world coordinates of a specified point, we have to first find out the local
space it lives in, and then fetch the node's parent, parent's parent, and so on, until we
reach the scene root. Then we will have a node path from the root to the node containing
the point. With the node path, we can multiply all the transpose matrices and get a complete
local-to-world matrix.

The collection of parental node paths is done with the getParentalNodePaths()
method. It has multiple paths because an OSG node may have more than one parent
node. And to compute the local-to-world matrix, use osg::computeLocalToWorld()
function directly with the node path as argument. There is another function named
osg::computeWorldToLocal(), which is for computing the local representation
of a point in world space.

Creating a running car
The goal here is easy to understand but not easy to achieve. It requires exactly another book
to tell how to make a realistic enough car model and load it into the scene graph efficiently,
as well as how to assemble components and have the wheels rotating. So we have to simplify
the problem here—we are going to implement some very ugly car parts only with basic shapes,
and demonstrate the use of the scene graph in the assembly process.

Designing the Scene Graph

52

How to do it...
All we need to do here is use the transformation node, which is one the most basic classes in
the OSG library. But it is not easy to be skillful with it.

1. Include necessary headers:
#include <osg/ShapeDrawable>
#include <osg/AnimationPath>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. The convenient function createTransformNode() will create a transformation
node for every part shape we have:
osg::MatrixTransform* createTransformNode(osg::Drawable*
 shape, const osg::Matrix& matrix)
{
 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(shape);

 osg::ref_ptr<osg::MatrixTransform> trans =
 new osg::MatrixTransform;
 trans->addChild(geode.get());
 trans->setMatrix(matrix);
 return trans.release();
}

3. We want to make the wheel turn rapidly using an animation path callback. Note that
we also added a very small offset on the Z axis while rotating the wheel. It makes the
animation a little more realistic here:
osg::AnimationPathCallback* createWheelAnimation(
 const osg::Vec3& base)
{
 osg::ref_ptr<osg::AnimationPath> wheelPath =
 new osg::AnimationPath;
 wheelPath->setLoopMode(osg::AnimationPath::LOOP);
 wheelPath->insert(0.0, osg::AnimationPath::ControlPoint(
 base, osg::Quat()));
 wheelPath->insert(0.01, osg::AnimationPath::ControlPoint(
 base + osg::Vec3(0.0f, 0.02f, 0.0f), osg::Quat(
 osg::PI_2, osg::Z_AXIS)));
 wheelPath->insert(0.02, osg::AnimationPath::ControlPoint(
 base + osg::Vec3(0.0f,-0.02f, 0.0f), osg::Quat(
 osg::PI, osg::Z_AXIS)));

Chapter 2

53

 osg::ref_ptr<osg::AnimationPathCallback> apcb =
 new osg::AnimationPathCallback;
 apcb->setAnimationPath(wheelPath.get());
 return apcb.release();
}

4. In the main entry, there are mainly four parts of our ugly car: four wheels, the
coupling rod between each two wheels, the car body (here we only use a box to
represent it) and the main rod which connects all of them, as shown in the
following diagram:

Coupling rod

Wheel

Main rod

Body

5. By default, the geometric centers of each part's prototype are all placed at the
origin point; and the height directions of the cylinders are the Z-axis:
// The prototype of the main rod
osg::ref_ptr<osg::ShapeDrawable> mainRodShape =
 new osg::ShapeDrawable(new osg::Cylinder(
 osg::Vec3(), 0.4f, 10.0f));
// The prototype of the coupling (wheel) rod
osg::ref_ptr<osg::ShapeDrawable> wheelRodShape =
 new osg::ShapeDrawable(new osg::Cylinder(
 osg::Vec3(), 0.4f, 8.0f));
// The prototypes of the wheel and the car body
osg::ref_ptr<osg::ShapeDrawable> wheelShape =
 new osg::ShapeDrawable(new osg::Cylinder(
 osg::Vec3(), 2.0f, 1.0f));

Designing the Scene Graph

54

osg::ref_ptr<osg::ShapeDrawable> bodyShape =
 new osg::ShapeDrawable(new osg::Box(
 osg::Vec3(), 6.0f, 4.0f, 14.0f));

6. The wheels will be moved to the ends of the coupling rod:
osg::MatrixTransform* wheel1 = createTransformNode(
 wheelShape.get(), osg::Matrix::translate(0.0f, 0.0f,-4.0f));
wheel1->setUpdateCallback(
 createWheelAnimation(osg::Vec3(0.0f, 0.0f,-4.0f)));

osg::MatrixTransform* wheel2 = createTransformNode(
 wheelShape.get(), osg::Matrix::translate(0.0f, 0.0f, 4.0f));
wheel2->setUpdateCallback(
 createWheelAnimation(osg::Vec3(0.0f, 0.0f, 4.0f)));

7. And the coupling rod itself will be rotated and moved to the end of the main rod too:
osg::MatrixTransform* wheelRod1 = createTransformNode(
 wheelRodShape.get(),
osg::Matrix::rotate(osg::Z_AXIS, osg::X_AXIS) *
 osg::Matrix::translate(0.0f, 0.0f,-5.0f));
wheelRod1->addChild(wheel1);
wheelRod1->addChild(wheel2);

8. For another coupling rod, we will directly copy from the transformation node
wheelRod1. It is good to do a shallow copy here as the child wheels and animations
will be shared. After moving the cloned rod to a suitable place, now we can have a
complete wheel system:
osg::MatrixTransform* wheelRod2 =
 static_cast<osg::MatrixTransform*>(
 wheelRod1->clone(osg::CopyOp::SHALLOW_COPY));
wheelRod2->setMatrix(osg::Matrix::rotate(osg::Z_AXIS,
 osg::X_AXIS) * osg::Matrix::translate(0.0f, 0.0f, 5.0f));

9. Finally, move the car body onto the main rod and finish the assembly work. All
three parts should be added to the main rod node to make sure they are under
its local coordinates:
osg::MatrixTransform* body = createTransformNode(
 bodyShape.get(), osg::Matrix::translate(0.0f, 2.2f, 0.0f));

osg::MatrixTransform* mainRod = createTransformNode(
 mainRodShape.get(), osg::Matrix::identity());
mainRod->addChild(wheelRod1);
mainRod->addChild(wheelRod2);
mainRod->addChild(body);

Chapter 2

55

10. Create the root node and start the viewer now:
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(mainRod);

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

11. You will see the car running in the viewer. Of course, it has no textures, doors,
windows, or aerodynamic bodyworks. But, why don't you just create some
beautiful models in some other software like 3dsmax, Maya, or Blender3D,
and replace the basic shapes used here? Try it if you have any interest in
building a better-looking scene.

How it works...
Although the result is not so exciting and refined, it should be a good example
for demonstrating the use of local coordinates, as well as the basic concepts of
character bones (we were working on a car's bones in the previous section).

Of course there are more ways to implement such a composite car model, and you will be
able to import some beautiful models to replace our basic ones. Just try it by yourselves.

Designing the Scene Graph

56

The structure of the recipe's scene graph is shown in the following diagram:

mainRod

wheelRod1 wheelRod2 body

wheel1 wheel2

Mirroring the scene graph
Mirroring the scene graph, or in another words, putting a scene inside a mirror as the
"reflection", can also be done by specifying another transformation node as the parent of the
origin scene. It requires rendering everything for a second time, and can be integrated with
some render-to-texture techniques to simulate real mirrors, water reflections, shadows, and
some other reflective effects. The solution described here will be used again in Chapter 6 to
create simple water effects.

How to do it...
The following code will be short but can be reused later in other chapters.

1. Include necessary headers:
#include <osg/ClipNode>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
Load a model into the scene graph first:
osg::ArgumentParser arguments(&argc, argv);
osg::ref_ptr<osg::Node> scene = osgDB::readNodeFiles(
 arguments);
if (!scene) scene = osgDB::readNodeFile("cessna.osg");

Chapter 2

57

2. The next important step is to work out the mirror matrix. We are going to make a
mirror of the model against the XOY plane by flipping it upside down, as well as
a small translation along the Z axis too, to represent the height of the mirror. The
osg::Matrix::scale() function here will put the reflected model opposite on
the Z axis, and the osg::Matrix::translate() function is used to set the scale
pivot point:
float z = -10.0f;
osg::ref_ptr<osg::MatrixTransform> reverse =
 new osg::MatrixTransform;
reverse->preMult(osg::Matrix::translate(0.0f, 0.0f, -z) *
 osg::Matrix::scale(1.0f, 1.0f, -1.0f) *
 osg::Matrix::translate(0.0f, 0.0f, z));
reverse->addChild(scene.get());

3. Enable clipping to remove anything that is poking out of the mirrored graph through
the mirror. It may have no effect here but will help later when we are working on the
water simulation example:
osg::ref_ptr<osg::ClipPlane> clipPlane = new osg::ClipPlane;
clipPlane->setClipPlane(0.0, 0.0, -1.0, z);
clipPlane->setClipPlaneNum(0);

osg::ref_ptr<osg::ClipNode> clipNode = new osg::ClipNode;
clipNode->addClipPlane(clipPlane.get());
clipNode->addChild(reverse.get());

4. Now add both the origin scene and the reversed one to the root node and start
the viewer:
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(scene.get());
root->addChild(clipNode.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

Designing the Scene Graph

58

5. The result is shown in the following screenshot. It may not be interesting enough at
present, but you will soon find that it is the basis of some other complex effects such
as water reflection and shadow implementations.

There's more...
If you have more interests in implementing an inverse scene, there are some more examples
for you to understand, for instance, the NeHe OpenGL tutorials at http://nehe.gamedev.
net/data/lessons/lesson.asp?lesson=26.

The OSG source code also provides a good one using the osg::Stencil class for stencil
tests. Refer to examples/osgreflect for details.

Designing a breadth-first node visitor
In graphics applications, a breadth-first-search (BFS) is a search algorithm that begins at the
root node and traverses all the neighboring nodes before it goes deeper. That is different from
the default behavior of the osg::NodeVisitor class, which is depth-first-search (DFS). We
will try to implement a BFS visitor in this section to show how to make changes to this basic
OSG class for your own use.

http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=26
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=26

Chapter 2

59

How to do it...
First we have to declare a new node visitor class inherited from the osg::NodeVisitor
class. The headers to be included here are:

#include <osg/NodeVisitor>
#include <deque>

Two virtual functions must be overrode to make the visitor work: One is the reset()
method, which will reset all member variables to their initial states; the other one is the
apply() method, which accepts osg::Node class as the input argument. All OSG nodes
will be redirected to this method while traversing a scene graph, so we will place our own
traverseBFS() here for the purpose of creating a BFS visitor:

class BFSVisitor : public osg::NodeVisitor
{
public:
 BFSVisitor() { setVisitorType(TRAVERSE_ALL_CHILDREN); }

 virtual void reset() { _pendingNodes.clear(); }
 virtual void apply(osg::Node& node) { traverseBFS(node); }

protected:
 virtual ~BFSVisitor() {}

 void traverseBFS(osg::Node& node);

 std::deque<osg::Node*> _pendingNodes;
};

The new traversal mechanism of scene graph is implemented as follows. We will find all the
child nodes and push them into a queue, and then handle the queue from the first. Actually
the queue can be treated as a FIFO (first in, first out) pipe. Neighboring nodes will be
explored and handled together, and nodes at a lower level should always wait until nodes
at higher levels are finished, and so on:

void BFSVisitor::traverseBFS(osg::Node& node)
{
 osg::Group* group = node.asGroup();
 if (!group) return;

 for (unsigned int i=0; i<group->getNumChildren(); ++i)
 {
 _pendingNodes.push_back(group->getChild(i));
 }

Designing the Scene Graph

60

 while (_pendingNodes.size()>0)
 {
 osg::Node* node = _pendingNodes.front();
 _pendingNodes.pop_front();
 node->accept(*this);
 }
}

Now we can use the BFSVisitor class in practical work.

1. First include other necessary headers:
#include <osgDB/ReadFile>
#include <osgUtil/PrintVisitor>
#include <iostream>

2. We would like to print each node's class name while traversing the scene graph:
class BFSPrintVisitor : public BFSVisitor
{
public:
 virtual void apply(osg::Node& node)
 {
 std::cout << node.libraryName() << "::"
 <<node.className() << std::endl;
 traverseBFS(node);
 }
};

3. In the main entry, let us read a model from file first:
osg::ArgumentParser arguments(&argc, argv);
osg::ref_ptr<osg::Node> root = osgDB::readNodeFiles(arguments);
if (!root) root = osgDB::readNodeFile("osgcool.osg");

4. The osgUtil::PrintVisitor class is used here to show the traversal sequence
of DFS visitors:
std::cout << "DFS Visitor traversal: " << std::endl;
osgUtil::PrintVisitor pv(std::cout);
root->accept(pv);
std::cout << std::endl;

5. Now use the new BFS visitor to print the node information. You may have to start a
terminal and run the program in text mode:
std::cout << "BFS Visitor traversal: " << std::endl;
BFSPrintVisitor bpv;
root->accept(bpv);
return 0;

Chapter 2

61

6. The comparative result is listed as follows. You can easily find differences between
DFS and BFS visitors.

There's more...
The breadth-first searching can be used to find the shortest path between two nodes, or
implement some other algorithms. In a word, it is not suitable for the updating and rendering
processes, which encapsulate the OpenGL state transitions and local-to-world transformations
in a tree-like structure. The depth-first solution, which goes as far as possible along each
branch and then backtracks, is still preferred for most scene graph visitors, such as the
osg::NodeVisitor class.

Some more information about breadth-first and depth-first searching can be found at the
following links:

http://en.wikipedia.org/wiki/Breadth-first_search

http://en.wikipedia.org/wiki/Depth-first_search

Implementing a background image node
Maybe you have also tried to implement a background image before but failed. The difficulty
here is that if you ever try to use an HUD system to apply a background image, which will
always be rendered after the main scene, it's difficult to deal with the depth buffer values set
by the main scene. Fortunately, in this recipe, we have a solution for this problem using the
depth tests.

http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Depth-first_search

Designing the Scene Graph

62

How to do it...
Specify any image as the background image and load an arbitrary scene, and check if it is
displayed before the background to verify the correctness of our solution.

1. Include necessary headers:
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/Depth>
#include <osg/Texture2D>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. Load the background image and map it to a quadrangle geometry:
osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
osg::ref_ptr<osg::Image> image = osgDB::readImageFile(
 "Images/osg256.png");
texture->setImage(image.get());

osg::ref_ptr<osg::Drawable> quad =
 osg::createTexturedQuadGeometry(osg::Vec3(),
 osg::Vec3(1.0f, 0.0f, 0.0f), osg::Vec3(0.0f, 1.0f, 0.0f));
quad->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, texture.get());

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(quad.get());

3. Prepare an HUD camera for the background image. It must completely fill the screen
so we have to use orthogonal projection here. Some other important points here
include disabling culling on the camera and setting the clear mask to 0. That is
because the background should never be culled, and it should neither affect color
nor depth buffer generated by the main scene.
osg::ref_ptr<osg::Camera> camera = new osg::Camera;
camera->setCullingActive(false);
camera->setClearMask(0);
camera->setAllowEventFocus(false);
camera->setReferenceFrame(osg::Transform::ABSOLUTE_RF);
camera->setRenderOrder(osg::Camera::POST_RENDER);
camera->setProjectionMatrix(osg::Matrix::ortho2D(
 0.0, 1.0, 0.0, 1.0));
camera->addChild(geode.get());

Chapter 2

63

4. Prevent the background from being affected by the light, and set up the depth test
values. We will explain the reason later:
osg::StateSet* ss = camera->getOrCreateStateSet();
ss->setMode(GL_LIGHTING, osg::StateAttribute::OFF);
ss->setAttributeAndModes(new osg::Depth(
 osg::Depth::LEQUAL, 1.0, 1.0));

5. Now add the background camera and any other scene to the root node and see what
we have now:
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(camera.get());
root->addChild(osgDB::readNodeFile("cessna.osg"));

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

6. Everything seems to work well, as shown in the following screenshot. Believe it or
not, the most important line in the program is the addition of the state attribute
osg::Depth here. Try hiding it and see what the difference is.

Designing the Scene Graph

64

How it works...
The key of the implementation of background images can be concentrated into one line, that
is, re-map the depth values of the background image to [1.0, 1.0].

This ensures that each depth value of the post-rendered background is 1.0, and it won't
pass the depth test unless the original depth value is equal or greater than 1.0 (the latter
is certainly impossible), as shown in the following code segment:

setAttributeAndModes(new osg::Depth(osg::Depth::LEQUAL,
 1.0, 1.0));

So when will the original depth value be 1.0? The answer is obvious: It happens when there is
nothing displayed! And the real meaning of a "background" is exactly what needs to be shown
when there is no other scene object. So we have just finished the work in a perfect way now.

Making your node always face the screen
Make something face the screen? Yes, this is exactly what the osg::Billboard class
has done for you, and the osgText::Text class has a similar feature that rotates the
text to screen automatically. But this time we will work on a node, and show how to alter
transformation nodes according to the global model-view matrix. The method used here
can also be extended to implement other small functionalities, for instance, to show small
XYZ axes for reference in a model editor window, or a front sight following the mouse in a
shooting game.

How to do it...
This recipe will be simple enough for reading and understanding. But the usage of cull
callbacks here may also help in the following chapters to implement some complex
examples. Just keep it in mind or place a bookmark if you can.

1. Include necessary headers:
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgUtil/CullVisitor>
#include <osgViewer/Viewer>

2. Declare a node callback and we will change the transformation matrix of specified
node to make sure it is always facing the screen, which is actually a billboard
node's behavior:
class BillboardCallback : public osg::NodeCallback
{
public:

Chapter 2

65

 BillboardCallback(osg::MatrixTransform* billboard)
 : _billboardNode(billboard) {}

 virtual void operator()(osg::Node* node, osg::NodeVisitor* nv)
 {
 ...
 }

protected:
 osg::observer_ptr<osg::MatrixTransform> _billboardNode;
};

3. In the operator() implementation, first be careful of the dynamic type casting. We
are trying to convert the input-node visitor pointer to an osgUtil::CullVisitor
object. It can only be retrieved in the cull traversal.
osgUtil::CullVisitor* cv =
 dynamic_cast<osgUtil::CullVisitor*>(nv);
if (_billboardNode.valid() && cv)
{
 osg::Vec3d translation, scale;
 osg::Quat rotation, so;
 cv->getModelViewMatrix()->decompose(translation, rotation,
 scale, so);

 osg::Matrixd matrix(rotation.inverse());
 _billboardNode->setMatrix(matrix);
}
traverse(node, nv);

This code segment decomposes the matrix into translation, rotation, scale vector, and
scale orientation.

4. To make a node face the screen all the time, all we should do is remove the rotation
component from the model-view matrix applying on it. That is why we set the inverse
rotation matrix here. And this and the previous rotation component will cancel each
other out during the matrix multiplication process.

5. In the main entry, load the Cessna model and add it to a transformation node, which
will only accept the inverse rotation matrix:
osg::ref_ptr<osg::MatrixTransform> billboardNode =
 new osg::MatrixTransform;
billboardNode->addChild(osgDB::readNodeFile("cessna.osg"));

Designing the Scene Graph

66

6. Add the billboard node and a terrain model for reference to the root node:
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(billboardNode.get());
root->addChild(osgDB::readNodeFile("lz.osg"));
root->addCullCallback(
 new BillboardCallback(billboardNode.get()));

Later we will explain the reason we put the BillboardCallback on the root node,
rather than the billboard node itself.

7. Start the viewer:
osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

8. The Cessna is still at the right place and has correct hiding relations with the terrain.
But you will soon find that you can see only one side of the Cessna, as if it is 2D. That
is to say, the Cessna is facing the screen now, as shown in the following screenshot:

How it works...
The difference between adding the callback to the root node and to billboardNode is the
priority order of setting matrix and applying matrix. Let us look at the first case; when the
callback is set to root, it will be executed when the cull visitor reaches the root node and call
the setMatrix() method of the transformation node billboardNode. After that, when
the cull visitor is traversing the node billboardNode, the transformation matrix will be
applied to the billboard and become effective during the rendering. It leads to the corrected
orientation (facing the screen) of the node.

Chapter 2

67

But if we set the callback to the node billboardNode directly, some problems may appear.
The newly set matrix won't work immediately in a cull callback. So the new orientation value
can only take effect in the next frame. In fact, this will cause the model to twinkle, and thus
lead to unexpected results.

There's more...
There are several types of visitors that may traverse the scene graph and trigger a callback.
You may obtain them by dynamic type casting in the traverse() method of your custom
node, or in the operator() of callbacks. The following table shows these node visitors, type
enumerations (can be obtained by calling the getVisitorType() method), and descriptions:

Visitor Type enumeration Related
callback

Description

osgGA::
EventVisitor

EVENT_VISITOR setEvent
Callback()

The event
visitor

osgUtil::
UpdateVisitor

UPDATE_VISITOR setUpdate
Callback()

The update
visitor

osgUtil::
CullVisitor

CULL_VISITOR setCull
Callback()

The cull visitor

osgUtil::
GLObjectsVisitor

NODE_VISITOR None The visitor
for compiling
OpenGL objects

osg::
CollectOccludersVisitor

COLLECT_
OCCLUDER_
VISITOR

None The visitor
for collecting
culling
occluders

osgUtil::
IntersectionVisitor

NODE_VISITOR None The visitor for
intersections

For other implementations of billboards, see the declarations of the osg::Billboard
and osg::AutoTransform classes. And there are some related examples at examples/
osgforest and examples/osgautotransform in the OSG source code too.

Using draw callbacks to execute NVIDIA Cg
functions

The Cg language (C for Graphics) is a high-level shading language developed by NVIDIA. It is
suitable for GPU programming and can support both the DirectX (HLSL) and OpenGL (GLSL)
shader programs. It is widely used in modern PC games and 3D applications.

Designing the Scene Graph

68

Of course, although we can't make use of any HLSL features of the Cg language, it is still
worth integrating it with the OSG functionalities. Before considering using shader parameters,
parameter buffers, CgFX, and other advanced Cg features, we could first attempt to run
some very easy Cg programs. This time we will use osg::Camera's draw callbacks for
such purposes.

Getting ready
Review and download the Cg toolkit at the NVIDIA website first. It supports Linux, Mac OS X,
and Windows systems too.

http://developer.nvidia.com/cg-toolkit

We don't have space to introduce the Cg grammar and example code here. You can check out
some tutorials on the Internet.

The CMake script of your program should be modified to find Cg include directory and
libraries. The following code segment should be an easy-to-read example here:

FIND_PATH(CG_INCLUDE_PATH Cg/cg.h)
FIND_LIBRARY(CG_GL_LIBRARY CgGL)
FIND_LIBRARY(CG_LIBRARY Cg)

INCLUDE_DIRECTORIES(${CG_INCLUDE_PATH })
TARGET_LINK_LIBRARIES(${EXAMPLE_NAME}
 ${CG_LIBRARY} ${CG_GL_LIBRARY})

How to do it...
Now let us first create the draw callbacks for rendering with Cg program states.

1. Include necessary headers and start to construct some classes for integrating
Cg shading features:
#include <Cg/cg.h>
#include <Cg/cgGL.h>
#include <osg/Camera>

2. The most important steps when using Cg programs and profiles are to enable them
before actual drawing, and disable them after; this can enable specific shaders to
work before real-drawing operations, and disable them after to make sure they
won't affect other processing steps. To implement this with camera callbacks, you
have to design a pre-drawing and a post-drawing callback, both with the same Cg
variables. Therefore, we can just have a base callback class which manages a list
of CGprofile and CGprogram objects:

http://developer.nvidia.com/cg-toolkit
http://developer.nvidia.com/cg-toolkit

Chapter 2

69

class CgDrawCallback : public osg::Camera::DrawCallback
{
public:
 void addProfile(CGprofile profile) {
 _profiles.push_back(profile); }
 void addCompiledProgram(CGprogram prog) {
 _programs.push_back(prog); }

protected:
 std::vector<CGprofile> _profiles;
 std::vector<CGprogram> _programs;
};

3. The CgStartDrawCallback and CgEndDrawCallback classes will
have different behaviors while handling the same Cg objects. Note that the
CgStartDrawCallback class has an extra _initialized variable to help
initialize the programs the first time it is executed:
class CgStartDrawCallback : public CgDrawCallback
{
public:
 CgStartDrawCallback() : _initialized(false) {}
 virtual void operator()(osg::RenderInfo&
 renderInfo) const;

protected:
 mutable bool _initialized;
};

class CgEndDrawCallback : public CgDrawCallback
{
public:
 virtual void operator()(osg::RenderInfo&
 renderInfo) const;
};

4. Here is the implementation of these two drawing callbacks. The two operator()
methods here will be executed just before and after the drawing process of the
camera's children:
void CgStartDrawCallback::operator()(osg::RenderInfo&
 renderInfo) const
{
 if (!_initialized)
 {
 // Load all Cg shader programs

Designing the Scene Graph

70

 for (unsigned int i=0; i<_programs.size(); ++i)
 cgGLLoadProgram(_programs[i]);
 _initialized = true;
 }

 // Bind the programs to current graphics context
 for (unsigned int i=0; i<_programs.size(); ++i)
 cgGLBindProgram(_programs[i]);

 // Enable Cg profiles to work under specified devices
 for (unsigned int i=0; i<_profiles.size(); ++i)
 cgGLEnableProfile(_profiles[i]);
}

void CgEndDrawCallback::operator()(osg::RenderInfo&
 renderInfo) const
{
 // Disable profiles after the drawing
 for (unsigned int i=0; i<_profiles.size(); ++i)
 cgGLDisableProfile(_profiles[i]);
}

5. After finishing the callback classes, now it's time to create a small example using OSG
and NVIDIA Cg. First let us include the headers and create a very simple Cg program
rendering vertex normal as final pixel colors:
static const char* cgProgramCode = {
 "struct app_input {\n"
 "float4 vertex : POSITION;\n"
 "float4 normal : NORMAL;\n"
 "};\n"

 "struct vertex_to_fragment {\n"
 "float4 position : POSITION;\n"
 "float3 normal3 : TEXCOORD0;\n"
 "};\n"

 "vertex_to_fragment vertex_main(app_input input)\n"
 "{\n"
 "vertex_to_fragment output;\n"
 "output.position = mul(glstate.matrix.mvp,
 input.vertex);\n"
 "output.normal3 = input.normal.xyz;\n"
 "return output;\n"
 "}\n"

Chapter 2

71

 "float4 fragment_main(vertex_to_fragment input) : COLOR\n"
 "{\n"
 "float4 output = float4(input.normal3.x, input.normal3.y,
 input.normal3.z, 1.0);\n"
 "return output;\n"
 "}\n"
};

6. The Cg context must be global, and we will set up an error callback for any
Cg-related problems:
CGcontext g_context;

void error_callback()
{
 CGerror lastError = static_cast<CGerror>(cgGetError());
 OSG_WARN << "Cg error: " << cgGetErrorString(lastError)
 << std::endl;

 if (lastError == CG_COMPILER_ERROR)
 OSG_WARN << std::string(cgGetLastListing(g_context))
 << std::endl;
}

7. In the main entry, first we load a model and allocate the two callbacks:
osg::ArgumentParser arguments(&argc, argv);
osg::ref_ptr<osg::Node> root = osgDB::readNodeFiles(
 arguments);
if (!root) root = osgDB::readNodeFile("cow.osg");

osg::ref_ptr<CgStartDrawCallback> preCB =
 new CgStartDrawCallback;
osg::ref_ptr<CgEndDrawCallback> postCB =
 new CgEndDrawCallback;

8. Initialize the viewer, and what is more important, initialize the graphics context by
calling the setUpViewInWindow() method:
osgViewer::Viewer viewer;
viewer.getCamera()->setPreDrawCallback(preCB.get());
viewer.getCamera()->setPostDrawCallback(postCB.get());
viewer.setSceneData(root.get());
viewer.setUpViewInWindow(100, 100, 800, 600);

Designing the Scene Graph

72

9. Initialize Cg variables before adding them to the callback objects. Since the
initialization process requires OpenGL context to be created and made current, we
must get the graphics context used in the current camera and set up the internal
OpenGL rendering context. Now you will understand why we should initialize the
graphics context before:
CGprofile vertProfile, fragProfile;
CGprogram vertProg, fragProg;

osg::GraphicsContext* gc =
 viewer.getCamera()->getGraphicsContext();
if (gc)
{
 gc->realize();
 gc->makeCurrent();

 g_context = cgCreateContext();
 cgSetErrorCallback(error_callback);

 vertProfile = cgGLGetLatestProfile(CG_GL_VERTEX);
 vertProg = cgCreateProgram(
 g_context, CG_SOURCE, cgProgramCode, vertProfile,
 "vertex_main", NULL);

 fragProfile = cgGLGetLatestProfile(CG_GL_FRAGMENT);
 fragProg = cgCreateProgram(
 g_context, CG_SOURCE, cgProgramCode, fragProfile,
 "fragment_main", NULL);

 gc->releaseContext();
}

10. Add the initialized variables to the callbacks and start the viewer:
preCB->addProfile(vertProfile);
preCB->addProfile(fragProfile);
preCB->addCompiledProgram(vertProg);
preCB->addCompiledProgram(fragProg);

postCB->addProfile(vertProfile);
postCB->addProfile(fragProfile);
postCB->addCompiledProgram(vertProg);
postCB->addCompiledProgram(fragProg);

viewer.run();

Chapter 2

73

11. Lastly, don't forget to release allocated Cg variables:
if (gc)
{
 cgDestroyProgram(vertProg);
 cgDestroyProgram(fragProg);
 cgDestroyContext(g_context);
}
return 0;

12. OK, now what is the feeling of successfully integrating another shading language into
OSG? If you are familiar with the Cg language, just try some other shaders and see if
they could also work for you.

How it works...
A remarkable feature of this recipe is that it forces the construction of the graphics context
and uses it to specify the OpenGL device and execute commands. You might remember
there is a createGraphicsContext() method that creates new contexts according to
user-specified traits. Yes, it could work here too. And the setUpViewInWindow() method
actually executes this function internally with an auto-configured traits object.

There are some other setUpView*() methods, all of which can build a graphics context of
different behaviors for use. You are able to retrieve the osg::GraphicsContext object and
use it to execute OpenGL calls before the simulation starts.

Designing the Scene Graph

74

So there are at least three ways to integrate OpenGL commands and libraries based on
OpenGL with OSG now. The first is to derive and customize the osg::Drawable class. The
second one is the pre-draw and post-draw callbacks defined in the osg::Camera class,
which can manage some external states of child nodes but may cause OpenGL command
coupling sometimes. The last one, that makes use of the rendering context directly, is
applicable when you are going to make some initializations or tests; but can also cause
serious threading problems in the multi-threaded mode because the same context may
have to be used by other OSG graphic objects simultaneously.

Integration with other libraries is an interesting topic, so it will be mentioned again in other
chapters. Try to find the pros and cons of the three methods discussed above by learning this
and the following recipes, but use them at your own risk in different applications.

There's more...
Another good integration of OSG and NVIDIA Cg can be found in the third-party osgXI project
(http://sourceforge.net/projects/osgxi/). Its osgCg module now supports Cg and
CgFX by accepting them as state attributes.

Last but not least, to learn more about NVIDIA Cg, the free Cg tutorial is always preferred for
reading, and can be found at http://developer.nvidia.com/object/cg_tutorial_
home.html.

Implementing a compass node
Now, here comes the last recipe in this chapter, and we could do something really
interesting this time. We will try to implement a compass and use it in a simple earth scene.
A compass can help us identify the directions in a 3D world. And as far as we know, it makes
our applications look professional and useful, if we are working on some 3D geographic
information systems (GIS) or computer games.

How to do it...
1. Declare the Compass class. It contains a transformable dial plate and a needle. The

orientation will be read and computed from the current view matrix of the main scene
camera, which should be set before the simulation starts:
class Compass : public osg::Camera
{
public:
 Compass();
 Compass(const Compass& copy, osg::CopyOp
 copyop=osg::CopyOp::SHALLOW_COPY);
 META_Node(osg, Compass);

http://sourceforge.net/projects/osgxi/
http://sourceforge.net/projects/osgxi/
http://developer.nvidia.com/object/cg_tutorial_home.html
http://developer.nvidia.com/object/cg_tutorial_home.html

Chapter 2

75

 void setPlate(osg::MatrixTransform* plate) {
 _plateTransform = plate; }
 void setNeedle(osg::MatrixTransform* needle) {
 _needleTransform = needle; }
 void setMainCamera(osg::Camera* camera) {
 _mainCamera = camera; }

 virtual void traverse(osg::NodeVisitor& nv);

protected:
 virtual ~Compass();

 osg::ref_ptr<osg::MatrixTransform> _plateTransform;
 osg::ref_ptr<osg::MatrixTransform> _needleTransform;
 osg::observer_ptr<osg::Camera> _mainCamera;
};

2. Implement the copy constructor of the Compass class. Without a copy
constructor, you will not be able to use the META_Node macro to define
the standard node methods:
Compass::Compass(const Compass& copy, osg::CopyOp copyop):
 osg::Camera(copy, copyop),
 _plateTransform(copy._plateTransform),
 _needleTransform(copy._needleTransform),
 _mainCamera(copy._mainCamera)
{
}

3. The traverse() method will be called during the event, update, and cull
traversals of the entire scene graph in every frame. Override it and we will
have custom behaviors for own node types.

4. For the compass, we have to compute the angle between the present viewer
orientation and the north vector (the earth's geographic pole), and rotate the needle
or plate node to align itself. Here we will read the current view matrix from the main
camera and move the plate to fit it. This can be done during the cull traversal as there
are few factors affecting the viewer's position and direction:
void Compass::traverse(osg::NodeVisitor& nv)
{
 if (_mainCamera.valid() &&
 nv.getVisitorType()==osg::NodeVisitor::CULL_VISITOR)
 {
 osg::Matrix matrix = _mainCamera->getViewMatrix();
 matrix.setTrans(osg::Vec3());

Designing the Scene Graph

76

 osg::Vec3 northVec = osg::Z_AXIS * matrix;
 northVec.z() = 0.0f;
 northVec.normalize();

 osg::Vec3 axis = osg::Y_AXIS ^ northVec;
 float angle = atan2(axis.length(), osg::Y_AXIS*northVec);
 axis.normalize();

 if (_plateTransform.valid())
 _plateTransform->setMatrix(osg::Matrix::rotate(
 angle, axis));
 }
 _plateTransform->accept(nv);
 _needleTransform->accept(nv);
 osg::Camera::traverse(nv);
}

5. Later we will explain why we directly call accept() here, and why the
_plateTransform and _needleTransform nodes are never added
as the compass' children.

The compass class can be used in any applications now. Let's try it now.

6. First there are header files for use:
#include <osg/ShapeDrawable>
#include <osg/MatrixTransform>
#include <osg/Texture2D>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

7. You may have many ways to design your own compass needle and plate. But in
this recipe, we will choose to use textured quads. Create a needle image with
transparent background, superimpose it onto the plate image, and the result will
be nice enough for our case (a 2D compass). The example images are shown in the
following diagram:

W

N

E

S

Chapter 2

77

8. Create a function for the needle or plate node. The height parameter is for computing
the Z-order of these two components:
osg::MatrixTransform* createCompassPart(const std::string&
 image, float radius, float height)
{
 osg::Vec3 center(-radius, -radius, height);
 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(
 createTexturedQuadGeometry(center, osg::Vec3(radius*2.0f,0.0f,
0.0f),
 osg::Vec3(0.0f,radius*2.0f,0.0f)));

 osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
 texture->setImage(osgDB::readImageFile(image));

 osg::ref_ptr<osg::MatrixTransform> part =
 new osg::MatrixTransform;
 part->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, texture.get());
 part->getOrCreateStateSet()->setRenderingHint(
 osg::StateSet::TRANSPARENT_BIN);
 part->addChild(geode.get());
 return part.release();
}

9. Create a demo earth model:
osg::Geode* createEarth(const std::string& filename)
{
 osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
 texture->setImage(osgDB::readImageFile(filename));

 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(new osg::ShapeDrawable(
 new osg::Sphere(osg::Vec3(), osg::WGS_84_RADIUS_POLAR)));
 geode->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, texture.get());
 return geode.release();
}

Designing the Scene Graph

78

10. In the main entry, create the viewer and attach the main camera to the compass,
which is shown orthographic:
osgViewer::Viewer viewer;

osg::ref_ptr<Compass> compass = new Compass;
compass->setMainCamera(viewer.getCamera());
compass->setViewport(0.0, 0.0, 200.0, 200.0);
compass->setProjectionMatrix(osg::Matrixd::ortho(
 -1.5, 1.5, -1.5, 1.5, -10.0, 10.0));

11. Add the plate and the needle images to the compass node. The needle must appear
on top of the plate, so it has a larger height value here:
compass->setPlate(createCompassPart("compass_plate.png",
 1.5f, -1.0f));
compass->setNeedle(createCompassPart("compass_needle.png",
 1.5f, 0.0f));

12. The 2D compass is in fact a HUD camera. The following code defines its
basic behaviors:
compass->setRenderOrder(osg::Camera::POST_RENDER);
compass->setClearMask(GL_DEPTH_BUFFER_BIT);
compass->setAllowEventFocus(false);
compass->setReferenceFrame(osg::Transform::ABSOLUTE_RF);
compass->getOrCreateStateSet()->setMode(GL_LIGHTING,
 osg::StateAttribute::OFF);
compass->getOrCreateStateSet()->setMode(GL_BLEND,
 osg::StateAttribute::ON);

13. Add the earth and the compass to the root node and start the viewer. The earth
image file can be found in the OSG sample dataset.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(
 createEarth("Images/land_shallow_topo_2048.jpg"));
root->addChild(compass.get());

viewer.setSceneData(root.get());
return viewer.run();

14. You may start navigating the scene and don't worry about determining the direction
in the virtual world. Of course, if you really get lost inside a complex 3D scene one
day, maybe quitting the program and restarting will be easier.

Chapter 2

79

How it works...
In this recipe, the north vector is defined as the Z axis in the world coordinates. All we have
to do here is figure out how the compass' magnetized needle is pulled towards the North
Pole, and rotate the transformation nodes (_plateTransform or _needleTransform)
correspondingly. Watch the Google Earth application carefully and you will see that the
compass plate is rotating while you look around.

Imagine you are facing the true north in our simple 3D world, your compass needle should
point to the top of the screen at that time, that is, actually the positive Y axis. So if there are
any orientation changes, it can just be considered as the angle difference between the Y axis
in the eye coordinates and the computed earth's north vector in eye coordinates.

Transform the world north vector with the view matrix, regardless of the position offset. After
that, calculate the rotation axis (cross product of the Y axis and the north vector, as they are
both in the view coordinate system) and angle, and apply them to the needle or plate node at
your own discretion.

osg::Vec3 axis = osg::Y_AXIS ^ northVec;
float angle = atan2(axis.length(), osg::Y_AXIS*northVec);
axis.normalize();

Designing the Scene Graph

80

Another question you may have if you have already read the example source code is:
Why didn't we add the needle and plate nodes to the compass, and how could they still
work without being considered as children? Good question! And if you have ever read the
implementation of the osg::Group class, you may have found out the answer yourself:

void Group::traverse(NodeVisitor& nv)
{
 for(NodeList::iterator itr=_children.begin();
 itr!=_children.end(); ++itr)
 {
 (*itr)->accept(nv);
 }
}

While calling the traverse() method of its super class, the Compass class (and other
classes derived from osg::Group) will actually iterate each child and call the accept()
method on them, to make the traversal continue. But here, the work is done by directly
calling the accept() method on the transformation nodes _plateTransform and
_needleTransform. It means that these two nodes will be traversed as if they were
children of the compass. This sometimes brings flexibility.

But be careful, without being added to the scene graph, a node will
lose some functionalities such as contributing to the bounding box
computation and executing update callbacks applied on it.

Note that the osg::Camera class doesn't override the traverse() method; it simply calls
the osg::Group's traverse() method. That is why our strategy works here. And of course,
everything would work well if you decide to add the needle and plate as children of
the compass.

3
Editing Geometry

Models

In this chapter, we will cover:

 f Creating a polygon with borderlines

 f Extruding a 2D shape to 3D

 f Drawing a NURBS surface

 f Drawing a dynamic clock on the screen

 f Drawing a ribbon following a model

 f Selecting and highlighting a model

 f Selecting a triangle face of the model

 f Selecting a point on the model

 f Using vertex-displacement mapping in shaders

 f Using the draw instanced extension

Introduction
This chapter is all about creating and manipulating geometries. You will see some
well-designed examples showing how to meet specified user demands to create
parametric polygons, animate geometry vertices, and make use of advanced
techniques such as displacement mapping and draw instanced.

Editing Geometry Models

82

You have to be very familiar with the construction of osg::Geometry objects and
manipulation of vertex arrays and primitive sets. We will skip the introduction of basic
knowledge of these concepts and directly work on some practical applications in the
following recipes.

To help implement some animating models quickly, we will add a new function in the
common osgCookbook namespace. This createAnimationPathCallback() function
will generate a circle animation path which can be applied to transformation nodes:

osg::AnimationPathCallback* createAnimationPathCallback(
 float radius, float time)
{
 osg::ref_ptr<osg::AnimationPath> path =
 new osg::AnimationPath;
 path->setLoopMode(osg::AnimationPath::LOOP);

 unsigned int numSamples = 32;
 float delta_yaw = 2.0f * osg::PI/((float)numSamples - 1.0f);
 float delta_time = time / (float)numSamples;
 for (unsigned int i=0; i<numSamples; ++i)
 {
 float yaw = delta_yaw * (float)i;
 osg::Vec3 pos(sinf(yaw)*radius, cosf(yaw)*radius, 0.0f);
 osg::Quat rot(-yaw, osg::Z_AXIS);
 path->insert(delta_time * (float)i,
 osg::AnimationPath::ControlPoint(pos, rot));
 }

 osg::ref_ptr<osg::AnimationPathCallback> apcb =
 new osg::AnimationPathCallback;
 apcb->setAnimationPath(path.get());
 return apcb.release();
}

Creating a polygon with borderlines
The first recipe in this chapter originates from a common functionality in the GIS (Geographic
Information Systems) field. GIS data always contains the spatial feature part and non-spatial
attribute part. The features, including rivers, roads, cities, and so on, are represented using
points, lines, and polygons. And mixtures of lines and polygons can be used to describe
complex shapes like lakes, country lands, and their boundaries.

For example, we can draw the territory of China with a series of solid triangles and quads,
and then draw the national borderlines using the same sample points, but with different
primitive types.

Now it's time to start creating such a polygon-and-borderline scene.

Chapter 3

83

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/LineWidth>
#include <osgUtil/Tessellator>
#include <osgViewer/Viewer>

2. Create the vertex array. It includes a quad (4 vertices in counter-clockwise direction)
with a hole (another 4 vertices in clockwise direction) in the center. So we are actually
going to create a concave polygon in this recipe:
osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array(8);
(*vertices)[0].set(0.0f, 0.0f, 0.0f);
(*vertices)[1].set(3.0f, 0.0f, 0.0f);
(*vertices)[2].set(3.0f, 0.0f, 3.0f);
(*vertices)[3].set(0.0f, 0.0f, 3.0f);
(*vertices)[4].set(1.0f, 0.0f, 1.0f);
(*vertices)[5].set(2.0f, 0.0f, 1.0f);
(*vertices)[6].set(2.0f, 0.0f, 2.0f);
(*vertices)[7].set(1.0f, 0.0f, 2.0f);

3. Specify a unique value for all the normals:
osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array(1);
(*normals)[0].set(0.0f,-1.0f, 0.0f);

4. Build the geometry object. Here we just add two primitive sets to describe the quad
and the hole separately. Without any polygon tessellation process, they will be treated
as two overlapped quads and thus lead to an ugly rendering result:
osg::ref_ptr<osg::Geometry> polygon = new osg::Geometry;
polygon->setVertexArray(vertices.get());
polygon->setNormalArray(normals.get());
polygon->setNormalBinding(osg::Geometry::BIND_OVERALL);
polygon->addPrimitiveSet(new osg::DrawArrays(
 GL_QUADS, 0, 4));
polygon->addPrimitiveSet(new osg::DrawArrays(
 GL_QUADS, 4, 4));

Editing Geometry Models

84

5. Start the tessellation work, that is, subdivide the polygon with a hole into
convex polygons:
osgUtil::Tessellator tessellator;
tessellator.setTessellationType(osgUtil::Tessellator::TESS_TYPE_
GEOMETRY);
tessellator.setWindingType(
 osgUtil::Tessellator::TESS_WINDING_ODD);
tessellator.retessellatePolygons(*polygon);

6. Now it's time to create the borderlines. As we know the polygon has a hole inside, so
there should be two sets of connected lines to represent the outer boundary and the
hole. We will make use of the same vertex array directly, and give the border object a
different global color and line width parameter:
osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array(1);
(*colors)[0].set(1.0f, 1.0f, 0.0f, 1.0f);

osg::ref_ptr<osg::Geometry> border = new osg::Geometry;
border->setVertexArray(vertices.get());
border->setColorArray(colors.get());
border->setColorBinding(osg::Geometry::BIND_OVERALL);
border->addPrimitiveSet(new osg::DrawArrays(
 GL_LINE_LOOP, 0, 4));
border->addPrimitiveSet(new osg::DrawArrays(
 GL_LINE_LOOP, 4, 4));
border->getOrCreateStateSet()->setAttribute(
 new osg::LineWidth(5.0f));

7. Add the two geometries to the scene graph and start the viewer:
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(polygon.get());
geode->addDrawable(border.get());

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(geode.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

8. Now the polygon is shown perfectly with a clear boundary representation, as shown in
the following screenshot. You may try some other complex polygons (especially some
concave ones) and see if they could be handled in a similar way.

Chapter 3

85

How it works...
You may find that the vertex array is shared by two different geometries. This provides us the
benefit of saving memories on both CPU and GPU. OSG makes it flexible enough for multiple
geometries to share a single vertex buffer object (VBO) and use different subsets of it with
the help of osg::PrimitiveSet's sub-classes. To note, in this recipe we haven't turned
on the VBO property of osg::Geometry class yet, but use the traditional display lists for
rendering. Dynamic geometry examples with VBO supports will be introduced later in
this chapter.

Also pay attention to the setTessellationType() method of the tessellator. The value
TESS_TYPE_GEOMETRY means to tessellate everything added as primitive sets, including
triangles, quads, and polygons. If we are only going to handle GL_POLYGON faces, consider
using TESS_TYPE_POLYGONS instead, in which case existing quads and triangles will be
left alone.

There's more...
The osgUtil::Tessellator class uses the OpenGL tessellation algorithm internally.
See the book "OpenGL Programming Guide", Mason Woo, Jackie Neider, Tom Davis, Dave
Shreiner, and OpenGL Architecture Review Board, Addison-Wesley, or its online version
for details:

http://glprogramming.com/red/chapter11.html

http://glprogramming.com/red/chapter11.html
http://glprogramming.com/red/chapter11.html
http://glprogramming.com/red/chapter11.html

Editing Geometry Models

86

Extruding a 2D shape to 3D
Extrusion is one of the most common functionalities to create 3D objects quickly in
3D-modeling software such as 3DSMAX and Maya. Extrusion is often used to create models
from 2D shapes and curves by dragging 2D shapes along a line with specified direction and
length. For instance, a circle will thus be turned into a cylinder if it is extruded along the line
perpendicular to the circle plane.

OSG doesn't directly provide such an extrusion utility. So that is what we are going to do in
this section.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Geometry>
#include <osg/Geode>
#include <osgUtil/SmoothingVisitor>
#include <osgUtil/Tessellator>
#include <osgViewer/Viewer>

2. The extrusion function requires at least three arguments—an array which contains all
the vertices compositing 2D shape; the extrusion direction; and the extrusion length:
osg::Geometry* createExtrusion(osg::Vec3Array* vertices,
 const osg::Vec3& direction, float length)
{
 ...
}

3. First, we compute all the points of the result 3D model, including the original points
of the 2D shape, and new points after being extruded in a certain direction with a
certain length value. You may have noticed that new vertices are computed using a
reverse interator here. This actually helps build the normal vector of the bottom cap
of the extruded geometry as shown in the following code block:
osg::ref_ptr<osg::Vec3Array> newVertices = new osg::Vec3Array;
newVertices->insert(newVertices->begin(), vertices->begin(),
 vertices->end());

unsigned int numVertices = vertices->size();
osg::Vec3 offset = direction * length;
for (osg::Vec3Array::reverse_iterator ritr=
 vertices->rbegin(); ritr!=vertices->rend(); ++ritr)
{
 newVertices->push_back((*ritr) + offset);
}

Chapter 3

87

4. Add two primitive sets to represent the top and bottom caps. It's uncomfortable for
OpenGL to render GL_POLYGON primitives, so we have to tessellate them at once.
Note that TESS_TYPE_POLYGONS is used here instead of TESS_TYPE_GEOMETRY,
which was used in the Creating a polygon with borderlines recipe:
osg::ref_ptr<osg::Geometry> extrusion = new osg::Geometry;
extrusion->setVertexArray(newVertices.get());
extrusion->addPrimitiveSet(new osg::DrawArrays(GL_POLYGON,
 0, numVertices));
extrusion->addPrimitiveSet(new osg::DrawArrays(GL_POLYGON,
 numVertices, numVertices));

osgUtil::Tessellator tessellator;
tessellator.setTessellationType(
 osgUtil::Tessellator::TESS_TYPE_POLYGONS);
tessellator.setWindingType(
 osgUtil::Tessellator::TESS_WINDING_ODD);
tessellator.retessellatePolygons(*extrusion);

5. The tessellation may sometimes add or remove primitive sets of the geometry.
So if we are going to add some other primitive, for instance, the side faces, we
would better proceed after handling the cap polygons. Here we simply construct a
connected set of quads sharing edges (with the same first and last edges to form a
loop) to assemble the surface:
osg::ref_ptr<osg::DrawElementsUInt> sideIndices =
 new osg::DrawElementsUInt(GL_QUAD_STRIP);
for (unsigned int i=0; i<numVertices; ++i)
{
 sideIndices->push_back(i);
 sideIndices->push_back((numVertices-1-i) + numVertices);
}
sideIndices->push_back(0);
sideIndices->push_back(numVertices*2 - 1);
extrusion->addPrimitiveSet(sideIndices.get());

6. Compute the normals and return the resulting geometry at last:
osgUtil::SmoothingVisitor::smooth(*extrusion);
return extrusion.release();

Editing Geometry Models

88

7. In the main entry, we give the users some rights to define their own extrusion
direction and length values:
osg::ArgumentParser arguments(&argc, argv);

osg::Vec3 direction(0.0f, 0.0f, -1.0f);
arguments.read("--direction", direction.x(), direction.y(),
 direction.z());

float length = 5.0f;
arguments.read("--length", length);

8. Create a list of 2D points for generating the 3D model. In fact, a 3D path here could
also work:
osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array(6);
(*vertices)[0].set(0.0f, 4.0f, 0.0f);
(*vertices)[1].set(-2.0f, 5.0f, 0.0f);
(*vertices)[2].set(-5.0f, 0.0f, 0.0f);
(*vertices)[3].set(0.0f,-1.0f, 0.0f);
(*vertices)[4].set(5.0f, 0.0f, 0.0f);
(*vertices)[5].set(2.0f, 5.0f, 0.0f);

9. Add the extrusion to the scene graph and start the viewer:
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(createExtrusion(vertices.get(), direction,
 length));

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(geode.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

10. It's done! And now you can say that extrusion is so easy, isn't it? But actually you can
find that a large number of objects are made from extrudable 2D shapes, such as a
pipe, a pillar, and even a rectangle building. Now, why not try to build one or more of
them by yourself?

Chapter 3

89

There's more...
Another good and useful modeling method is called revolution (or lathe in 3DSMAX, the name
of an industry machine). It rotates a 2D curve (either open or closed) along a specified axis to
create 3D objects such as goblets and pillars. The key parameters are the reference axis and
the degrees of revolution. So, how about trying to implement this by yourself with this recipe
as a reference?

Drawing a NURBS surface
NURBS (Non-Uniform Rational B-Splines) is a powerful way for creating complex curves
and surfaces. It requires only a few control points and knot vectors rather than hundreds of
sample points on the surface. That means we can mathematically describe a curve or surface
using B-Splines or NURBS, instead of approximating it with small pieces of line segments or
triangles. It sounds good to our developers who want to characterize their models in a more
precise way.

OpenGL provides evaluators and NURBS interface for rendering these parametric models, but
OSG doesn't for some efficiency and practicability considerations. Rendering NURBS curves
and surfaces always costs more on the graphics hardware than using approximate polygons
(LODs can be even better). But it can't stop us from implementing one ourself. In this recipe,
we will derive from the osg::Drawable class and execute OpenGL commands to draw
NURBS surfaces during the rendering traversal of the scene graph.

Editing Geometry Models

90

Some basic knowledge about NURBS can be found at
http://en.wikipedia.org/wiki/Non-uniform_rational_B-spline.

Getting ready
You will have to modify the CMakeLists.txt we created in the last recipe of Chapter 1
to find OpenGL and GLU packages before compiling and running this example:

FIND_PACKAGE(OpenGL)

INCLUDE_DIRECTORIES(${OPENGL_INCLUDE_DIR})
TARGET_LINK_LIBRARIES(${EXAMPLE_NAME}
 ${OPENGL_gl_LIBRARY} ${OPENGL_glu_LIBRARY})

How to do it...
Let us start.

1. We are going to design an as-complete-as-possible NURBS surface class in
this example. OpenGL provides some good enough NURBS implementations
for us to use here. And the best way to encapsulate them is to derive from the
osg::Drawable class:
class NurbsSurface : public osg::Drawable
{
public:
 NurbsSurface()
 : _sCount(0), _tCount(0), _sOrder(0), _tOrder(0),
 _nurbsObj(0) {}
 NurbsSurface(const NurbsSurface& copy,
 osg::CopyOp copyop=osg::CopyOp::SHALLOW_COPY);
 META_Object(osg, NurbsSurface);

...
};

2. Three kinds of arrays can be applied to the NurbsSurface class: the control point
(vertex) array, the normal array, and the texture coordinate array for texture mapping.
For a NURBS surface, we have to also set the non-decreasing knot values along
with the knot numbers and orders in the parametric U and V directions. All these
requirements will be added as member methods here:
void setVertexArray(osg::Vec3Array* va) { _vertices = va; }
void setNormalArray(osg::Vec3Array* na) { _normals = na; }
void setTexCoordArray(osg::Vec2Array* ta) {
 _texcoords = ta; }

http://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
http://en.wikipedia.org/wiki/Non-uniform_rational_B-spline

Chapter 3

91

void setKnots(osg::FloatArray* sknots,
 osg::FloatArray* tknots)
{ _sKnots = sknots; _tKnots = tknots; }
void setCounts(int s, int t) { _sCount = s; _tCount = t; }
void setOrders(int s, int t) { _sOrder = s; _tOrder = t; }

3. The two most important virtual methods to re-implement are computeBound()
and drawImplementation(). Without either of them, we would get an improper
rendering result finally:
virtual osg::BoundingBox computeBound() const;
virtual void drawImplementation(osg::RenderInfo&
 renderInfo) const;

4. Define protected members:
virtual ~NurbsSurface() {}

osg::ref_ptr<osg::Vec3Array> _vertices;
osg::ref_ptr<osg::Vec3Array> _normals;
osg::ref_ptr<osg::Vec2Array> _texcoords;
osg::ref_ptr<osg::FloatArray> _sKnots;
osg::ref_ptr<osg::FloatArray> _tKnots;
int _sCount, _tCount;
int _sOrder, _tOrder;
mutable void* _nurbsObj;

5. OpenGL and GLU headers are required before we really implement each class
method. And here is the copy constructor which can help do a shallow or deep
copy of the object:
#include <osg/GL>
#include <GL/glu.h>

NurbsSurface::NurbsSurface(const NurbsSurface& copy,
 osg::CopyOp copyop)
: osg::Drawable(copy, copyop), _vertices(copy._vertices),
 _normals(copy._normals), _texcoords(copy._texcoords),
 _sKnots(copy._sKnots), _tKnots(copy._tKnots),
 _sOrder(copy._sOrder), _tOrder(copy._tOrder),
 _nurbsObj(copy._nurbsObj)
{}

Editing Geometry Models

92

6. The computeBound() should be re-implemented for the scene culling process,
during which the NURBS surface may be ignored if it is totally out of the view
frustum. It is enough to only compute the control points here:
osg::BoundingBox NurbsSurface::computeBound() const
{
 osg::BoundingBox bb;
 if (_vertices.valid())
 {
 for (unsigned int i=0; i<_vertices->size(); ++i)
 bb.expandBy((*_vertices)[i]);
 }
 return bb;
}

7. The drawImplementation() will be called only once to build a display list for
further use unless this default mechanism is disabled. It is OK to keep it because
we don't need the NURBS surface to change dynamically here:
void NurbsSurface::drawImplementation(osg::RenderInfo&
 renderInfo) const
{
 ...
}

8. In this implementation function, we create the OpenGL NURBS object if it is not
already allocated:
GLUnurbsObj* theNurbs = (GLUnurbsObj*)_nurbsObj;
if (!theNurbs)
{
 theNurbs = gluNewNurbsRenderer();
 gluNurbsProperty(theNurbs, GLU_SAMPLING_TOLERANCE, 10);
 gluNurbsProperty(theNurbs, GLU_DISPLAY_MODE, GLU_FILL);
 _nurbsObj = theNurbs;
}

9. Execute proper OpenGL calls to finish the whole NURBS drawing process.
There is nothing special in the following code segment. The only point is to pay
attention to the changes of OpenGL states, which may affect other drawables in
complex applications:
if (_vertices.valid() && _sKnots.valid() && _tKnots.valid())
{
 glEnable(GL_MAP2_NORMAL);
 glEnable(GL_MAP2_TEXTURE_COORD_2);

 gluBeginCurve(theNurbs);

Chapter 3

93

 if (_texcoords.valid())
 {
 gluNurbsSurface(theNurbs, _sKnots->size(),
 &((*_sKnots)[0]), _tKnots->size(), &((*_tKnots)[0]),
 _sCount*2, 2, &((*_texcoords)[0][0]), _sOrder, _tOrder,
 GL_MAP2_TEXTURE_COORD_2);
 }
 if (_normals.valid())
 {
 gluNurbsSurface(theNurbs, _sKnots->size(),
 &((*_sKnots)[0]), _tKnots->size(), &((*_tKnots)[0]),
 _sCount*3, 3, &((*_normals)[0][0]), _sOrder, _tOrder,
 GL_MAP2_NORMAL);
 }
 gluNurbsSurface(theNurbs, _sKnots->size(),
 &((*_sKnots)[0]), _tKnots->size(), &((*_tKnots)[0]),
 _sCount*3, 3, &((*_vertices)[0][0]), _sOrder, _tOrder,
 GL_MAP2_VERTEX_3);
 gluEndCurve(theNurbs);

 glDisable(GL_MAP2_NORMAL);
 glDisable(GL_MAP2_TEXTURE_COORD_2);
}

10. Now we will make use of the new NURBS class to show a small surface. First we
include some other necessary headers:
#include <osg/Geode>
#include <osg/Texture2D>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

11. In the main entry, we will create an ordinary NURBS surface by specifying its control
points, texture coordinates, and knots:
osg::ref_ptr<osg::Vec3Array> ctrlPoints = new osg::Vec3Array;
#define ADD_POINT(x, y, z) ctrlPoints->push_back(
 osg::Vec3(x, y, z));
ADD_POINT(-3.0f, 0.5f, 0.0f); ADD_POINT(-1.0f, 1.5f, 0.0f);
 ADD_POINT(-2.0f, 2.0f, 0.0f);
ADD_POINT(-3.0f, 0.5f,-1.0f); ADD_POINT(-1.0f, 1.5f,-1.0f);
 ADD_POINT(-2.0f, 2.0f,-1.0f);
ADD_POINT(-3.0f, 0.5f,-2.0f); ADD_POINT(-1.0f, 1.5f,-2.0f);
 ADD_POINT(-2.0f, 2.0f,-2.0f);

osg::ref_ptr<osg::Vec2Array> texcoords = new osg::Vec2Array;

Editing Geometry Models

94

#define ADD_TEXCOORD(x, y) texcoords->push_back(
 osg::Vec2(x, y));
ADD_TEXCOORD(0.0f, 0.0f); ADD_TEXCOORD(0.5f, 0.0f);
 ADD_TEXCOORD(1.0f, 0.0f);
ADD_TEXCOORD(0.0f, 0.5f); ADD_TEXCOORD(0.5f, 0.5f);
 ADD_TEXCOORD(1.0f, 0.5f);
ADD_TEXCOORD(0.0f, 1.0f); ADD_TEXCOORD(0.5f, 1.0f);
 ADD_TEXCOORD(1.0f, 1.0f);

osg::ref_ptr<osg::FloatArray> knots = new osg::FloatArray;
knots->push_back(0.0f); knots->push_back(0.0f);
 knots->push_back(0.0f);
knots->push_back(1.0f); knots->push_back(1.0f);
 knots->push_back(1.0f);

12. Allocate a NurbsSurface drawable and apply all the variables we set before to the
newly created object:
osg::ref_ptr<NurbsSurface> nurbs = new NurbsSurface;
nurbs->setVertexArray(ctrlPoints.get());
nurbs->setTexCoordArray(texcoords.get());
nurbs->setKnots(knots.get(), knots.get());
nurbs->setCounts(3, 3);
nurbs->setOrders(3, 3);

13. We have nearly finished it! Now apply a texture to the node or drawable's state set,
and turn off the light computing to get a better look of the result. Lastly, start
the viewer:
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(nurbs.get());
geode->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, new osg::Texture2D(osgDB::readImageFile(
 "Images/osg256.png")));
geode->getOrCreateStateSet()->setMode(GL_LIGHTING,
 osg::StateAttribute::OFF);

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(geode.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

Chapter 3

95

14. A simple NURBS surface finally comes out. To make it more complex and refined,
you may add more control points along the U and V directions and update the knot
information simultaneously. Then leave the computation and rendering work to
OpenGL, and enjoy your achievements in the rendering window.

How it works...
Now you may gain the experience of how to create a complete, customized drawable.
The most important methods to re-implement are drawImplementation() and
computeBound(); and you may have to consider if the default feature of building display
lists should be disabled or not. If you need to call drawImplementation() method in every
frame to execute certain user commands, then call setUseDisplayList(false) before
the simulation loop; otherwise, you may keep it to improve your application's performance.

Other useful methods to re-implement are supports() and accept() methods
and their overloaded forms. These methods are mainly used by OSG functors such as
osg::TriangleFunctor<> to collect vertex and primitive information. Without such
implementations, functors can't retrieve anything from user drawables, and intersectors will
return an empty result on them because of missing data for computing. Fortunately, it doesn't
matter in this example.

Editing Geometry Models

96

There's more...
There are some other third-party libraries that can parse and render B-Splines and NURBS
objects. A good example is the openNURNS library:

http://www.opennurbs.org/

OSG itself also provides a simple example to show how to integrate Bézier surfaces. See the
example osgteapot in the official OSG source code for details.

Drawing a dynamic clock on the screen
Now we will try to face a practical user requirement: design a very simple analogy clock
and make it work. This most common kind of clock indicates time using numbered dial and
moving hands. It usually includes one hour hand, one minute hand (a little longer and faster)
and one second hand (fastest and longest). Their periods are 12 hours, 60 minutes, and 60
seconds respectively.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/AnimationPath>
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/MatrixTransform>
#include <osgViewer/Viewer>

2. Design a function which will create a needle (a moving hand of the clock). We have
to set up the initial angle and period (the time taken to make a revolution) of each
needle as well:
osg::Node* createNeedle(float w, float h, float depth,
 const osg::Vec4& color, float angle, double period)
{
 ...
}

3. The shape of the needle is designed as shown in the following diagram. It's simple
but enough to represent a real analog clock.

http://www.opennurbs.org/
http://www.opennurbs.org/

Chapter 3

97

width

height

4. Now construct the geometry of the needle and add it to an osg::Geode node:
osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array(5);
(*vertices)[0].set(-h*0.5f, 0.0f,-w*0.1f);
(*vertices)[1].set(h*0.5f, 0.0f,-w*0.1f);
(*vertices)[2].set(-h*0.5f, 0.0f, w*0.8f);
(*vertices)[3].set(h*0.5f, 0.0f, w*0.8f);
(*vertices)[4].set(0.0f, 0.0f, w*0.9f);

osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array(1);
(*normals)[0].set(0.0f,-1.0f, 0.0f);

osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array(1);
(*colors)[0] = color;

osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;
geom->setVertexArray(vertices.get());
geom->setNormalArray(normals.get());
geom->setNormalBinding(osg::Geometry::BIND_OVERALL);
geom->setColorArray(colors.get());
geom->setColorBinding(osg::Geometry::BIND_OVERALL);
geom->addPrimitiveSet(new osg::DrawArrays(
 GL_TRIANGLE_STRIP, 0, 5));

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(geom.get());

Editing Geometry Models

98

5. The next task is to periodically rotate the needle along the clock face. An animation
path callback is used here to simulate the circular motion, which includes three
keyframes (three vital points on a circle):
osg::ref_ptr<osg::MatrixTransform> trans =
 new osg::MatrixTransform;
trans->addChild(geode.get());

osg::ref_ptr<osg::AnimationPath> clockPath =
 new osg::AnimationPath;
clockPath->setLoopMode(osg::AnimationPath::LOOP);
clockPath->insert(0.0, osg::AnimationPath::ControlPoint(
 osg::Vec3(0.0f, depth, 0.0f), osg::Quat(angle, osg::Y_AXIS)));
clockPath->insert(period*0.5, osg::AnimationPath::ControlPoint(
 osg::Vec3(0.0f, depth, 0.0f), osg::Quat(angle+osg::PI,
 osg::Y_AXIS)));
clockPath->insert(period, osg::AnimationPath::ControlPoint(
 osg::Vec3(0.0f, depth, 0.0f), osg::Quat(angle+osg::PI*2.0f,
 osg::Y_AXIS)));

osg::ref_ptr<osg::AnimationPathCallback> apcb =
 new osg::AnimationPathCallback;
apcb->setAnimationPath(clockPath.get());
trans->addUpdateCallback(apcb.get());
return trans.release();

6. Design the clock face. As a straightforward practice, in this recipe we are not going to
draw a true clock face. Instead, we will have a clean disk without text or textures on it.
The whole creation is, therefore, easy to understand:
osg::Node* createFace(float radius)
{
 osg::ref_ptr<osg::Vec3Array> vertices =
 new osg::Vec3Array(67);
 (*vertices)[0].set(0.0f, 0.0f, 0.0f);
 for (unsigned int i=1; i<=65; ++i)
 {
 float angle = (float)(i-1) * osg::PI / 32.0f;
 (*vertices)[i].set(radius * cosf(angle), 0.0f,
 radius * sinf(angle));
 }

 osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array(1);
 (*normals)[0].set(0.0f,-1.0f, 0.0f);

 osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array(1);

Chapter 3

99

 (*colors)[0].set(1.0f, 1.0f, 1.0f, 1.0f);
 // Avoid color state inheriting

 osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;
 geom->setVertexArray(vertices.get());
 geom->setNormalArray(normals.get());
 geom->setNormalBinding(osg::Geometry::BIND_OVERALL);
 geom->setColorArray(colors.get());
 geom->setColorBinding(osg::Geometry::BIND_OVERALL);
 geom->addPrimitiveSet(new osg::DrawArrays(
 GL_TRIANGLE_FAN, 0, 67));

 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(geom.get());
 return geode.release();
}

7. In the main entry, we first define a fake time—10:30. And then we create the hour
hand (the shortest), the minute hand, and the second hand (the longest) in turn.
They have a small distance between them and the clock face, so there will be no
overlapped faces that may cause the Z-fighting problems:
float hour_time = 10.0f, min_time = 30.0f, sec_time = 0.0f;
// Hour needle devides the circle into 12 parts
osg::Node* hour = createNeedle(6.0f, 1.0f,-0.02f,
 osg::Vec4(1.0f, 0.0f, 0.0f, 1.0f), osg::PI * hour_time /
 6.0f, 3600*60.0);
// Minute/second needle devides the circle into 60 partsosg::Node*
minute = createNeedle(8.0f, 0.6f,-0.04f,
 osg::Vec4(0.0f, 1.0f, 0.0f, 1.0f), osg::PI * min_time /
 30.0f, 3600.0);
osg::Node* second = createNeedle(10.0f, 0.2f,-0.06f,
 osg::Vec4(1.0f, 1.0f, 0.0f, 1.0f), osg::PI * sec_time /
 30.0f, 60.0);

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(hour);
root->addChild(minute);
root->addChild(second);
root->addChild(createFace(10.0f));
Start the viewer to see our clock running:
osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

Editing Geometry Models

100

8. The result is shown in the following screenshot:

How it works...
Maybe you have already ignored a fact in the createFace() function: We might add a
'useless' color array that has only one color to the face geometry. But what will happen if
we remove the setColorArray() line in this function? Have a try and you may see the
following screenshot:

Chapter 3

101

So why does the face inherit a needle's color? Is it an OSG program bug? In fact, it's hard to
say because of the famous OpenGL state machine. Thus geometry without any colors set
will directly inherit the value sent to the OpenGL pipeline by the previous one, which leads to
an unexpected result. The best solution is to apply a color array to every geometry object, no
matter whether it needs it or not.

Drawing a ribbon following a model
Trailing ribbon can be thought as a colored ribbon following a flight or helicopter. It can be
used to represent banners or streamers dragged by the aircraft, or demonstrate the flight
paths in military simulations. A ribbon is never a simple quad. Its points are located on the
flight line and they will go after the animated plane all the time. All these demands require a
dynamic geometry in which all vertices are moving.

With the information provided in the last paragraph, now we can start working on the
interesting topic.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/AnimationPath>
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. Define a few global variables. Of course, you may create a specialized ribbon class
and define them as member variables, but in this recipe we will just simplify the work:
const unsigned int g_numPoints = 400;
const float g_halfWidth = 4.0f;
The first step is to initialize the ribbon geometry:
osg::Geometry* createRibbon(const osg::Vec3& colorRGB)
{
 ...
}

Editing Geometry Models

102

3. Configure the vertex, normal, and color arrays. At the beginning, all vertices are
placed together at the origin point, but later they will be treated as the two sides of
the ribbon. The colors are computed with a sine function to implement a fade-in and
fade-out effect while the ribbon is moving:
osg::ref_ptr<osg::Vec3Array> vertices =
 new osg::Vec3Array(g_numPoints);
osg::ref_ptr<osg::Vec3Array> normals =
 new osg::Vec3Array(g_numPoints);
osg::ref_ptr<osg::Vec4Array> colors =
 new osg::Vec4Array(g_numPoints);

osg::Vec3 origin = osg::Vec3(0.0f, 0.0f, 0.0f);
osg::Vec3 normal = osg::Vec3(0.0f, 0.0f, 1.0f);
for (unsigned int i=0; i<g_numPoints-1; i+=2)
{
 (*vertices)[i] = origin; (*vertices)[i+1] = origin;
 (*normals)[i] = normal; (*normals)[i+1] = normal;

 float alpha = sinf(osg::PI * (float)i / (float)g_numPoints);
 (*colors)[i] = osg::Vec4(colorRGB, alpha);
 (*colors)[i+1] = osg::Vec4(colorRGB, alpha);
}

4. Create the dynamic geometry object. "Dynamic" here means the ribbon geometry will
change its points and primitives all the time during the simulation. In this case, we
choose to use vertex buffer objects instead of display lists:
osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;
geom->setDataVariance(osg::Object::DYNAMIC);
geom->setUseDisplayList(false);
geom->setUseVertexBufferObjects(true);

Set up other options and return at the end of the createRibbon()
function:
geom->setVertexArray(vertices.get());
geom->setNormalArray(normals.get());
geom->setNormalBinding(osg::Geometry::BIND_PER_VERTEX);
geom->setColorArray(colors.get());
geom->setColorBinding(osg::Geometry::BIND_PER_VERTEX);
geom->addPrimitiveSet(new osg::DrawArrays(
 GL_QUAD_STRIP, 0, g_numPoints));
return geom.release();

Chapter 3

103

5. The second step is to animate the ribbon while it is following a moving model, and
implement the trailing effect. The TrailerCallback must be added as an update
callback to an osg::MatrixTransform node to read and use its transformation
matrix at runtime:
class TrailerCallback : public osg::NodeCallback
{
public:
 TrailerCallback(osg::Geometry* ribbon) :
 _ribbon(ribbon) {}

 virtual void operator()(osg::Node* node,
 osg::NodeVisitor* nv);

protected:
 osg::observer_ptr<osg::Geometry> _ribbon;
};

In the operator() method, obtain necessary values and be ready to
edit the vertices and normals:
osg::MatrixTransform* trans =
 static_cast<osg::MatrixTransform*>(node);
if (trans && _ribbon.valid())
{
 osg::Matrix matrix = trans->getMatrix();
 osg::Vec3Array* vertices = static_cast<osg::Vec3Array*>(
 _ribbon->getVertexArray());
 osg::Vec3Array* normals = static_cast<osg::Vec3Array*>(
 _ribbon->getNormalArray());

 ...
}
traverse(node, nv);

6. Compute the new positions and normals of the ribbon points. Dirty the arrays
to remind buffer objects to update the graphics memory. And don't forget to
recompute the ribbon's bounding box with dirtyBound(), for the purpose
of the scene-culling process:
for (unsigned int i=0; i<g_numPoints-3; i+=2)
{
 (*vertices)[i] = (*vertices)[i+2];
 (*vertices)[i+1] = (*vertices)[i+3];
 (*normals)[i] = (*normals)[i+2];
 (*normals)[i+1] = (*normals)[i+3];
}
(*vertices)[g_numPoints-2] = osg::Vec3(0.0f,-g_halfWidth,

Editing Geometry Models

104

 0.0f) * matrix;
(*vertices)[g_numPoints-1] = osg::Vec3(0.0f, g_halfWidth,
 0.0f) * matrix;
vertices->dirty();

osg::Vec3 normal = osg::Vec3(0.0f, 0.0f, 1.0f) * matrix;
normal.normalize();
(*normals)[g_numPoints-2] = normal;
(*normals)[g_numPoints-1] = normal;
normals->dirty();

_ribbon->dirtyBound();

7. Now in the main entry, create a ribbon node and make it transparent if necessary:
osg::Geometry* geometry = createRibbon(osg::Vec3(1.0f, 0.0f,
 1.0f));

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(geometry);
geode->getOrCreateStateSet()->setMode(GL_LIGHTING,
 osg::StateAttribute::OFF);
geode->getOrCreateStateSet()->setMode(GL_BLEND,
 osg::StateAttribute::ON);
geode->getOrCreateStateSet()->setRenderingHint(
 osg::StateSet::TRANSPARENT_BIN);

8. Load a Cessna model into the scene graph and make it fly all the time. Add the ribbon
to both the trailer callback and the scene graph:
osg::ref_ptr<osg::MatrixTransform> cessna =
 new osg::MatrixTransform;
cessna->addChild(osgDB::readNodeFile("cessna.osg.0,0,90.rot"));
cessna->addUpdateCallback(
 osgCookBook::createAnimationPathCallback(50.0f, 6.0f));
cessna->addUpdateCallback(new TrailerCallback(geometry));

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(geode.get());
root->addChild(cessna.get());
Start the viewer:
osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

Chapter 3

105

9. The result looks good, although we don't make use of shaders and other advanced
techniques. You may find similar implementations in some flight simulation software
and games. Believe it or not, they might not be as difficult as you thought before.

How it works...
The principle of making a list of trailing vertices is simple: For each two points (at the left and
right side of the ribbon), read and accept the values of the next two points in the array, and so
forth. The last two points, which can be considered as the front end of the ribbon, should be
connected to the transformation node. Their positions and normals will be updated according
to the current matrix. And in the next few frames, these values will be delivered to following
points, which finally implement a complete trailing effect.

VBO (Vertex Buffer Objects) is used for representing dynamic geometries. Display lists are
unsuitable here because they don't submit vertex changes to the OpenGL pipeline, unless
users destroy the previous display list object and create a new one. This can be done by
calling dirtyDisplayList() method, but much less efficient than using buffer objects.
VBO provides a fast way to communicate between user applications and the GPU while
handing vertex attributes and indices. To notify the changes of vertex data, you may just
call dirty() method of an array object. OSG will update it for you automatically in the
back-end rendering.

There's more...
More information about VBO and its features can be found at
http://www.opengl.org/wiki/Vertex_Buffer_Object.

http://www.opengl.org/wiki/Vertex_Buffer_Object
http://www.opengl.org/wiki/Vertex_Buffer_Object

Editing Geometry Models

106

Selecting and highlighting a model
If you have ever read the book "OpenSceneGraph 3.0: Beginner's Guide", Rui Wang and
Xuelei Qian, Packt Publishing, you may find this topic familiar. Yes, we have done such work
as picking a drawable or node in the scene graph and highlighting it. But in this example, we
will highlight the selected drawable directly, assuming it is an osg::Geometry object (which
already implements related intersection algorithms) and has a color array.

Maybe you think it would be uninteresting because you had already done the same exercise
before. But don't hesitate to continue reading this and the following two recipes. They actually
describe the same requirement existing in many 3D browsing and modeling software—to
select a 3D entity or only parts of it (faces, edges, or points).

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Geometry>
#include <osg/Geode>
#include <osgUtil/SmoothingVisitor>
#include <osgViewer/Viewer>

2. Define global color variables (normalColor as the base color and selectedColor
as selected) for selected and unselected objects:
const osg::Vec4 normalColor(1.0f, 1.0f, 1.0f, 1.0f);
const osg::Vec4 selectedColor(1.0f, 0.0f, 0.0f, 0.5f);

3. Declare a handler class for selecting objects that have intersections with the cursor:
class SelectModelHandler : public osgCookBook::PickHandler
{
public:
 SelectModelHandler() : _lastDrawable(0) {}

 virtual void doUserOperations(
 osgUtil::LineSegmentIntersector::Intersection& result);
 void setDrawableColor(osg::Geometry* geom,
 const osg::Vec4& color);

protected:
 osg::observer_ptr<osg::Geometry> _lastDrawable;
};

Chapter 3

107

4. Out picking strategy in the doUserOperations() method is easy to understand—
cancel the last selected one, and select the new one. The selected drawable will be
painted with a different color (red and translucence) than the normal ones:
if (_lastDrawable.valid())
{
 setDrawableColor(_lastDrawable.get(), normalColor);
 _lastDrawable = NULL;
}

osg::Geometry* geom = dynamic_cast<osg::Geometry*>(
 result.drawable.get());
if (geom)
{
 setDrawableColor(geom, selectedColor);
 _lastDrawable = geom;
}

5. In the setDrawableColor() method, we assume that all the models in this recipe
have a color array with only one element. In other complicated situations, you may
have a model bind with per-vertex colors, or without any color settings. Consider
rewriting this method to fit such requirements:
osg::Vec4Array* colors = dynamic_cast<osg::Vec4Array*>(
 geom->getColorArray());
if (colors && colors->size()>0)
{
 colors->front() = color;
 colors->dirty();
}

6. The createSimpleGeometry() method will create a box with top and bottom
faces, and apply a unique color to all eight vertices:
osg::Geometry* createSimpleGeometry()
{
 osg::ref_ptr<osg::Vec3Array> vertices =
 new osg::Vec3Array(8);
 (*vertices)[0].set(-0.5f,-0.5f,-0.5f);
 (*vertices)[1].set(0.5f,-0.5f,-0.5f);
 (*vertices)[2].set(0.5f, 0.5f,-0.5f);
 (*vertices)[3].set(-0.5f, 0.5f,-0.5f);
 (*vertices)[4].set(-0.5f,-0.5f, 0.5f);
 (*vertices)[5].set(0.5f,-0.5f, 0.5f);
 (*vertices)[6].set(0.5f, 0.5f, 0.5f);
 (*vertices)[7].set(-0.5f, 0.5f, 0.5f);

Editing Geometry Models

108

 osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array(1);
 (*colors)[0] = normalColor;

 osg::ref_ptr<osg::DrawElementsUInt> indices =
 new osg::DrawElementsUInt(GL_QUADS, 24);
 (*indices)[0] = 0; (*indices)[1] = 1; (*indices)[2] = 2;
 (*indices)[3] = 3;
 (*indices)[4] = 4; (*indices)[5] = 5; (*indices)[6] = 6;
 (*indices)[7] = 7;
 (*indices)[8] = 0; (*indices)[9] = 1; (*indices)[10]= 5;
 (*indices)[11]= 4;
 (*indices)[12]= 1; (*indices)[13]= 2; (*indices)[14]= 6;
 (*indices)[15]= 5;
 (*indices)[16]= 2; (*indices)[17]= 3; (*indices)[18]= 7;
 (*indices)[19]= 6;
 (*indices)[20]= 3; (*indices)[21]= 0; (*indices)[22]= 4;
 (*indices)[23]= 7;

 osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;
 geom->setDataVariance(osg::Object::DYNAMIC);
 geom->setUseDisplayList(false);
 geom->setUseVertexBufferObjects(true);
 geom->setVertexArray(vertices.get());
 geom->setColorArray(colors.get());
 geom->setColorBinding(osg::Geometry::BIND_OVERALL);
 geom->addPrimitiveSet(indices.get());

 osgUtil::SmoothingVisitor::smooth(*geom);
 return geom.release();
}

7. In the main entry, we create the box geometry node and set it to the transparent bin:
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(createSimpleGeometry());
geode->getOrCreateStateSet()->setMode(
 GL_BLEND, osg::StateAttribute::ON);
geode->getOrCreateStateSet()->setRenderingHint(
 osg::StateSet::TRANSPARENT_BIN);
Construct the scene graph and start the viewer:
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(geode.get());

osgViewer::Viewer viewer;
viewer.addEventHandler(new SelectModelHandler);
viewer.setSceneData(root.get());
return viewer.run();

Chapter 3

109

8. Press Ctrl and select the box shown in the center. It will turn red, meaning that the
model is selected by the user, as shown in the following screenshot:

How it works...
Here we have highlighted the geometry when the mouse is clickied on it. A
SelectModelHandler object is used to check the intersections of the eye-direction line and
the scene. And when we get any results in the overrode doUserOperations() method, we
obtain the color array and change it. The VBO data should be updated after the operation.

To highlight a model is easy to achieve except for some prerequisites: The model must be an
osg::Geometry object, and it should have already set a color array with at least one value
to alter. Materials and textures applied on the model may also need to be considered because
they also affect the final pixels.

There's more...
There are some other methods to mark a model as "selected", such as placing a bound
box around it, drawing the wireframe of the model as an overlay (refer to the OSG example
osgscribe for details) on it, or drawing an outline around the model (refer to the example
osgoutline and the osgFX::Cartoon node for details).

Editing Geometry Models

110

Selecting a triangle face of the model
Let us go on with the last recipe. While editing a selected model in 3D world, you often have
several choices: points, edges, faces (triangles or quads), and entity. Editing one or more
faces of a model means to move, rotate, scale, remove, extrude, or do anything else you
want to them. In the computer graphics design field, complex polygons including humans
and monsters can be created from a simple box with the help of different face modifiers
(also called low-polygon modelization).

Certainly they are out of the scope of this book, but we will explore the basis of all these
advanced operations, that is, the selection of a triangle face of the model.

How to do it...
Let us start.

1. Include necessary headers and define color variables:
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/MatrixTransform>
#include <osg/PolygonOffset>
#include <osgUtil/SmoothingVisitor>
#include <osgViewer/Viewer>

const osg::Vec4 normalColor(1.0f, 1.0f, 1.0f, 1.0f);
const osg::Vec4 selectedColor(1.0f, 0.0f, 0.0f, 0.5f);

2. The SelectModelHandler class will manage a selector object (which represents
the selected triangle face by overlapping and highlighting it) this time. It is used to
represent the selected face when we pick the model:
class SelectModelHandler : public osgCookBook::PickHandler
{
public:
 SelectModelHandler() : _selector(0) {}

 osg::Geode* createFaceSelector();

 virtual void doUserOperations(
 osgUtil::LineSegmentIntersector::Intersection& result);

protected:
 osg::ref_ptr<osg::Geometry> _selector;
};

Chapter 3

111

3. In the createFaceSelector() method, the selector geometry should be allocated
with three vertices for picking up triangle faces. All the vertices of the selector are
reset to the origin so that we won't see it at the beginning. When a face is selected,
this geometry will be reset to overlap the selected triangle and highlight it to indicate
that it has been chosen:
osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array(1);
(*colors)[0] = selectedColor;

_selector = new osg::Geometry;
_selector->setDataVariance(osg::Object::DYNAMIC);
_selector->setUseDisplayList(false);
_selector->setUseVertexBufferObjects(true);
_selector->setVertexArray(new osg::Vec3Array(3));
_selector->setColorArray(colors.get());
_selector->setColorBinding(osg::Geometry::BIND_OVERALL);
_selector->addPrimitiveSet(new osg::DrawArrays(
 GL_TRIANGLES, 0, 3));

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(_selector.get());
geode->getOrCreateStateSet()->setMode(
 GL_LIGHTING, osg::StateAttribute::OFF);
geode->getOrCreateStateSet()->setMode(
 GL_BLEND, osg::StateAttribute::ON);
geode->getOrCreateStateSet()->setRenderingHint(
 osg::StateSet::TRANSPARENT_BIN);
return geode.release();

4. In the doUserOperations() method, while we get an intersection result, we have
to first check if the selected geometry and its vertex attributes are valid, and obtain
them for later use:
osg::Geometry* geom = dynamic_cast<osg::Geometry*>(
 result.drawable.get());
if (!geom || !_selector || geom==_selector) return;

osg::Vec3Array* vertices = dynamic_cast<osg::Vec3Array*>(
 geom->getVertexArray());
osg::Vec3Array* selVertices = dynamic_cast<osg::Vec3Array*>(
 _selector->getVertexArray());
if (!vertices || !selVertices) return;

Editing Geometry Models

112

5. Compute the local-to-world matrix of the selected model. This will help us obtain the
correct vertex position of the selector. As we know, the indexList variable saves all
triangles that have intersections with the mouse cursor, in order from the nearest to
the farthest. Each triangle is recorded by pushing the indices of its three points into
the list. Here we simply take them out and multiply each by the local-to-world matrix,
reset the selector's points, and dirty it:
osg::Matrix matrix = osg::computeLocalToWorld(result.nodePath);
const std::vector<unsigned int>& selIndices =
 result.indexList;
for (unsigned int i=0; i<3 && i<selIndices.size(); ++i)
{
 unsigned int pos = selIndices[i];
 (*selVertices)[i] = (*vertices)[pos] * matrix;
}
// Dirty the selector geometry to highlight the picked face
selVertices->dirty();
_selector->dirtyBound();

The createSimpleGeometry() function doesn't have any differences from the one
in the Selecting and highlighting a model recipe.

6. In the main entry, we apply an extra osg::PolygonOffset attribute on the simple
box geometry for test. The reason is clear: The selected face geometry will overlap
with one triangle face of the box because they have the same vertex values, but
OpenGL can't handle such cases and will confuse the two faces while rendering the
scene. Using the polygon offset functionality is a suitable solution in this example:
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(createSimpleGeometry());
geode->getOrCreateStateSet()->setAttributeAndModes(
 new osg::PolygonOffset(1.0f, 1.0f));

7. The box is added as the child of a transformation node. And then we can change the
transformation matrix to test if our example code works for models placed anywhere:
osg::ref_ptr<osg::MatrixTransform> trans =
 new osg::MatrixTransform;
trans->addChild(geode.get());
trans->setMatrix(osg::Matrix::translate(0.0f, 0.0f, 1.0f));

8. Add the selected geometry face to the root node, along with the model node:
osg::ref_ptr<SelectModelHandler> selector =
 new SelectModelHandler;

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(trans.get());
root->addChild(selector->createFaceSelector());

Chapter 3

113

9. Start the viewer:
osgViewer::Viewer viewer;
viewer.addEventHandler(selector.get());
viewer.setSceneData(root.get());
return viewer.run();

10. Press Ctrl and click on any place on the box model. The osg::MatrixTransform
node here can demonstrate the importance of converting vertices from local to
world. Try commenting the use of osg::computeLocalToWorld() and see
what will happen.

How it works...
Maybe you are still looking for a way to change the face's color to highlight it. Unfortunately
it is impossible to modify the face color in OpenGL because color is in fact a vertex attribute.
Shaders may help represent a specified face with a different color or transparency, but it
seems to make a mountain out of a molehill in this recipe.

Be careful that the face selector node should be placed under the root node (in the
world coordinate system); otherwise, you may have to consider applying an additional
transformation matrix from the world to the selector's local coordinates while computing
its vertices. The additional matrix is shown in the following block of code:

osg::Matrix matrix = osg::computeLocalToWorld(result.nodePath);
osg::Matrix matrix2 = osg::computeWorldToLocal(
 faceSelector->getParentalNodePaths()[0]);

Editing Geometry Models

114

for (unsigned int i=0; i<3 && i<selIndices.size(); ++i)
{
 unsigned int pos = selIndices[i];
 (*selVertices)[i] = (*vertices)[pos] * matrix * matrix2;
}

There's more...
The classic 'Z-lighting' problem comes out when primitives are coplanar, or they are too near
so that their depth values can't be distinguished. In this case, we have to use polygon offset to
force adjusting the depth result of one or more of these primitives. More details can be found
at http://www.opengl.org/resources/faq/technical/polygonoffset.htm.

Selecting a point on the model
The next task of selecting parts of a model is a little challenging: We are going to select an
existing point of the model. Points and edges are useful when editing the polygon's topological
structure. For example, you can specify one point or edge and collapse all faces sharing it on
to a new point or line, which is the basic step of some polygon-simplification algorithms. But
no doubt, the first work is to correctly select the point as before.

To note, selecting points is not as easy as selecting a face. The latter has area and can
intersect with user-defined line segments. But how can we just "pick up" a point using a line?
The solution is: Compute the distances of all possible points and the intersection point on the
model, and mark one as selected if the distance is short enough.

How to do it...
Let us start.

1. Include necessary headers and define color variables:
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/MatrixTransform>
#include <osg/Point>
#include <osg/PolygonOffset>
#include <osgUtil/SmoothingVisitor>
#include <osgViewer/Viewer>

const osg::Vec4 normalColor(1.0f, 1.0f, 1.0f, 1.0f);
const osg::Vec4 selectedColor(1.0f, 0.0f, 0.0f, 1.0f);

http://www.opengl.org/resources/faq/technical/polygonoffset.htm
http://www.opengl.org/resources/faq/technical/polygonoffset.htm

Chapter 3

115

2. This is the third time we meet the SelectModelHandler class. In this example,
it provides a selection geometry that only contains one vertex to show where the
point is:
class SelectModelHandler : public osgCookBook::PickHandler
{
public:
 SelectModelHandler(osg::Camera* camera)
 : _selector(0), _camera(camera) {}

 osg::Geode* createPointSelector();

 virtual void doUserOperations(
 osgUtil::LineSegmentIntersector:: Intersection& result);

protected:
 osg::ref_ptr<osg::Geometry> _selector;
 osg::observer_ptr<osg::Camera> _camera;
};

3. In the createPointSelector() method, allocate the selector geometry with
one vertex here. To make it clear while rendering, we have to specify the point size
attribute too:
osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array(1);
(*colors)[0] = selectedColor;

_selector = new osg::Geometry;
_selector->setDataVariance(osg::Object::DYNAMIC);
_selector->setUseDisplayList(false);
_selector->setUseVertexBufferObjects(true);
_selector->setVertexArray(new osg::Vec3Array(1));
_selector->setColorArray(colors.get());
_selector->setColorBinding(osg::Geometry::BIND_OVERALL);
_selector->addPrimitiveSet(new osg::DrawArrays(
 GL_POINTS, 0, 1));

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(_selector.get());
geode->getOrCreateStateSet()->setAttributeAndModes(
 new osg::Point(10.0f));
geode->getOrCreateStateSet()->setMode(
 GL_LIGHTING, osg::StateAttribute::OFF);
return geode.release();

Editing Geometry Models

116

4. In the doUserOperations() method, acquire the necessary variables from the
picked geometry and the selection:
osg::Geometry* geom = dynamic_cast<osg::Geometry*>(
 result.drawable.get());
if (!geom || !_selector || geom==_selector) return;

osg::Vec3Array* vertices = dynamic_cast<osg::Vec3Array*>(
 geom->getVertexArray());
osg::Vec3Array* selVertices = dynamic_cast<osg::Vec3Array*>(
 _selector->getVertexArray());
if (!vertices || !selVertices) return;

5. Compute the world-intersection point and the matrix for converting the selected
model into world coordinates. Then, we are going to convert both the point and
the matrix to projection coordinates, in which the vertex is limited in range from
[-1,-1,-1] to [1, 1, 1]. We will explain the reason for this later.
osg::Vec3 point = result.getWorldIntersectPoint();
osg::Matrix matrix = osg::computeLocalToWorld(
 result.nodePath);

osg::Matrix vpMatrix;
if (_camera.valid())
{
 vpMatrix = _camera->getViewMatrix() * _camera-
 >getProjectionMatrix();
 point = point * vpMatrix;
}

6. Find out all three vertices of the nearest picked triangle, and compute the distance
between the intersection point and each of them. If any one of the distances is less
than a fixed threshold (0.1), we will say that corresponding point is "picked up".
To note, the distance values and the threshold are computed with regard to the
projection coordinate system:
const std::vector<unsigned int>& selIndices =
 result.indexList;
for (unsigned int i=0; i<3 && i<selIndices.size(); ++i)
{
 unsigned int pos = selIndices[i];
 osg::Vec3 vertex = (*vertices)[pos] * matrix;
 float distance = (vertex * vpMatrix - point).length();
 if (distance<0.1f)
 {
 selVertices->front() = vertex;
 }

Chapter 3

117

}
// Dirty the selector geometry to highlight the picked point
selVertices->dirty();
_selector->dirtyBound();

The createSimpleGeometry() function, of course, has no changes in all
three recipes.

7. In the main entry, we will create the sample model with polygon-offset settings,
and add it to a transformation node:
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(createSimpleGeometry());
geode->getOrCreateStateSet()->setAttributeAndModes(
 new osg::PolygonOffset(1.0f, 1.0f));

osg::ref_ptr<osg::MatrixTransform> trans =
 new osg::MatrixTransform;
trans->addChild(geode.get());
trans->setMatrix(osg::Matrix::translate(0.0f, 0.0f, 1.0f));

8. Create the selecting handler and add the selected point object to the scene graph:
osgViewer::Viewer viewer;
osg::ref_ptr<SelectModelHandler> selector =
 new SelectModelHandler(viewer.getCamera());

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(trans.get());
root->addChild(selector->createPointSelector());
viewer.addEventHandler(selector.get());
viewer.setSceneData(root.get());

9. The last thing to pay attention to before starting the viewer is to disable the small
feature culling mode, with which the back-end rendering will ignore geometries with
one vertex automatically:
osg::CullSettings::CullingMode mode =
 viewer.getCamera()->getCullingMode();
viewer.getCamera()->setCullingMode(mode &
 (~osg::CullSettings::SMALL_FEATURE_CULLING));
return viewer.run();

Editing Geometry Models

118

10. Press Ctrl and click on an end point approximately (in fact you can't precisely pick
it). If the cursor is near enough, the point will be selected and a red, bigger point
is shown; otherwise, nothing will happen as your cursor is still too far away from
your target.

How it works...
In step 6, we use a slightly complex method to compute the distance from a vertex of the
selected triangle to the selection point. Both points are transformed into the projection
coordinate system before obtaining the distance:

float distance = (vertex * vpMatrix - point).length();

You may have a question—is it OK if we ignore the view and projection matrix and directly
compute distances in the world coordinates? The answer is yes, but the results may not be
precise. When we zoom out of the camera and go far away from the model, selecting points
becomes a difficult task as we can hardly put the mouse cursor near enough to the expected
vertex. That is because the threshold for deciding the selectable distance is fixed, but the pixel
size of the model differs according to the current camera.

Now you can imagine why we add an extra matrix transformation here: We transform the
points to projection coordinates, and compare the distance with the threshold too. View and
projection matrices are not influencing factors anymore, which make the point selection
easier for end users.

This solution has another problem: The picking operation must first have an intersection
with the model, and then we can check which points are most likely to be selected. If the user
clicks a position very near to a point but doesn't have intersections with the model itself, the
whole process will fail. In that case, we may have to consider designing a new intersector
derived from the osgUtil::Intersector class, which will be discussed in the last chapter
of this book.

Chapter 3

119

There's more...
This is the first time we come across the concept of small feature culling, or contribution
culling. In a word, this is a culling method throwing objects away that do not contribute to
the final rendering result.

Using vertex-displacement mapping in
shaders

Is this the first time you have heard the name displacement mapping? Don't worry. It is just
a kind of modern computer-graphics technique. Maybe you are familiar with bump mapping,
which simulates bumps using a special texture map and makes the result look more realistic.
Yes, it has some similar points with displacement mapping—both have a smooth surface
at the beginning; both make uses of shaders for special effects; and both read data from
textures working like parameter lookup tables.

Vertex displacement mapping, as the name suggests, uses textures to modify vertex
positions and normals instead of just pixels. It produces dynamic, detailed, and real
mesh data, not faked ones (bump mapping instead fakes the results).

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/Texture2D>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. The core feature of vertex displacement mapping is to use the texture values to alter
vertex positions. This can sometimes generate rough surfaces from one or more
textures. In our vertex shader, this is done by applying a simple value, which is
read from the texture parameter on each vertex's Z coordinate (the height):
const char* vertCode = {
 "uniform sampler2D defaultTex;\n"
 "varying float height;\n"
 "void main()\n"
 "{\n"
 "vec2 uv = gl_MultiTexCoord0.xy;\n"
 "vec4 color = texture2D(defaultTex, uv);\n"

Editing Geometry Models

120

 "height = 0.3*color.x + 0.59*color.y + 0.11*color.z;\n"

 "vec4 pos = gl_Vertex;\n"
 "pos.z = pos.z + 100.0*height;\n"
 "gl_Position = gl_ModelViewProjectionMatrix * pos;\n"
 "}\n"
};

3. The fragment shader will decide the pixel color according to the height value. Lower
areas are painted with a very dark gray color, and highlands are painted with green:
const char* fragCode = {
 "varying float height;\n"
 "const vec4 lowerColor = vec4(0.1, 0.1, 0.1, 1.0);\n"
 "const vec4 higherColor = vec4(0.2, 1.0, 0.2, 1.0);\n"
 "void main()\n"
 "{\n"
 "gl_FragColor = mix(lowerColor, higherColor, height);\n"
 // height won't go beyond 1.0 in this recipe
 "}\n"
};

4. Create grid geometry as the displacement mapping container. It is in fact a
two-dimensional regular grid object, in which each grid cell has a unique (x, y)
coordinates. By setting different Z values to these cells, we can thus create 3D
terrains easily:
osg::Geometry* createGridGeometry(unsigned int column,
 unsigned int row)
{
 ...
}

5. Create the grid points and texture coordinates. The latter is much more important as
it will be used to read texels from the texture object:
osg::ref_ptr<osg::Vec3Array> vertices =
 new osg::Vec3Array(column * row);
osg::ref_ptr<osg::Vec2Array> texcoords =
 new osg::Vec2Array(column * row);
for (unsigned int i=0; i<row; ++i)
{
 for (unsigned int j=0; j<column; ++j)
 {
 (*vertices)[i*column + j].set((float)i, (float)j, 0.0f);
 (*texcoords)[i*column + j].set((float)i/(float)row,
 (float)j/(float)column);
 }
}

Chapter 3

121

6. Allocate the geometry and assemble vertices. The GL_QUAD_STRIP parameter is
suitable here for building such grid geometries:
osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;
geom->setUseDisplayList(false);
geom->setUseVertexBufferObjects(true);
geom->setVertexArray(vertices.get());
geom->setTexCoordArray(0, texcoords.get());
for (unsigned int i=0; i<row-1; ++i)
{
 osg::ref_ptr<osg::DrawElementsUInt> de =
 new osg::DrawElementsUInt(GL_QUAD_STRIP, column*2);
 for (unsigned int j=0; j<column; ++j)
 {
 (*de)[j*2 + 0] = i*column + j;
 (*de)[j*2 + 1] = (i+1)*column + j;
 }
 geom->addPrimitiveSet(de.get());
}

7. Set a customized bounding box here:
geom->setInitialBound(osg::BoundingBox(
 -1.0f,-1.0f,-100.0f, 1.0f, 1.0f, 100.0f));

8. Set up the texture and shader attributes. Here we use LINEAR to replace the regular
LINEAR_MIPMAP_LINEAR parameter to set the texture-minifying function. This will
disable texture mipmapping, which is of no use in this recipe that treats the texture
map as a parameter table:
osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
texture->setImage(osgDB::readImageFile("Images/osg256.png"));
texture->setFilter(osg::Texture2D::MIN_FILTER,
 osg::Texture2D::LINEAR);
texture->setFilter(osg::Texture2D::MAG_FILTER,
 osg::Texture2D::LINEAR);
geom->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, texture.get());
geom->getOrCreateStateSet()->addUniform(
 new osg::Uniform("defaultTex", 0));

osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader(new osg::Shader(osg::Shader::VERTEX,
 vertCode));
program->addShader(new osg::Shader(osg::Shader::FRAGMENT,
 fragCode));

Editing Geometry Models

122

geom->getOrCreateStateSet()->setAttributeAndModes(
 program.get());
return geom.release();

9. In the main entry, there is nothing too much to do. We will just add the grid geometry
to the scene graph and start rendering it:
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(createGridGeometry(512, 512));
geode->getOrCreateStateSet()->setMode(GL_LIGHTING,
 osg::StateAttribute::OFF);

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(geode.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

10. We will choose the OpenSceneGraph logo picture as the texture. Dark parts of this
picture form the lowlands, and light parts form mountains and highlands. A real
digital elevation model (DEM) image may implement a much better scene, but it
certainly requires more vertices and a large texture resolution.

How it works...
Here we set up a customized bound for the geometry with the setInitialBound() method.
You may remove it from the program and rebuild to see what the difference is. You will get an
image as shown in the following screenshot:

Chapter 3

123

Look strange? Part of the generated model is clipped and replaced by the background. The
reason is clear: OSG will automatically compute near and far planes of the projection matrix
according to the bounds of scene objects, but it can never know what you have done in
shaders. It calculates the bounding box of the geometry referring to the vertices stored
in the CPU memory, and ignores position changes in the Z direction.

This leads to wrong near/far values that may clip the geometry in an improper way. To solve
this, we would better determine the bounds of special drawables by ourselves. And that is the
reason why we use the setInitialBound() method here.

There's more...
For more information about displacement, bump, and normal mappings, visit the
following websites:

http://en.wikipedia.org/wiki/Displacement_mapping

http://en.wikipedia.org/wiki/Bump_mapping

http://en.wikipedia.org/wiki/Normal_mapping

The osgFX library also has a bump mapping implementation. Read its source code and the
example osgfxbrowser if you have further interest.

http://en.wikipedia.org/wiki/Displacement_mapping
http://en.wikipedia.org/wiki/Displacement_mapping
http://en.wikipedia.org/wiki/Displacement_mapping
http://en.wikipedia.org/wiki/Bump_mapping
http://en.wikipedia.org/wiki/Bump_mapping
http://en.wikipedia.org/wiki/Normal_mapping
http://en.wikipedia.org/wiki/Normal_mapping

Editing Geometry Models

124

Using the draw instanced extension
It is common in modern 3D applications that a scene can be filled with a huge number of
small geometries that represent particles, trees, or people crowds. Rendering such a large
number of polygons, no matter how simple they are, will be a heavy burden for computer
graphics hardware and APIs. The whole operation is really slow, especially when you are
submitting mess data to the graphics pipeline.

In this case, the implementation of hardware geometry instancing (called draw instanced
in OpenGL) will be of much importance. It enables the same geometry object, or the
same sets of vertices and primitives, to be instanced many times and rendered with
different transformations. It reduces the number of OpenGL command calls and usage of
duplicated data, and makes it possible to render a mess scene full of the same geometries
more efficiently. Of course, shaders must be used here to handle any instance of the
geometry object.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/Texture2D>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. The vertex shader defines the behaviors of instance objects and draws them
according to certain rules. We will explain the concrete program later in the
How it works section.
const char* vertCode = {
 "uniform sampler2D defaultTex;\n"
 "const float PI2 = 6.2831852;\n"
 "void main()\n"
 "{\n"
 "float r = float(gl_InstanceID) / 256.0;\n"
 "vec2 uv = vec2(fract(r), floor(r) / 256.0);\n"
 "vec4 pos = gl_Vertex + vec4(uv.s * 384.0, 32.0 *
 sin(uv.s * PI2), uv.t * 384.0, 1.0);\n"
 "gl_FrontColor = texture2D(defaultTex, uv);\n"
 "gl_Position = gl_ModelViewProjectionMatrix * pos;\n"
 "}\n"
};

Chapter 3

125

3. Use the createInstancedGeometry() function to create multiple instances of
the same geometry:
osg::Geometry* createInstancedGeometry(
 unsigned int numInstances)
{
 ...
}

4. We will only create a quad with four vertices, which is enough for demonstrating the
usage here:
osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array(4);
(*vertices)[0].set(-0.5f, 0.0f,-0.5f);
(*vertices)[1].set(0.5f, 0.0f,-0.5f);
(*vertices)[2].set(0.5f, 0.0f, 0.5f);
(*vertices)[3].set(-0.5f, 0.0f, 0.5f);

osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;
geom->setUseDisplayList(false);
geom->setUseVertexBufferObjects(true);
geom->setVertexArray(vertices.get());

5. Using the draw instanced extension may be easier than you think. Either the
osg::DrawArrays or osg::DrawElements* class has a numInstances
argument (at the last of the argument list) that indicates the number of instanced
objects. Set a non-zero value to enable draw instanced. And set up a customized
bounding box again as the system can't decide the actual bound according to only
four original points:
geom->addPrimitiveSet(new osg::DrawArrays(
 GL_QUADS, 0, 4, numInstances));
geom->setInitialBound(osg::BoundingBox(
 -1.0f,-32.0f,-1.0f, 192.0f, 32.0f, 192.0f));

6. Apply the texture and shader attributes. This is exactly the same as the Using vertex
displacement mapping in shaders recipe:
osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
texture->setImage(osgDB::readImageFile("Images/osg256.png"));
texture->setFilter(osg::Texture2D::MIN_FILTER,
 osg::Texture2D::LINEAR);
texture->setFilter(osg::Texture2D::MAG_FILTER,
 osg::Texture2D::LINEAR);
geom->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, texture.get());
geom->getOrCreateStateSet()->addUniform(
 new osg::Uniform("defaultTex", 0));

Editing Geometry Models

126

osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader(new osg::Shader(osg::Shader::VERTEX,
 vertCode));
geom->getOrCreateStateSet()->setAttributeAndModes(
 program.get());
return geom.release();

7. OK, now we will get into the main entry; add the geometry object to the scene and
start the viewer:
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(createInstancedGeometry(256*256));

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(geode.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

8. You will see a large number of quads appearing in the 3D world, arranged in a sine
surface. It's amazing because we only created one geometry with four points, but now
it is over a thousand times greater! A lot of CPU memories and pipeline commands
are saved with this great functionality.

Chapter 3

127

How it works...
The draw instanced extension requires OpenGL 2.0 to work properly. It greatly reduces the
memory usage of vertices and primitives on the CPU side, but can still perform as effectively
as the traditional way to build geometries. It introduces a new read-only, built-in GLSL
variable gl_InstanceID, which contains the current instance ID (from 0 to number of
instances) in the rendering pipeline. With the texture as a parameter table, we can look for
data corresponding to the ID and set gl_Position, glTexCoord[*], and other outputs to
suitable values. This makes it possible to set up the positions and attributes of a low-polygon
human, and even some scientific visualization work, for instance, the rendering of point-cloud
data (we will discover this in Chapter 8).

The gl_Vertex variable represents the same vertex data used by each instance, and so
do the gl_Normal and gl_MultiTexCoord* variables. You must apply a transformation
matrix or customized offset to them to move the instance to a different location in the
3D world.

In the shader code of this recipe, the pos variable represents the position of each instanced
quad in the world coordinate (by adding an offset to the original gl_Vertex variable). Then,
we multiply the model-view-projection (MVP) matrix with it to obtain the position in projection
coordinate, which is actually required for final vertex composition in the rendering pipeline.

Note that the shader code here is not perfect because it fixes the number of row and column
instances instead of using uniforms. You may try to alter it to provide a more scalable draw
instanced implementation.

There's more...
More information about the OpenGL draw instanced support can be found at
http://www.opengl.org/registry/specs/ARB/draw_instanced.txt.

And the OSG example osgdrawinstanced can also help in studying this interesting
functionality. You can treat it as an upgraded version of this recipe.

http://www.opengl.org/registry/specs/ARB/draw_instanced.txt
http://www.opengl.org/registry/specs/ARB/draw_instanced.txt

4
Manipulating the View

In this chapter, we will cover:

 f Setting up views on multiple screens

 f Using slave cameras to simulate a power-wall

 f Using depth partition to display huge scenes

 f Implementing the radar map

 f Showing the top, front, and side views of a model

 f Manipulating the top, front, and side views

 f Following a moving model

 f Using manipulators to follow models

 f Designing a 2D camera manipulator

 f Manipulating the view with joysticks

Introduction
This chapter is all about the camera and camera manipulation. No matter how beautiful or
realistic your scene is, a bad navigating experience will still drive your users away. Your goal is
to try changing the view and projection matrices, which represent 3D space transformation,
and thus change the world you can see from the camera smoothly and conveniently. But
don't forget that manipulating with mouse and keyboard is actually a 2D interaction, with two
degrees-of-freedom (DOF) and the mouse buttons. So, you can hardly describe a complete 3D
movement (totally 6 DOFs) with mouse move and button click events.

Manipulating the View

130

Fortunately, OSG provides us a list of handy in-built camera manipulators, such as the
osgGA::TrackballManipulator. It also contains a good framework (including
manipulator base class and event handlers) for implementing our own navigation
strategy. We will cover all these features in this specialized chapter.

Another interesting topic here is the usage of single viewer and composite viewer, as well as
the configuration of viewing attributes and multi-monitor options. You will also find examples
of them in the later recipes.

Setting up views on multiple screens
Today, more and more people have multiple physical display devices, especially multiple
monitors (or screens) at work. Modern graphics cards can always afford at least two outputs
nowadays. Also, most operating systems have already fully supported the simultaneous use of
multiple screens, including Linux, Mac OSX, and Microsoft Windows.

However, programming multiple screens is still challenging because developers have
to handle the graphics buffer of each screen by themselves, which is painful for many
inexperienced developers. Fortunately, OSG encapsulates the platform-specific multi-monitor
APIs and uses the context ID to characterize screens. It enables users to create and use
one or more graphics contexts on each screen, and write OSG programs without having
any discomfort.

How to do it...
Carry out the following steps in order to complete the recipe:

1. Include necessary headers:
#include <osg/Camera>
#include <osgDB/ReadFile>
#include <osgGA/TrackballManipulator>
#include <osgViewer/CompositeViewer>

2. The createView() function will create a full-screen window on specified screen:
osgViewer::View* createView(int screenNum)
{
 ...
}

3. Let us configure the desired rendering window attributes according to current screen
settings in the function. We may obtain the desired screen size and attributes by
calling the WindowingSystemInterface class:
unsigned int width = 800, height = 600;
osg::GraphicsContext::WindowingSystemInterface* wsi = osg::Graphic

Chapter 4

131

Context::getWindowingSystemInterface();
if (wsi)
 wsi->getScreenResolution(osg::GraphicsContext::
ScreenIdentifier(screenNum), width, height);

osg::ref_ptr<osg::GraphicsContext::Traits> traits = new
osg::GraphicsContext::Traits;
traits->screenNum = screenNum;
traits->x = 0;
traits->y = 0;
traits->width = width;
traits->height = height;
traits->windowDecoration = false;
traits->doubleBuffer = true;
traits->sharedContext = 0;

4. Construct the graphics context and attach it to a camera to provide a usable
rendering window here. The viewport of the camera should also receive the
size parameters to display the scene in the full-screen range:

Note that if the screen number, or any other Traits
members set before are invalid (for example, nonexistent
screen index), the osg::GraphicsContext object
created will just be NULL and you may return here with
some error reports.

osg::ref_ptr<osg::GraphicsContext> gc = osg::GraphicsContext::crea
teGraphicsContext(traits.get());
if (!gc) return NULL;

osg::ref_ptr<osg::Camera> camera = new osg::Camera;
camera->setGraphicsContext(gc.get());
camera->setViewport(new osg::Viewport(0, 0, width, height));
camera->setProjectionMatrixAsPerspective(
 30.0f, static_cast<double>(width)/static_cast<double>(height),
1.0f, 10000.0f);

GLenum buffer = traits->doubleBuffer ? GL_BACK : GL_FRONT;
camera->setDrawBuffer(buffer);
camera->setReadBuffer(buffer);

Manipulating the View

130

5. Create a new view object, set up a default camera manipulator, and return it at
the end:
osg::ref_ptr<osgViewer::View> view = new osgViewer::View;
view->setCamera(camera.get());
view->setCameraManipulator(new osgGA::TrackballManipulator);
return view.release();

6. In the main entry, we will make use of osgViewer::CompositeViewer class in
this recipe:
osgViewer::CompositeViewer viewer;

7. Create a view with any model shown on the first screen:
osgViewer::View* view1 = createView(0);
if (view1)
{
 view1->setSceneData(osgDB::readNodeFile("cessna.osg"));
 viewer.addView(view1);
}

8. Create yet another view on the second screen. Make sure you have enough monitors
and already connect them to your graphics card:
osgViewer::View* view2 = createView(1);
if (view2)
{
 view2->setSceneData(osgDB::readNodeFile("cow.osg"));
 viewer.addView(view2);
}

9. Start the viewer:
return viewer.run();

10. If you have at least two monitors, you will be able to see a Cessna on the main
monitor, and a cow model on the other one; otherwise, you can only render the main
scene properly, and you may read some failure information in the console window,
which indicates that the second view cannot be initialized.

How it works...
In the createView() function, we can easily obtain the screen size and other attributes
by calling the WindowingSystemInterface class, which will have the access to
platform-specific Windowing APIs. Then we pass the acquired width and height values
to a Traits object. Of course, do not forget the screenNum value, which is the key
for setting up multiple views on multiple displays.

Chapter 4

131

The only difference between single-screen and multi-screen programming in OSG is to set
up the screen index (screenNum) variable of the Traits class. Anything else that is related
with a specific platform will be handled by OSG automatically and screen information will be
recorded by the WindowingSystemInterface class.

There's more...
You may retrieve the number of screens connected with current computer by calling the
getNumScreens() method of WindowingSystemInterface:

osg::GraphicsContext::WindowingSystemInterface* wsi =
 osg::GraphicsContext::getWindowingSystemInterface();
if (wsi) numScreens = wsi->getNumScreens();

In order to obtain the detailed information of a screen (screen index is num):

osg::GraphicsContext::ScreenSettings settings;
osg::GraphicsContext::WindowingSystemInterface* wsi = osg::Graphic
sContext::getWindowingSystemInterface();
if (wsi) wsi->getScreenSettings(
 osg::GraphicsContext::ScreenIdentifier(num), settings);

You can get the screen width, height, refresh rate, and color buffer depth attributes from the
settings variable.

The example osgcamera in the core source code can exactly explain how to display a scene
with single and multiple screens, using the screen number identifier.

Using slave cameras to simulate a
power-wall

The PowerWall is a common virtual reality system displaying extremely high resolution scenes
by grouping tiled arrays of projectors or monitors sharing the same data. With the really large
screen composed by many small screens, it is possible to see the world clearly and find
detailed information effectively.

OSG also provides the slave camera feature to implement the same functionality.
Each salve represents a small tile in the PowerWall. You can assign the slave camera to
different numbers of screens, but in this recipe, we will simply put them in one screen.

Manipulating the View

130

How to do it...
Carry out the following steps in order to complete the recipe:

1. Include necessary headers:
#include <osg/Camera>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. The createSlaveCamera() is used to create cameras following the viewer's main
camera. The creation process is similar to the Setting up views on multiple screens
recipe before. An osg::Camera node will be returned, which is already attached
with a rendering window:
osg::Camera* createSlaveCamera(int x, int y, int width, int
height)
{
 osg::ref_ptr<osg::GraphicsContext::Traits> traits = new
osg::GraphicsContext::Traits;
 traits->screenNum = 0; // this can be changed for
 //multi-display
 traits->x = x;
 traits->y = y;
 traits->width = width;
 traits->height = height;
 traits->windowDecoration = false;
 traits->doubleBuffer = true;
 traits->sharedContext = 0;

 osg::ref_ptr<osg::GraphicsContext> gc = osg::GraphicsContext:
:createGraphicsContext(traits.get());
 if (!gc) return NULL;

 osg::ref_ptr<osg::Camera> camera = new osg::Camera;
 camera->setGraphicsContext(gc.get());
 camera->setViewport(new osg::Viewport(0, 0, width, height));

 GLenum buffer = traits->doubleBuffer ? GL_BACK : GL_FRONT;
 camera->setDrawBuffer(buffer);
 camera->setReadBuffer(buffer);
 return camera.release();
}

Chapter 4

131

3. In the main entry, we will allow the user to decide the row and column numbers of
the PowerWall. The greater these two numbers are, the more displays you are going
to have, but the side effect is that you will have a less effective system containing too
many rendering windows:
osg::ArgumentParser arguments(&argc, argv);

int totalWidth = 1024, totalHeight = 768;
arguments.read("--total-width", totalWidth);
arguments.read("--total-height", totalHeight);

int numColumns = 3, numRows = 3;
arguments.read("--num-columns", numColumns);
arguments.read("--num-rows", numRows);

4. Read any model for displaying on all the windows.
osg::ref_ptr<osg::Node> scene= osgDB::readNodeFiles(arguments);
if (!scene) scene = osgDB::readNodeFile("cessna.osg");

5. Now we are going to add each camera created as a 'slave' into the viewer. A slave
camera doesn't have independent view and projection matrices. It uses the main
camera's view and adds an offset to each matrix. The computation process will be
explained later in the How it works... section:
osgViewer::Viewer viewer;

int tileWidth = totalWidth / numColumns;
int tileHeight = totalHeight / numRows;
for (int row=0; row<numRows; ++row)
{
 for (int col=0; col<numColumns; ++col)
 {
 osg::Camera* camera = createSlaveCamera(
 tileWidth*col, totalHeight - tileHeight*(row+1),
tileWidth-1, tileHeight-1);
 osg::Matrix projOffset =
 osg::Matrix::scale(numColumns, numRows, 1.0) *
 osg::Matrix::translate(numColumns-1-2*col,
 numRows-1-2*row, 0.0);
 viewer.addSlave(camera, projOffset, osg::Matrix(), true);
 }
}

Manipulating the View

130

6. Add the scene to the viewer and start the simulation:
viewer.setSceneData(scene);
return viewer.run();

7. Now, you will find nine windows making up a wall that display one complete scene,
as shown in the following screenshot. The power-wall implementation can actually
be larger and offer really high-resolution result in practical use. However, it requires
more screens or even more computers to collaborate together. This is already beyond
the scope of our book:

How it works...
The slave camera will read the main camera's view and projection matrices and multiply each
with an offset matrix, that is:

slaveViewMatrix = mainViewMatrix * viewOffset;
slaveProjectionMatrix = mainProjectionMatrix * projectionOffset;

In order to compute the offset matrices here, we must first consider how cameras are
arranged in a PowerWall. Let us have a look at the result picture again, with column
and row number marked:

Chapter 4

131

In order to render the scene correctly in every slave camera, we can just keep the view matrix
as it is, and reset parameters of the frustum of a slave.

The projection matrix can be written as:

Here left, right, top, and bottom specify the horizontal and vertical clipping planes of
the frustum, znear and zfar represent the near and far clipping planes. See the OpenGL
document for details:

http://www.opengl.org/sdk/docs/man/xhtml/glFrustum.xml

http://www.opengl.org/sdk/docs/man/xhtml/glFrustum.xml
http://www.opengl.org/sdk/docs/man/xhtml/glFrustum.xml
http://www.opengl.org/sdk/docs/man/xhtml/glFrustum.xml

Manipulating the View

130

In order to fit the row and column positions of a certain slave camera, we can scale the
horizontal and vertical coordinates and reproduce the matrix formula as:

Here,

left' = left + j *(right - left) / numCols
right' = right - (numCols - j - 1)*(right - left) / numCols
bottom' = bottom + i *(top - bottom) / numRows
top' = top - (numRows - i - 1)*(top - bottom) / numRows
A = numCols - 2 * j - 1
B = numRows - 2 * i - 1

The variable left', right', top' and bottom' are parameters of the slave's projection
matrix, which are the same meanings of the OpenGL frustum variables and that is what we
have already done in the previous section.

There's more...
Slave cameras are allocated and managed by only one computer. This brings a new problem:
how could one system afford too many displays and rendering tasks? Maybe you would like to
have more computers, and you may set up a rendering cluster with PCs and workstations with
monitors. For this case, have a look at the osgcluster example, and consider handling the
synchronization of computers by yourself.

Chapter 4

131

Using depth partition to display huge scenes
Is it possible to draw the real sun, earth, mars, and even the solar system in OpenGL and
OSG? The answer is absolutely yes. But you may encounter some problems while actually
working on this topic.

The most serious one is the computation of near and far planes. As many early devices have
only a 16-bit depth buffer or 24-bit one, you may not be able to maintain a huge distance (in
the solar system) between the near and the far plane. If you force setting the near plane to a
small value and the far plane to a very large one, the rendering of nearby objects will cause
the classic Z-fighting problem because there is not enough precision to resolve the distance.
The explaination of Z-fighting can be found at: http://en.wikipedia.org/wiki/Z-
fighting.

The best solution is to buy a new graphics card supporting a 32-bit buffer. But to keep the
program portable, we had better find some other solutions, for instance, the depth partition
algorithm in this recipe. To introduce this algorithm in one sentence—it partitions the scene
into several parts and renders them separately. Every part has its own near and far values
and the distance between them is short enough to avoid the precision problem.

How to do it...
Carry out the following steps in order to complete the recipe:

1. Include necessary headers:
#include <osg/Texture2D>
#include <osg/ShapeDrawable>
#include <osg/Geode>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgGA/TrackballManipulator>
#include <osgViewer/Viewer>

2. The earth and sun radius, as well as the astronomical unit (AU) are real data and
should be set as constant ones. The distance between the earth and the sun is
approximately 1 AU.
const double radius_earth = 6378.137;
const double radius_sun = 695990.0;
const double AU = 149697900.0;

Manipulating the View

130

3. The createScene() function will create the huge scene which contains a sun and
an earth. Compared to our previous scene such as Cessna or a cow, this time it is
really a vast expanse.
osg::Node* createScene()
{
 ...
}

4. Create the earth node and apply a texture to make it more realistic:
osg::ref_ptr<osg::ShapeDrawable> earth_sphere = new
 osg::ShapeDrawable;
earth_sphere->setShape(new osg::Sphere(osg::Vec3(),
 radius_earth));

osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
texture->setImage(
 osgDB::readImageFile("Images/land_shallow_topo_2048.jpg"));

osg::ref_ptr<osg::Geode> earth_node = new osg::Geode;
earth_node->addDrawable(earth_sphere.get());
earth_node->getOrCreateStateSet()

 ->setTextureAttributeAndModes(0, texture.get());

5. Create the sun sphere and set its color and radius. We will use a transformation node
to move it far from the earth's position, that is, the point of origin:
osg::ref_ptr<osg::ShapeDrawable> sun_sphere = new
osg::ShapeDrawable;
sun_sphere->setShape(new osg::Sphere(osg::Vec3(), radius_sun));
sun_sphere->setColor(osg::Vec4(1.0f, 0.0f, 0.0f, 1.0f));

osg::ref_ptr<osg::Geode> sun_geode = new osg::Geode;
sun_geode->addDrawable(sun_sphere.get());

osg::ref_ptr<osg::MatrixTransform> sun_node =
 new osg::MatrixTransform;
sun_node->setMatrix(osg::Matrix::translate(0.0, AU, 0.0));
sun_node->addChild(sun_geode.get());

Chapter 4

131

6. Now, create the scene graph:
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(earth_node.get());
root->addChild(sun_node.get());
return root.release();

7. In the main entry, first we have to set the depth partition ranges: the near,
middle, and far planes along the Z axis in eye coordinates. Note that there is an
additional middle plane compared to the traditional OpenGL near/far mechanism,
which divides the whole space into two parts:
osg::ArgumentParser arguments(&argc,argv);

double zNear = 1.0, zMid = 1e4, zFar = 2e8;
arguments.read("--depth-partition", zNear, zMid, zFar);

8. The near/middle/far values are set to the osgViewer::DepthPartitionSettin
gs object:
osg::ref_ptr<osgViewer::DepthPartitionSettings> dps =
 new osgViewer::DepthPartitionSettings;
// Use fixed numbers as the partition values.
dps->_mode = osgViewer::DepthPartitionSettings::FIXED_RANGE;
dps->_zNear = zNear;
dps->_zMid = zMid;
dps->_zFar = zFar;

9. Apply the depth partition settings to the viewer. We have to preset a home
position of the camera manipulator here, which helps us look at the earth at the
beginning; otherwise, we will have to look for it in the wide universe ourselves:
osgViewer::Viewer viewer;
viewer.getCamera()->setClearColor(osg::Vec4(0.0f, 0.0f, 0.0f,
 1.0f));
viewer.setSceneData(createScene());
viewer.setUpDepthPartition(dps.get());
viewer.setCameraManipulator(new osgGA::TrackballManipulator);
viewer.getCameraManipulator()->setHomePosition(
 osg::Vec3d(0.0,-12.5*radius_earth,0.0), osg::Vec3d(),
 osg::Vec3d(0.0,0.0,1.0));
return viewer.run();

Manipulating the View

130

10. You will see the earth in front of you. If you rotate the camera slightly, you can see the
sun which is only a small red point, as shown in the following screenshot. Everything
looks normal here:

11. Now remove the line calling viewer.setUpDepthPartition() method and return
the recipe. What you have found this time? The earth seems to have been eaten by
someone! If you zoom in the view, you will surprisingly find the earth has disappeared.
What just happened when we stopped using the depth partition functionality?

Chapter 4

131

How it works...
OSG enables automatic near/far planes computation by default. The basic idea is: calculate
the Z value of each scene object in eye coordinate frame, and thus get the maximum Z value,
which can be approximately treated as the farthest depth value. After that, multiply the far
plane value with a very small ratio (must be less than 1.0) and get the near plane value:

zNear = zFar * nearFarRatio

And then apply the results to the camera's projection matrix.

The process can't be flipped, that is, it is difficult to get the minimum Z value first, because
there are always objects with negative Z values (behind or parallel with the viewer), and we
can hardly decide the real near plane due to these confusing values.

Now we can explain why the earth disappeared when disabling use of the
setUpDepthPartition() method. As the far plane is too far away from the viewer, the
calculated near plane is too far and the resultant frustum doesn't contain the earth node.

There is more than one solution for this. Besides the depth partition (which will render the
scene for multiple times and may, therefore, lose efficiency), we could also provide an even
smaller ratio to get a smaller near value. This is done by calling the setNearFarRatio()
method:

camera->setNearFarRatio(0.0001);

By default, the near/far ratio is 0.0005. Be careful of the precision of your depth buffer when
you alter it because OpenGL depth buffer always handles 16-bit or 24-bit float values.

There's more...
You may read more about the depth buffer problem, or Z buffer problem at:

http://www.sjbaker.org/steve/omniv/love_your_z_buffer.html.

Implementing the radar map
Traditional radar uses electromagnetic pulses to detect the positions and motions of an
object. It maps the electromagnetic parameters onto a two-dimensional plane to form a
radar map, which indicates all vehicles and aircrafts appearing in a certain place.

In this recipe, we will simulate a very simple radar map by mapping all static and animated
models in the main scene onto an HUD camera, and use colored marks to label them.

Manipulating the View

130

How to do it...
Carry out the following steps in order to complete this recipe:

1. Include necessary headers.
#include <osg/Material>
#include <osg/ShapeDrawable>
#include <osg/Camera>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. We will define two mask constants and a macro providing random numbers for
later use.
const unsigned int MAIN_CAMERA_MASK = 0x1;
const unsigned int RADAR_CAMERA_MASK = 0x2;
#define RAND(min, max) ((min) + (float)rand()/(RAND_MAX+1) *
((max)-(min)))

3. First we can have a function for creating all kinds of scene objects. To make them
visible in both the main view and the radar map, we have to do something special
besides reading the model file with osgDB::readNodeFile() method.
osg::Node* createObject(const std::string& filename, const
osg::Vec4& color)
{
 ...
}

4. In the function, read the model from file and set up a node mask indicating it to be
rendered in the main camera.
float size = 5.0f;
osg::ref_ptr<osg::Node> model_node =
 osgDB::readNodeFile(filename);
if (model_node.valid()) model_node->setNodeMask(

 MAIN_CAMERA_MASK);

5. Create a marker to replace the model itself in the radar map.
osg::ref_ptr<osg::ShapeDrawable> mark_shape =
 new osg::ShapeDrawable;
mark_shape->setShape(new osg::Box(osg::Vec3(), size));

osg::ref_ptr<osg::Geode> mark_node = new osg::Geode;
mark_node->addDrawable(mark_shape.get());
mark_node->setNodeMask(RADAR_CAMERA_MASK);

Chapter 4

131

6. Now add both the model and its marker to a group node and return it as a complete
scene object. Apply a material here to paint the object in a specified color:
osg::ref_ptr<osg::Group> obj_node = new osg::Group;
obj_node->addChild(model_node.get());
obj_node->addChild(mark_node.get());

osg::ref_ptr<osg::Material> material = new osg::Material;
material->setColorMode(osg::Material::AMBIENT);
material->setAmbient(osg::Material::FRONT_AND_BACK,
 osg::Vec4(0.8f, 0.8f, 0.8f, 1.0f));
material->setDiffuse(osg::Material::FRONT_AND_BACK,
 color*0.8f);
material->setSpecular(osg::Material::FRONT_AND_BACK, color);
material->setShininess(osg::Material::FRONT_AND_BACK, 1.0f);
obj_node->getOrCreateStateSet()->setAttributeAndModes(
 material.get(),
 osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE);
return obj_node.release();

7. The createStaticNode() function is convenient for creating objects at a
fixed position:
osg::MatrixTransform* createStaticNode(const osg::Vec3&
 center, osg::Node* child)
{
 osg::ref_ptr<osg::MatrixTransform> trans_node = new
 osg::MatrixTransform;
 trans_node->setMatrix(osg::Matrix::translate(center));
 trans_node->addChild(child);
 return trans_node.release();
}

8. The createAnimateNode() is easy-to-use for creating objects moving on a
specified path:
osg::MatrixTransform* createAnimateNode(const osg::Vec3&
 center, float radius, float time, osg::Node* child)
{
 osg::ref_ptr<osg::MatrixTransform> anim_node = new
 osg::MatrixTransform;
 anim_node->addUpdateCallback(
 osgCookBook::createAnimationPathCallback(radius, time));
 anim_node->addChild(child);

 osg::ref_ptr<osg::MatrixTransform> trans_node = new
 osg::MatrixTransform;

Manipulating the View

130

 trans_node->setMatrix(osg::Matrix::translate(center));
 trans_node->addChild(anim_node.get());
 return trans_node.release();
}

9. In the main entry, we will first load and create some composite objects, each
including the origin model and a marker box:
osg::Node* obj1 = createObject("dumptruck.osg",
 osg::Vec4(1.0f, 0.2f, 0.2f, 1.0f));
osg::Node* obj2 = createObject("dumptruck.osg.0,0,180.rot",
 osg::Vec4(0.2f, 0.2f, 1.0f, 1.0f));
osg::Node* air_obj2 = createObject("cessna.osg.0,0,90.rot",

 osg::Vec4(0.2f, 0.2f, 1.0f, 1.0f));

10. Now we randomly place some static and animating objects with the XY range from
[-100, -100] to [100, 100]. This can be treated as the region shown in the radar map:
osg::ref_ptr<osg::Group> scene = new osg::Group;
for (unsigned int i=0; i<10; ++i)
{
 osg::Vec3 center1(RAND(-100, 100), RAND(-100, 100), 0.0f);
 scene->addChild(createStaticNode(center1, obj1));

 osg::Vec3 center2(RAND(-100, 100), RAND(-100, 100), 0.0f);
 scene->addChild(createStaticNode(center2, obj2));
}
for (unsigned int i=0; i<5; ++i)
{
 osg::Vec3 center(RAND(-50, 50), RAND(-50, 50),
 RAND(10, 100));
 scene->addChild(createAnimateNode(center, RAND(10.0, 50.0),
 5.0f, air_obj2));
}

11. Create an HUD camera for representing the radar map screen:
osg::ref_ptr<osg::Camera> radar = new osg::Camera;
radar->setClearColor(osg::Vec4(0.0f, 0.2f, 0.0f, 1.0f));
radar->setRenderOrder(osg::Camera::POST_RENDER);
radar->setAllowEventFocus(false);
radar->setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT
);
radar->setReferenceFrame(osg::Transform::ABSOLUTE_RF);
radar->setViewport(0.0, 0.0, 200.0, 200.0);

Chapter 4

131

12. Set up the view matrix, projection matrix, and culling mask of the HUD camera.
The mask set here is the same as the one we set for the marker node (so the AND
operation between them will result in true). That means only markers can be seen
in the radar camera. The view and projection matrices here are used to describe the
view direction and range of the radar map:
radar->setViewMatrix(osg::Matrixd::lookAt(osg::Vec3(0.0f,
 0.0f, 120.0f), osg::Vec3(), osg::Y_AXIS));
radar->setProjectionMatrix(osg::Matrixd::ortho2D(-120.0,
 120.0, -120.0, 120.0));
radar->setCullMask(RADAR_CAMERA_MASK);
radar->addChild(scene.get());

13. Add the radar and the main scene to the root node. To note, scene is already added
as the child of the radar camera, so it will be always traversed twice after being
added as root's child here:
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(radar.get());
root->addChild(scene.get());

14. The MAIN_CAMERA_MASK constant set to the main camera makes it only render
model nodes created before. The lighting mode set here improves the light
computation on model surfaces in this recipe.
osgViewer::Viewer viewer;
viewer.getCamera()->setCullMask(MAIN_CAMERA_MASK);
viewer.setSceneData(root.get());
viewer.setLightingMode(osg::View::SKY_LIGHT);
return viewer.run();

15. Start the program and you will see a number of trucks and Cessnas in the main view,
and only markers in the radar map view, as shown in the following screenshot. That is
exactly what we want at the beginning:

Manipulating the View

130

How it works...
The cull mask indicates that some types of nodes can be rendered in the camera (the
AND operation between node mask and cull mask results in a non-zero value), and some
types can't (the AND operation results in zero). It will be checked before other scene culling
operations such as view-frustum culling and small feature culling.

There are two extra methods called setCullMaskLeft() and setCullMaskRight()
besides the setCullMask() method. They are mainly used for the stereo-displaying
situations, and can determine what kinds of nodes will be shown in the left eye, and
what to show in the right eye.

The setLightingMode() method controls the global lighting mechanism in OSG. By
default the enumeration value is HEADLIGHT, which means the light is positioned near the
eye and shines along the line of sight. You may change it to NO_LIGHT (no global light) or
SKY_LIGHT (the light is fixed at a position in the world) if required. You may also use the
setLight() method of the viewer to specify a user light object for global illumination.

Showing the top, front, and side views of a
model

Open one of your favorite 3D scene editors, such as 3DS Max, Maya, Blender 3D, and
so on. Most of them should default to four views: the top view, side view, front view, and a
fourth perspective view. You may change the first three to display the scene from the top,
left, right, front, back, or bottom side, which brings great convenience for editors to watch
and alter 3D models.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Include necessary headers:
#include <osg/Camera>
#include <osgDB/ReadFile>
#include <osgGA/TrackballManipulator>
#include <osgViewer/CompositeViewer>

2. The create2DView() function will be used for creating top, left, and side views of
the scene. Set up the view to look at a specific direction but keep it focused on the
scene node, and also configure the perspective projection matrix according to the
window size:
osgViewer::View* create2DView(int x, int y, int width, int
 height, const osg::Vec3& lookDir, const osg::Vec3& up,

Chapter 4

131

 osg::GraphicsContext* gc, osg::Node* scene)
{
 osg::ref_ptr<osgViewer::View> view = new osgViewer::View;
 view->getCamera()->setGraphicsContext(gc);
 view->getCamera()->setViewport(x, y, width, height);
 view->setSceneData(scene);

 osg::Vec3 center = scene->getBound().center();
 double radius = scene->getBound().radius();
 view->getCamera()->setViewMatrixAsLookAt(center -
 lookDir*(radius*3.0), center, up);
 view->getCamera()->setProjectionMatrixAsPerspective(
 30.0f, static_cast<double>(width)/static_cast<double>
 (height), 1.0f, 10000.0f);
 return view.release();
}

3. In the main entry, we will always read a renderable scene first. This time,
it is a Cessna:
osg::ArgumentParser arguments(&argc, argv);

osg::ref_ptr<osg::Node> scene = osgDB::readNodeFiles
 (arguments);
if (!scene) scene = osgDB::readNodeFile("cessna.osg");

4. Read the screen size and create a new graphics context according to its traits.
The same work is done in the first example of this chapter, so you should already
be familiar with this process.
unsigned int width = 800, height = 600;
osg::GraphicsContext::WindowingSystemInterface* wsi =
 osg::GraphicsContext::getWindowingSystemInterface();
if (wsi) wsi->getScreenResolution(
 osg::GraphicsContext::ScreenIdentifier(0), width, height);

osg::ref_ptr<osg::GraphicsContext::Traits> traits = new
 osg::GraphicsContext::Traits;
traits->x = 0;
traits->y = 0;
traits->width = width;
traits->height = height;
traits->windowDecoration = false;
traits->doubleBuffer = true;
traits->sharedContext = 0;

Manipulating the View

130

osg::ref_ptr<osg::GraphicsContext> gc =
 osg::GraphicsContext::createGraphicsContext(traits.get());
if (!gc || !scene) return 1;

5. Now, we are going to make the four views share the same graphics context, that is,
the same window. Three of them are 2D views (top, left, and front), and they are
placed at different X and Y coordinates displaying the same scene:
int w_2 = width/2, h_2 = height/2;
osg::ref_ptr<osgViewer::View> top = create2DView(
 0, h_2, w_2, h_2,-osg::Z_AXIS, osg::Y_AXIS, gc.get(), scene.
get());
osg::ref_ptr<osgViewer::View> front = create2DView(
 w_2, h_2, w_2, h_2, osg::Y_AXIS, osg::Z_AXIS, gc.get(), scene.
get());
osg::ref_ptr<osgViewer::View> left = create2DView(
 0, 0, w_2, h_2, osg::X_AXIS, osg::Z_AXIS, gc.get(), scene.
get());

6. The main view does not use fixed view matrix, but applies a default manipulator for
users to navigate the camera freely:
osg::ref_ptr<osgViewer::View> mainView = new osgViewer::View;
mainView->getCamera()->setGraphicsContext(gc.get());
mainView->getCamera()->setViewport(w_2, 0, w_2, h_2);
mainView->setSceneData(scene.get());
mainView->setCameraManipulator(new osgGA::TrackballManipulator);

7. Add the four views to the composite viewer:
osgViewer::CompositeViewer viewer;
viewer.addView(top.get());
viewer.addView(front.get());
viewer.addView(left.get());
viewer.addView(mainView.get());

8. Start the simulation. Here, we don't use the viewer.run() method but instead
write a simple loop that calls the frame() method all the time. That's because the
run() method will automatically apply a trackball manipulator to every view unless it
already has a valid one. As we don't want the 2D views to be controlled improperly by
manipulators, we have to avoid using the run() method in this case:
while (!viewer.done())
{
 viewer.frame();
}
return 0;

Chapter 4

131

9. Ok, now we will have a four-view interface a little similar to some of the famous 3D
software. The main view can still be rotated and scaled by dragging the mouse, but
the 2D ones are fixed and can't be moved, which is certainly inconvenient. In the next
recipe, we will continue to work on this issue.

How it works...
In the create2DView() function, we need the lookDir and up vectors to define the view
matrix, and the gc variable to specify the graphics context attached with the camera.

We may encounter a bifurcation while creating 2D views, that is, there are two ways to set up
the projection matrix: to use the perspective projection or the orthographic one. In order to
represent a true 2D view of the world, the orthographic projection is preferred. However, in
this and the next recipe, we will use perspective projection matrices to make user interactions
easier. It's up to you to change the code listed here and make it work as you wish.

There's more...
Now, it's time for us to summarize the relationships of views, cameras, and graphics contexts.

An OSG scene viewer can have only one view (osgViewer::Viewer) or multiple views
(osgViewer::CompositeViewer). Every view has its own scene graph, camera
manipulator, and event handlers. A view can have one main camera, which is controlled by
the manipulator, and some slave cameras with customized offsets to the main one (see the
second recipe in this chapter). Cameras can also be added as a normal node into the scene
graph (see the fourth recipe). It will multiply or reset current view and projection matrices, and
use current context or choose a different one to render the sub-graph.

Manipulating the View

130

The camera must be attached with a graphics context to create and enable the OpenGL
rendering window. If different screen numbers are specified while creating the contexts,
we may even enable the cameras to work in a multi-monitor environment (see the first
recipe). Multiple cameras can share one graphics context and use setViewport()
and setRenderOrder() to set the rendering range and orders.

Thus, to design an application with multiple windows and multiple scenes, we can either make
use of the composite viewer or add more cameras in a single viewer framework. The former
provides event handlers and manipulators for each view to update user data. But the latter
could also implement the similar work with node callbacks. At last, it's up to you to choose a
view/camera framework to create multi-windows applications.

Manipulating the top, front, and side views
Let us continue work on the last recipe. This time we are going to handle some interactive
events on the 2D views. In order to achieve this, we can just add an event handler to each
view and customize the behaviors while the user drags the mouse in the viewport. Code
segments that are completely unchanged will not be listed here again.

How to do it...
Carry out the following steps in order to complete this recipe:

1. The most important addition to the previous recipe is the AuxiliaryViewUpdater
class. It allows users to pan the 2D view with the left button, and zoom in/out
with the right button. The _distance variable defines the zoom factor.
The _offsetX and _offsetY indicate the offset while panning. And _lastDragX
and _lastDragY are used for recording the mouse coordinates only during the
mouse dragging action (otherwise they are set to -1).
class AuxiliaryViewUpdater : public osgGA::GUIEventHandler
{
 public:
 AuxiliaryViewUpdater()
 : _distance(-1.0), _offsetX(0.0f), _offsetY(0.0f),
 _lastDragX(-1.0f), _lastDragY(-1.0f)
 {}

 virtual bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa);

protected:
 double _distance;
 float _offsetX, _offsetY;
 float _lastDragX, _lastDragY;
};

Chapter 4

131

2. In the handle() method, we will obtain the view object and decide operations
according to the event type:
osgViewer::View* view = static_cast<osgViewer::View*>(&aa);
if (view)
{
 switch (ea.getEventType())
 {
 ...
 }
}
return false;

3. In the mouse dragging event, we change the panning offset or the zoom distance by
computing the delta values of current and last mouse positions. And, in the mouse
pushing event, we will reset the dragging values for next time use:
case osgGA::GUIEventAdapter::PUSH:
 _lastDragX = -1.0f;
 _lastDragY = -1.0f;
 break;
case osgGA::GUIEventAdapter::DRAG:
 if (_lastDragX>0.0f && _lastDragY>0.0f)
 {
 if (ea.getButtonMask()==osgGA::GUIEventAdapter::LEFT_MOUSE_
BUTTON)
 {
 _offsetX += ea.getX() - _lastDragX;
 _offsetY += ea.getY() - _lastDragY;
 }
 else if (ea.getButtonMask()==
 osgGA::GUIEventAdapter::RIGHT_MOUSE_BUTTON)
 {
 float dy = ea.getY() - _lastDragY;
 _distance *= 1.0 + dy / ea.getWindowHeight();
 if (_distance<1.0) _distance = 1.0;
 }
 }
 _lastDragX = ea.getX();
 _lastDragY = ea.getY();
 break;

Manipulating the View

130

4. In the frame event, which is executed in every frame, we will apply the member
variables to the view camera. The algorithm will be explained in the next section
of the recipe.
case osgGA::GUIEventAdapter::FRAME:
 if (view->getCamera())
 {
 osg::Vec3d eye, center, up;
 view->getCamera()->getViewMatrixAsLookAt(eye, center,
 up);

 osg::Vec3d lookDir = center - eye; lookDir.normalize();
 osg::Vec3d side = lookDir ^ up; side.normalize();

 const osg::BoundingSphere& bs = view->getSceneData()->
 getBound();
 if (_distance<0.0) _distance = bs.radius() * 3.0;
 center = bs.center();

 center -= (side * _offsetX + up * _offsetY) * 0.1;
 view->getCamera()->setViewMatrixAsLookAt(center-
 lookDir*_distance, center, up);
 }
 break;

5. The create2DView() function does not have to be changed compared to the last
example. Just leave it as it was earlier.

6. The only change in the main function is to allocate and add the new
AuxiliaryViewUpdater class to each 2D view. This must be done
before the simulation loop begins:
top->addEventHandler(new AuxiliaryViewUpdater);
front->addEventHandler(new AuxiliaryViewUpdater);
left->addEventHandler(new AuxiliaryViewUpdater);

7. Now, try to drag in the 2D views with your left or right mouse button and see
what happens, as shown in the following screenshot. It is now possible to adjust
and observe the scene in all-around views, as if you are working with other 3D
software like Autodesk 3DS Max and Maya.

Chapter 4

131

How it works...
The computation of new view matrix in the AuxiliaryViewUpdater class is not hard to
realize. First, we get a current look at the parameters with the getViewMatrixAsLookAt()
method. Then we can easily obtain the look direction vector (center - eye) and the
side vector (cross product of the look direction and up vector). The latter is actually the X axis
in the eye coordinates, and the up vector is the Y axis.

Panning the scene in a 2D view means to change the X and Y values of the scene in the
viewer's eye. Thus we can just use _offsetX and _offsetY to change the view point along
the lookDir and up directions, and use _distance to control the distance between the eye
and the view center. That's what we have done in the handle() method's implementation.

Following a moving model
It is common in games and simulation programs that you are orbiting around a moving
vehicle, and keep focus on the vehicle's center or a specific point. The view center may not
move away from the tracking point, no matter the vehicle is animating or not. Except that, the
rotation and scale operations are available. This results in the viewer's camera following the
vehicle and even working in a first person's perspective.

Manipulating the View

130

How to do it...
Carry out the following steps in order to complete this recipe:

1. Include necessary headers:
#include <osg/Camera>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgGA/OrbitManipulator>
#include <osgViewer/Viewer>

2. In this recipe, we implement a node following functionality, that is, the
FollowUpdater class, which is derived from the osgGA::GUIEventHandler.
It requires the target node pointer to be passed in the constructor:
class FollowUpdater : public osgGA::GUIEventHandler
{
public:
 FollowUpdater(osg::Node* node) : _target(node) {}

 virtual bool handle(const osgGA::GUIEventAdapter& ea,
osgGA::GUIActionAdapter& aa);

 osg::Matrix computeTargetToWorldMatrix(osg::Node* node)
const;

protected:
 osg::observer_ptr<osg::Node> _target;
};

3. In the handle() function, when encountering the FRAME event, which is called in
every frame, we will try to retrieve the osgGA::OrbitManipulator object, (which
is the super class of the default trackball manipulator) and place its center at the
central point of the target node in world coordinates.
osgViewer::View* view = static_cast<osgViewer::View*>(&aa);
if (!view || !_target ||
 ea.getEventType()!=osgGA::GUIEventAdapter::FRAME) return false;

osgGA::OrbitManipulator* orbit =
 dynamic_cast<osgGA::OrbitManipulator*>(view->
 getCameraManipulator());
if (orbit)
{
 osg::Matrix matrix = computeTargetToWorldMatrix(
 _target.get());

Chapter 4

131

 osg::Vec3d targetCenter = _target->getBound().center() *
 matrix;
 orbit->setCenter(targetCenter);
}
return false;

4. You should already get to be familiar with the method of computing local to world
matrix in computeTargetToWorldMatrix(), which was introduced in Chapter 2,
Designing the Scene Graph.

 osg::Matrix computeTargetToWorldMatrix(osg::Node* node) const
{
 osg::Matrix l2w;
 if (node && node->getNumParents()>0)
 {
 osg::Group* parent = node->getParent(0);
 l2w = osg::computeLocalToWorld(parent->
 getParentalNodePaths()[0]);
 }
return l2w;
}

5. In the main entry, we load a moving Cessna and a terrain to form the scene. The
Cessna, which is cycling in the sky and worth following, will be specified as the
target node of the following updater class:
osg::Node* model =
 osgDB::readNodeFile("cessna.osg.0,0,90.rot");
if (!model) return 1;

osg::ref_ptr<osg::MatrixTransform> trans = new
 osg::MatrixTransform;
trans->addUpdateCallback(osgCookBook::createAnimationPathCallback
(100.0f, 20.0));
trans->addChild(model);

osg::ref_ptr<osg::MatrixTransform> terrain = new
 osg::MatrixTransform;
terrain->addChild(osgDB::readNodeFile("lz.osg"));
terrain->setMatrix(osg::Matrix::translate(0.0f, 0.0f,-200.0f));

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(trans.get());
root->addChild(terrain.get());

Manipulating the View

130

6. Add the FollowUpdater instance to the viewer and start the simulation:
osgViewer::Viewer viewer;
viewer.addEventHandler(new FollowUpdater(model));
viewer.setSceneData(root.get());
return viewer.run();

7. Now, you will find that the main camera is always focusing on the target Cessna
model, no matter where it is and what the orientation is. You can still rotate around
the model with the left mouse button, and zoom in/out with the mouse wheel or right
button. However, the middle button, which can pan the camera by default, doesn't
work anymore, which means the Cessna model will always be rendered at the center
of the screen. This is a so called node follower in this recipe:

How it works...
Here, we use the event handler to get the node's world center and set up the main camera.
Certainly it can be replaced by node callbacks. Applying a node callback to the trackee and
pass the main camera object as a parameter of the callback, so that we can implement
the same functionality in the same way. Another solution is to use the camera manipulator,
which is a more preferred option if you need mouse and keyboard interactions with the main
camera. We will introduce it in the next recipe soon.

Chapter 4

131

Using manipulators to follow models
Does OSG already provide us some functionality that implements the node tracking features?
The answer is affirmative. The osgGA::NodeTrackerManipulator class enables us to
follow a static or moving node, which will be demonstrated in this recipe. OSG also provides
the osgGA::FirstPersonManipulator class for walking, driving, and flight manipulations.
You may explore them yourself after reading this chapter.

How to do it...
Let us start.

1. Include necessary headers.
#include <osg/Camera>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgGA/KeySwitchMatrixManipulator>
#include <osgGA/TrackballManipulator>
#include <osgGA/NodeTrackerManipulator>
#include <osgViewer/Viewer>

2. Load the animating Cessna and the sample terrain. This is exactly the same as the
previous example:
osg::Node* model =
 osgDB::readNodeFile("cessna.osg.0,0,90.rot");
if (!model) return 1;

osg::ref_ptr<osg::MatrixTransform> trans = new
 osg::MatrixTransform;
trans->addUpdateCallback(
 osgCookBook::createAnimationPathCallback(100.0f, 20.0));
trans->addChild(model);

osg::ref_ptr<osg::MatrixTransform> terrain = new
 osg::MatrixTransform;
terrain->addChild(osgDB::readNodeFile("lz.osg"));
terrain->setMatrix(osg::Matrix::translate(0.0f, 0.0f,-200.0f)
);

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(trans.get());
root->addChild(terrain.get());

Manipulating the View

130

3. Create the node tracker manipulator and set the Cessna as the target. The home
position is set here to make sure that the camera is initially not too far from the
cessna node:
osg::ref_ptr<osgGA::NodeTrackerManipulator> nodeTracker = new
 osgGA::NodeTrackerManipulator;
nodeTracker->setHomePosition(osg::Vec3(0, -10.0, 0),
 osg::Vec3(), osg::Z_AXIS);
nodeTracker->setTrackerMode(osgGA::NodeTrackerManipulator::NODE_
CENTER_AND_ROTATION);
nodeTracker->setRotationMode(
 osgGA::NodeTrackerManipulator::TRACKBALL);
nodeTracker->setTrackNode(model);

4. We also create a switcher manipulator to switch between the classic trackball
manipulator and the tracker. The first parameter of the addMatrixManipulator()
method indicates the key, which can be pressed to change to corresponding
sub-manipulator:
osg::ref_ptr<osgGA::KeySwitchMatrixManipulator> keySwitch = new
 osgGA::KeySwitchMatrixManipulator;
keySwitch->addMatrixManipulator('1', "Trackball", new
 osgGA::TrackballManipulator);
keySwitch->addMatrixManipulator('2', "NodeTracker",

 nodeTracker.get());

5. It's enough to start the viewer now:
osgViewer::Viewer viewer;
viewer.setCameraManipulator(keySwitch.get());
viewer.setSceneData(root.get());
return viewer.run();

6. You may view the scene normally first, and press the number 2 key to change to
node tracking mode. It fixes the camera just behind the moving Cessna and prevents
you from panning the camera. Press 1 to change back to trackball mode at any time
you like.

Chapter 4

131

How it works...
OSG has a complete camera manipulator interface, which is defined as the
osgGA::CameraManipulator abstract class. It can only work on the main camera of a
view and it will alter the view matrix for every frame to implement camera animations and
navigations by mouse and keyboard. As we are going to adjust the main camera to track the
moving node, the manipulator class will be a good choice. And we can change the tracking
target and parameters on the fly by storing and obtaining the manipulator pointer.

You will find it easier to use the in-built node tracker manipulator to follow the nodes here.
You can also use the setHomePosition() method for the manipulator to have a suitable
start position. However, if you need a picture-in-picture effect or want to track the node in an
auxiliary camera, callbacks should be more suitable because they can provide more flexible
and less methods to override.

In fact, camera manipulators are also derived from the osgGA::GUIEventHandler class.
However, they are treated separately from common event handlers, and do have extra
interface for scene navigation purposes.

There's more...
In order to help you create your own manipulators in the future, we are going to introduce
more about camera manipulators, as well as provide a simple manipulator example later
in the chapter.

Manipulating the View

130

Designing a 2D camera manipulator
In the last few recipes, we have introduced how to control the main camera with event
handlers and preset camera manipulators. The manipulator defines an interface, as well
as some default functionalities, to control the main cameras of OSG views in response to
user events.

The osgGA::CameraManipulator class is an abstract base class for all
manipulators. Its subclasses include osgGA::TrackballManipulator,
osgGA::NodeTrackerManipulator, osgGA::KeySwitchMatrixManipulator,
and so on. In this recipe, it is time for us to create a manipulator of our own. In order to
make things easier, we will aim at designing a two-dimension manipulator, which can only
view, pan, and scale (but not rotate) the scene as if it is projected onto the XOY plane.

How to do it...
Let us start.

1. Include necessary headers.
#include <osgDB/ReadFile>
#include <osgGA/KeySwitchMatrixManipulator>
#include <osgGA/TrackballManipulator>
#include <osgViewer/Viewer>

2. The osgGA::StandardManipulator class is a good start for designing our own
manipulators. It handles user events like mouse clicking and key pressing, and sends
the event content to different virtual methods according to the event type. There are
also virtual methods to be called during the traversal for delivering data. Therefore,
the most important work for creating a new manipulator is to derive this class and
override the necessary methods.
class TwoDimManipulator : public osgGA::StandardManipulator
{
public:
 TwoDimManipulator() : _distance(1.0) {}

 virtual osg::Matrixd getMatrix() const;
 virtual osg::Matrixd getInverseMatrix() const;
 virtual void setByMatrix(const osg::Matrixd& matrix);
 virtual void setByInverseMatrix(const osg::Matrixd& matrix);

 // Leave empty as we don't need these here. They are used by
other functions and classes to set up the manipulator directly.
 virtual void setTransformation(const osg::Vec3d&, const
osg::Quat&) {}

Chapter 4

131

 virtual void setTransformation(const osg::Vec3d&, const
osg::Vec3d&, const osg::Vec3d&) {}
 virtual void getTransformation(osg::Vec3d&, osg::Quat&)
const {}
 virtual void getTransformation(osg::Vec3d&, osg::Vec3d&,
osg::Vec3d&) const {}

 virtual void home(double);
 virtual void home(const osgGA::GUIEventAdapter& ea,
osgGA::GUIActionAdapter& us);

protected:
 virtual ~TwoDimManipulator() {}

 virtual bool performMovementLeftMouseButton(
 const double eventTimeDelta, const double dx, const double
dy);
 virtual bool performMovementRightMouseButton(
 const double eventTimeDelta, const double dx, const double
dy);

 osg::Vec3 _center;
 double _distance;
};

3. The getMatrix() method means to get the current position and the attitude matrix
of this manipulator. The getInverseMatrix() method should get the matrix of
the camera manipulator and inverse it. The inverted matrix is typically treated as
the view matrix of the camera. These two methods are the most important when
implementing a user manipulator, as they are the only interfaces for the system to
retrieve and apply the view matrix. We will explain their implementations later in the
How it works... section.
osg::Matrixd TwoDimManipulator::getMatrix() const
{
 osg::Matrixd matrix;
 matrix.makeTranslate(0.0f, 0.0f, _distance);
 matrix.postMultTranslate(_center);
 return matrix;
}

osg::Matrixd TwoDimManipulator::getInverseMatrix() const
{
 osg::Matrixd matrix;
 matrix.makeTranslate(0.0f, 0.0f,-_distance);
 matrix.preMultTranslate(-_center);
 return matrix;
}

Manipulating the View

130

4. The setByMatrix() and setByInverseMatrix() methods can be
called from user-level code to set up the position matrix of the manipulator,
or set with the inverse matrix (view matrix). The osgGA::KeySwitchMatri
xManipulator object also makes use of them when switching between two
manipulators. In our implementations, the _node variable, which is a member of
osgGA::StandardManipulator instance, is used to compute distance from our
eyes to the view center. It is set internally to point to the scene graph root.
void TwoDimManipulator::setByMatrix(const osg::Matrixd& matrix)
{
 setByInverseMatrix(osg::Matrixd::inverse(matrix));
}

void TwoDimManipulator::setByInverseMatrix(const osg::Matrixd&
matrix)
{
 osg::Vec3d eye, center, up;
 matrix.getLookAt(eye, center, up);

 _center = center; _center.z() = 0.0f;
 if (_node.valid())
 _distance = abs((_node->getBound().center() - eye).z());
 else
 _distance = abs((eye - center).length());
}

5. The home() method and its overloaded version is used to move the camera to its
default position (home position). In most cases, the home position is computed
automatically with all the scene objects in the view frustum and Z axis upwards. If you
need to change the behavior, use the setHomePosition() method to specify its
default eye, center, and up vectors for your convenience. However, in this recipe, the
default home position is in fact ignored, because we directly compute suitable values
in the home() method by ourselves.
void TwoDimManipulator::home(double)
{
 if (_node.valid())
 {
 _center = _node->getBound().center();
 _center.z() = 0.0f;
 _distance = 2.5 * _node->getBound().radius();
 }
 else
 {
 _center.set(osg::Vec3());
 _distance = 1.0;

Chapter 4

131

 }
}

void TwoDimManipulator::home(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& us)
{ home(ea.getTime()); }

6. The performMovementLeftMouseButton() method will be invoked when the
user is dragging the mouse with left button down. Pan the camera at this time!
bool TwoDimManipulator::performMovementLeftMouseButton(
 const double eventTimeDelta, const double dx, const double
 dy)
{
 _center.x() -= 100.0f * dx;
 _center.y() -= 100.0f * dy;
 return false;
}

7. The performMovementRightMouseButton() method will be invoked when the
user is dragging with right button down. Perform zoom in/out actions now!
bool TwoDimManipulator::performMovementRightMouseButton(
 const double eventTimeDelta, const double dx, const double
 dy)
{
 _distance *= (1.0 + dy);
 if (_distance<1.0) _distance = 1.0;
 return false;
}

8. In the main entry, we will read a sample terrain for testing the new 2D manipulator.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(osgDB::readNodeFile("lz.osg"));

9. Use key switch manipulator to switch between the default trackball manipulator and
our work. Here, we also set a home position for the trackball manipulator to start at a
good place.
osg::ref_ptr<osgGA::KeySwitchMatrixManipulator> keySwitch = new
 osgGA::KeySwitchMatrixManipulator;
keySwitch->addMatrixManipulator('1', "Trackball", new
 osgGA::TrackballManipulator);
keySwitch->addMatrixManipulator('2', "TwoDim", new
 TwoDimManipulator);

const osg::BoundingSphere& bs = root->getBound();
keySwitch->setHomePosition(bs.center()+osg::Vec3(0.0f, 0.0f,
 bs.radius()), bs.center(), osg::Y_AXIS);

Manipulating the View

130

10. Finally, start the viewer.
osgViewer::Viewer viewer;
viewer.setCameraManipulator(keySwitch.get());
viewer.setSceneData(root.get());
return viewer.run();

11. When the application starts, you will find the camera stays on the top of the terrain.
Press 2 to change to our customized manipulator, and drag the mouse with left or
right button down to browse the scene in 2D mode. Press 1 at any time to switch
back to trackball mode.

How it works...
As we already know, OpenGL defines the eye position at the origin with the view direction
along the negative Z axis by default. So if we want to emulate a 2D camera controller, we can
simply move the position of the eye but keep the view direction unchanged. That is what we
see in the getMatrix() method— the _center variable decides the X and Y coordinates
of the eye, and _distance decides the Z value (using two variables makes it a little easier to
handle changes in the setByMatrix() method).

Manipulating the view with joysticks
In the last example of this chapter, we would like to add joystick support to the previous 2D
manipulator, which means to use joysticks to pan and scale the scene in view. OSG doesn't
provide native joystick functionalities so it is time to reply on some external libraries. This
time we will choose the famous DirectInput library that belongs to DirectX 8 and higher
versions. With some modifications to the last example's code, we can quickly add supports
of DirectInput devices and make use of them in camera manipulators, callbacks, and
event handlers.

Chapter 4

131

Note that this recipe can only work under
Windows systems.

A picture of the joystick used here is shown in the following screenshot:

Getting ready
If you don't have the DirectX SDK installed, find and download it from the Microsoft website:

http://msdn.microsoft.com/en-us/directx/

After that, configure CMake to find the library file dinput8.lib and headers for adding
DirectInput support.

FIND_PATH(DIRECTINPUT_INCLUDE_DIR dinput.h)
FIND_LIBRARY(DIRECTINPUT_LIBRARY dinput7.lib dinput8.lib)
FIND_LIBRARY(DIRECTINPUT_GUID_LIBRARY dxguid.lib)

SET(EXTERNAL_INCLUDE_DIR "${DIRECTINPUT_INCLUDE_DIR}")
TARGET_LINK_LIBRARIES(${EXAMPLE_NAME}
 ${DIRECTINPUT_LIBRARY}
 ${DIRECTINPUT_GUID_LIBRARY}
)

How to do it...
1. We need some more headers and definitions before the TwoDimManipulator

class declaration.
#define DIRECTINPUT_VERSION 0x0800
#include <windows.h>
#include <dinput.h>
#include <osgViewer/api/Win32/GraphicsWindowWin32>

Manipulating the View

130

2. Add two new virtual methods in the class.
class TwoDimManipulator : public osgGA::StandardManipulator
{
public:
 ...
 virtual void init(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& us);
 virtual bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& us);
 ...
};

3. Use global variables to save DirectInput device and joystick objects.
LPDIRECTINPUT8 g_inputDevice;
LPDIRECTINPUTDEVICE8 g_joystick;

4. The EnumJoysticksCallback() method will look for all usable joysticks and
record the first valid one.
static BOOL CALLBACK EnumJoysticksCallback(const
 DIDEVICEINSTANCE* didInstance, VOID*)
{
 HRESULT hr;
 if (g_inputDevice)
 {
 hr = g_inputDevice->CreateDevice(didInstance->
 guidInstance, &g_joystick, NULL);
 }
 if (FAILED(hr)) return DIENUM_CONTINUE;
 return DIENUM_STOP;
}

5. In the TwoDimManipulator constructor, we will create a new input device and try to
load an existing joystick object.
TwoDimManipulator::TwoDimManipulator()
: _distance(1.0)
{
 HRESULT hr = DirectInput8Create(GetModuleHandle(NULL),
 DIRECTINPUT_VERSION, IID_IDirectInput8,
 (VOID**)&g_inputDevice, NULL);
 if (FAILED(hr) || !g_inputDevice) return;

 hr = g_inputDevice->EnumDevices(DI8DEVCLASS_GAMECTRL,
 EnumJoysticksCallback, NULL, DIEDFL_ATTACHEDONLY);
}

Chapter 4

131

6. In the destructor, we release the joystick and device objects.
TwoDimManipulator::~TwoDimManipulator()
{
 if (g_joystick)
 {
 g_joystick->Unacquire();
 g_joystick->Release();
 }
 if (g_inputDevice) g_inputDevice->Release();
}

7. The init() method is called when the manipulator is initialized at the first
frame. This is the right place to bind the joystick to OSG window handle and
set up necessary attributes.
void TwoDimManipulator::init(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& us)
{
 const osgViewer::GraphicsWindowWin32* gw =
 dynamic_cast<const osgViewer::GraphicsWindowWin32*>(
 ea.getGraphicsContext());
 if (gw && g_joystick)
 {
 DIDATAFORMAT format = c_dfDIJoystick2;
 g_joystick->SetDataFormat(&format);
 g_joystick->SetCooperativeLevel(gw->getHWND(),
 DISCL_EXCLUSIVE|DISCL_FOREGROUND);
 g_joystick->Acquire();
 }
}

8. The handle() method has the same meaning as the one in the
osgGA::GUIEventHandler class. Here we will try to acquire joystick
states for every frame, and parse and perform actions according to the
selected joystick directions and buttons.

Note that OSG has performMovementLeftMouseButton()
and performMovementRightMouseButton() methods for
performing mouse movements, which can be called here directly
to perform joystick events.

bool TwoDimManipulator::handle(const osgGA::GUIEventAdapter&
 ea, osgGA::GUIActionAdapter& us)
{

Manipulating the View

130

 if (g_joystick &&
 ea.getEventType()==osgGA::GUIEventAdapter::FRAME)
 {
 HRESULT hr = g_joystick->Poll();
 if (FAILED(hr)) g_joystick->Acquire();

 DIJOYSTATE2 state;
 hr = g_joystick->GetDeviceState(sizeof(DIJOYSTATE2),
 &state);
 if (FAILED(hr)) return false;
 ... // Please find details in the source code
 }
 return false;
}

9. The main entry has no changes. Now rebuild and run the example. Change to the
2D manipulator. You may press button 1 of the joystick and simultaneously press the
direction buttons to move the camera. You may also press button 2 and the directions
to zoom in/out. Be careful that different joystick devices may not have exactly the
same key code, so you may have to configure your own joystick buttons according
to the actual situation.

How it works...
OSG by default uses platform-specific Windows APIs to handle user interactions, including
mouse and keyboard events. For example, under Windows, OSG will internally create a
message queue, convert messages into OSG events, and send them to the event handler.
The converted events are so called osgGA::GUIEventAdapter objects. This works in
many situations but does not support some advanced functionalities such as joystick and
force feedback. The message mechanism may not work properly when users press multiple
keys. DirectInput in contrast returns each key and button's state and lets the developers
decide what to do at that time. It also provides complete functions for handling joysticks and
gamepads. That is exactly why this recipe makes sense here, and it may also help in your
future applications.

There's more...
DirectInput is a great dependency for applications and games requiring joystick support.
However, it works only under Windows and your program will thus be platform-specific. Try
looking for some other input libraries if you need to port to other platforms. Object Oriented
Input System (OIS) may be a good choice. You may download the library source code at:

http://sourceforge.net/projects/wgois/

http://sourceforge.net/projects/wgois/
http://sourceforge.net/projects/wgois/

5
Animating Everything

In this chapter, we will cover:

 f Opening and closing doors

 f Playing a movie in the 3D world

 f Designing scrolling text

 f Implementing morph geometry

 f Fading in and out

 f Animating a flight on fire

 f Dynamically lighting within shaders

 f Creating a simple Galaxian game

 f Building a skeleton system

 f Skinning a customized mesh

 f Letting the physics engine be

Introduction
Computer animation means to generate moving images and render them on the screen one
after another. The animated images make the viewers think that they are seeing smoothly
moving objects. There must be at least 12 frames drawn per second to trick the human
brain. And over 60 frames per second will create a perfect animating process.

Animating Everything

172

Typical animation types in OSG include path animation (changing position, rotation, and
scale factor of an object), texture animation (dynamically updating textures), morph
animation (blending shapes and making changes per vertex), state animation (changing
rendering states), particle animation, and skeletal animation (representing characters).
The osgAnimation library provides a complete framework for handling different kinds of
animations. And the osgParticle library makes use of another flexible framework to design
and render particles. We will introduce both in different recipes. You may read the book
"OpenSceneGraph 3.0: Beginner's Guide", Rui Wang and Xuelei Qian, Packt Publishing, for
more information.

In this chapter, we will also integrate a famous physics engine into our OSG applications to
improve the program's performance and support real-physics features of rigid bodies. And for
game developers and lovers, we provide another simple but complete example that imitates
the classic Galaxian.

Opening and closing doors
Opening and closing doors is a very common action in both daily life and computer games.
You click with your mouse and slide the door open, and then you may meet either a girl or a
monster behind it. Doors and entrances are also important in some spatial index algorithms
such as the PVS (potentially visible set, refer to http://en.wikipedia.org/wiki/
Potentially_visible_set). But in this recipe, we will only discuss how to animate the
door object by applying actions to it.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/ShapeDrawable>
#include <osg/MatrixTransform>
#include <osgAnimation/BasicAnimationManager>
#include <osgAnimation/UpdateMatrixTransform>
#include <osgAnimation/StackedRotateAxisElement>
#include <osgViewer/Viewer>
#include <algorithm>

2. Create the wall geometry which clamps the door:
osg::Node* createWall()
{
 osg::ref_ptr<osg::ShapeDrawable> wallLeft =
 new osg::ShapeDrawable(new osg::Box(osg::Vec3(-5.5f,
 0.0f, 0.0f), 10.0f, 0.3f, 10.0f));

http://en.wikipedia.org/wiki/Potentially_visible_set
http://en.wikipedia.org/wiki/Potentially_visible_set

Chapter 5

173

 osg::ref_ptr<osg::ShapeDrawable> wallRight =
 new osg::ShapeDrawable(new osg::Box(osg::Vec3(10.5f,
 0.0f, 0.0f), 10.0f, 0.3f, 10.0f));
 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(wallLeft.get());
 geode->addDrawable(wallRight.get());
 return geode.release();
}

3. Create the door geometry with a slightly different color:
osg::MatrixTransform* createDoor()
{
 osg::ref_ptr<osg::ShapeDrawable> doorShape =
 new osg::ShapeDrawable(new osg::Box(osg::Vec3(2.5f,
 0.0f, 0.0f), 6.0f, 0.2f, 10.0f));
 doorShape->setColor(osg::Vec4(1.0f, 1.0f, 0.8f, 1.0f));

 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(doorShape.get());

 osg::ref_ptr<osg::MatrixTransform> trans =
 new osg::MatrixTransform;
 trans->addChild(geode.get());
 return trans.release();
}

4. The next function will compute the door opening or closing animation according to the
closed parameter:
void generateDoorKeyframes(osgAnimation::FloatLinearChannel*
 ch, bool closed)
{
 osgAnimation::FloatKeyframeContainer* kfs =
 ch->getOrCreateSampler()->getOrCreateKeyframeContainer();
 kfs->clear();
 if (closed)
 {
 kfs->push_back(osgAnimation::FloatKeyframe(0.0, 0.0f));
 kfs->push_back(osgAnimation::FloatKeyframe(1.0, osg::PI_2));
 }
 else
 {
 kfs->push_back(osgAnimation::FloatKeyframe(0.0, osg::PI_2));
 kfs->push_back(osgAnimation::FloatKeyframe(1.0, 0.0f));
 }
}

Animating Everything

174

5. The OpenDoorHandler class receives user-click actions and checks if there is an
intersection between the mouse coordinates and the door geometry. If so, it will
generate opening/closing door animations and fill them into the keyframe container.
class OpenDoorHandler : public osgCookBook::PickHandler
{
public:
 OpenDoorHandler() : _closed(true) {}

 virtual void doUserOperations(
 osgUtil::LineSegmentIntersector::Intersection& result)
 {
 osg::NodePath::iterator itr = std::find(
 result.nodePath.begin(), result.nodePath.end(),
 _door.get());
 if (itr!=result.nodePath.end())
 {
 if (_manager->isPlaying(_animation.get()))
 return;

 osgAnimation::FloatLinearChannel* ch =
 dynamic_cast<osgAnimation::FloatLinearChannel*>(
 _animation->getChannels().front().get());
 if (ch)
 {
 generateDoorKeyframes(ch, _closed);
 _closed = !_closed;
 }
 _manager->playAnimation(_animation.get());
 }
 }

 osg::observer_ptr<osgAnimation::BasicAnimationManager>
 _manager;
 osg::observer_ptr<osgAnimation::Animation> _animation;
 osg::observer_ptr<osg::MatrixTransform> _door;
 bool _closed;
};

6. In the main entry, we will create an animation channel which handles the pivoting
animation along one axis. Each of its keyframes requires only one value that
indicates the rotation in radians. The door animation will not be repeated.
osg::ref_ptr<osgAnimation::FloatLinearChannel> ch =
 new osgAnimation::FloatLinearChannel;
ch->setName("euler");

Chapter 5

175

ch->setTargetName("DoorAnimCallback");
generateDoorKeyframes(ch.get(), true);

osg::ref_ptr<osgAnimation::Animation> animation =
 new osgAnimation::Animation;
animation->setPlayMode(osgAnimation::Animation::ONCE);
animation->addChannel(ch.get());

7. We have to also add an updater to the door node to make it recognize the animation
channel we set just now. It has the same name as the channel's target name, and
has a stacked rotating parameter which records the pivot axis and the initial value.
osg::ref_ptr<osgAnimation::UpdateMatrixTransform> updater =
 new osgAnimation::UpdateMatrixTransform(
 "DoorAnimCallback");
updater->getStackedTransforms().push_back(
 new osgAnimation::StackedRotateAxisElement(
 "euler", osg::Z_AXIS, 0.0));

8. Add the animation to the manager.
osg::ref_ptr<osgAnimation::BasicAnimationManager> manager =
 new osgAnimation::BasicAnimationManager;
manager->registerAnimation(animation.get());

9. Create the scene graph with the updater and the manager set as node callbacks.
osg::MatrixTransform* animDoor = createDoor();
animDoor->setUpdateCallback(updater.get());

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(createWall());
root->addChild(animDoor);
root->setUpdateCallback(manager.get());

10. Configure the handler and start the viewer.
osg::ref_ptr<OpenDoorHandler> handler = new OpenDoorHandler;
handler->_manager = manager.get();
handler->_animation = animation.get();
handler->_door = animDoor;

osgViewer::Viewer viewer;
viewer.addEventHandler(handler.get());
viewer.setSceneData(root.get());
return viewer.run();

Animating Everything

176

11. Press Ctrl and click on the door with your mouse. Do you seen it opening smoothly?
Now press Ctrl and click on it again to execute the closing animation. Reopen and
reclose it more times if you wish.

How it works...
There are several important roles for an animation system to operate properly. The manager
callback (osgAnimation::BasicAnimationManager and others) manages animation
data including different types of channels and keyframes, it must be set to the root node to
handle animations on all child nodes. The updaters (osgAnimation::UpdateMatrixTra
nsform and others) must be set as callbacks of animating nodes. It can be connected with
one or more channels that set it as the animation target. And its stacked elements, which
represent different animating key types, must be matched to channels with the same name
to read and use associated keyframes.

Compared with other 3D modelling and animating software like Autodesk 3dsmax, OSG's
channels can be treated as tracks with keyframe data and interpolators, and stacked
elements are in fact key filters which define animatable key types (position, rotation, and so
on). In this example, we only construct one 'euler' channel which is associated with the
updater 'DoorAnimCallback'. The stacked element 'euler' is pushed into the updater
to enable rotation along one Euler axis.

There's more...
osgAnimation presently supports five types of stacked elements, all of which are
transformable elements. Material and morph updaters (the latter will be introduced in the
fourth recipe of this chapter) don't need stacked elements at present. The stacked elements
and their associatable channel types are listed in the following table:

Chapter 5

177

Stacked element Channel type Key type
StackedMatrixElement MatrixLinearChannel osg::Matrix

StackedQuaternionElement QuatSphericalLinearChannel osg::Quat

StackedRotateAxisElement FloatLinearChannel float (along
specific axis)

StackedScaleElement Vec3LinearChannel osg::Vec3

StackedTranslateElement Vec3LinearChannel osg::Vec3

Playing a movie in the 3D world
Have you ever dreamed of watching a movie in the 3D environment? We may consider
creating a virtual cinema and put the movie on a big quad, a hemisphere, or some other
irregular screens. The movie picture will be treated as the texture and mapped to the
geometry mesh. OSG helps us handle the animating of the texture in an effective mode,
that is, the osg::ImageStream class.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/ImageStream>
#include <osg/Geometry>
#include <osg/Geode>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. We provide two ways to show animated images here: one is to read an image
sequence from the disk, another is to load frames from the webcam. The
osgdb_ffmpeg plugin will do the low-level work for us here. But we have to
first ensure that the webcam is the first reachable video-input device under
Windows/Linux in this recipe.
osg::ArgumentParser arguments(&argc, argv);

osg::ref_ptr<osg::Image> image;
if (arguments.argc()>1)
 image = osgDB::readImageFile(arguments[1]);
else
{
 #ifdef WIN32

Animating Everything

178

 image = osgDB::readImageFile("0.ffmpeg",
 new osgDB::Options("format=vfwcap frame_rate=25"));
 #else
 image = osgDB::readImageFile("/dev/video0.ffmpeg");
 #endif
}

3. Try to convert the loaded image to the image stream and start to play it. If we don't
pass a movie filename (for example, AVI and MPG) as the argument, or if the webcam
can't be initialized, we will get a NULL pointer here and all the following code may fail
due to the same reason.
osg::ImageStream* imageStream =
 dynamic_cast<osg::ImageStream*>(image.get());
if (imageStream) imageStream->play();

4. Add the image to a 2D texture and apply it as the attribute of a simple quad with
texture coordinates.
osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
texture->setImage(image.get());

osg::ref_ptr<osg::Drawable> quad =
 osg::createTexturedQuadGeometry(
osg::Vec3(), osg::Vec3(1.0f, 0.0f, 0.0f), osg::Vec3(
 0.0f, 0.0f, 1.0f));
quad->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, texture.get());

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(quad.get());
Start the viewer.
osgViewer::Viewer viewer;
viewer.setSceneData(geode.get());
return viewer.run();

5. If you have already configured the webcam and didn't pass a filename instead, you
may see your own figure in the 3D world (as shown in the following screenshot, it is
just my room from a low-resolution webcam). It is an exciting functionality if you are
developing a virtual chat room, or you want to do some image-recognition work and
reflect the result in the 3D scene. Augmented Reality (AR) is also an interesting
topic here with the movie texture implementation in this recipe as a foundation.
Look for some extra materials by yourselves as these are already out of the scope
of this book.

Chapter 5

179

How it works...
OSG uses the FFmpeg library (http://ffmpeg.org/) and related OSG plugin to decode
and play different kinds of media files. As FFmpeg can hardly be built with Visual Studio
under Windows, you may first obtain the SDK packages at http://ffmpeg.zeranoe.com/
builds/.

And then reset related CMake options to ensure that OSG plugin can be generated.

As FFmpeg supports webcam video under Windows and Linux, we may easily make use
of these features by force opening the device through the osgdb_ffmpeg plugin. The
pseudo-loader mechanism adds a .ffmpeg postfix to the real device name (for example,
0 under Windows or /dev/video0 under Linux) so that it will be automatically transferred
to the plugin with the same name.

There's more...
There are some other plugins for reading movie files as textures; each requiring extra
dependencies and CMake options before they can be compiled:

 f osgdb_directshow: Read DirectShow support formats. Requires DirectShow in
DirectX SDK (http://msdn.microsoft.com/en-us/directx) as dependence.

 f osgdb_gif: Read static and dynamic GIF pictures. Requires GifLib
(http://sourceforge.net/projects/giflib/) as dependence.

http://ffmpeg.org/
http://ffmpeg.zeranoe.com/builds/
http://msdn.microsoft.com/en-us/directx
http://sourceforge.net/projects/giflib/
http://sourceforge.net/projects/giflib/

Animating Everything

180

 f osgdb_quicktime: Read Apple Quicktime support formats. Requires QuickTime
SDK (http://developer.apple.com/quicktime/) as dependence.

 f osgdb_QTKit: Read Apple QuickTime Kit support formats. Requires QTKit
framework (http://developer.apple.com/quicktime/) as dependence.
Only works under Mac OS X.

You may also have a look at the osgART library, which provides a series of APIs for
implementing AR functionalities in OSG. It uses its own way to render dynamic images
from the webcam devices.

Designing scrolling text
Scrolling text is a classic functionality in many cases. For instance, HTML use the <marquee>
tag to display texts sliding in and out on the web page, either from left to right or from right
to left. They can be used for the purpose of UI design or emphasizing the importance of the
contents. In this recipe, we will design simple one line scrolling texts which continuously move
on the screen and change its content dynamically.

How to do it...
Let us start.

1. Include necessary headers and define the macro for generating random numbers:
#include <osgAnimation/EaseMotion>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
#include <sstream>
#include <iomanip>
#define RAND(min, max) ((min) + (float)rand()/(RAND_MAX+1) *
 ((max)-(min)))

2. The ScrollTextCallback class will be set to the drawable to change its behaviors
during the update traversal. It computes the Y position of a one-line text randomly,
and then starts to move it along the X direction. When it reaches the right end of the
screen, the callback will compute a new Y position and will restart from the left-hand
side again.
class ScrollTextCallback : public osg::Drawable::UpdateCallback
{
public:
 ScrollTextCallback()
 {
 _motion = new osgAnimation::LinearMotion;
 computeNewPosition();

http://developer.apple.com/quicktime/
http://developer.apple.com/quicktime/
http://developer.apple.com/quicktime/
http://developer.apple.com/quicktime/

Chapter 5

181

 }

 virtual void update(osg::NodeVisitor* nv, osg::Drawable*
 drawable);

 void computeNewPosition()
 {
 _motion->reset();
 _currentPos.y() = RAND(50.0, 500.0);
 }

protected:
 osg::ref_ptr<osgAnimation::LinearMotion> _motion;
 osg::Vec3 _currentPos;
};

3. In the operator() method, we process the text-moving animation using an
osgAnimation::LinearMotion object, which returns the result of a linear
interpolation. The actual X and Y values are also put into a string in every frame
for dynamically changing the text content.
osgText::Text* text = static_cast<osgText::Text*>(drawable);
if (!text) return;

_motion->update(0.002);
float value = _motion->getValue();
if (value>=1.0f) computeNewPosition();
else _currentPos.x() = value * 800.0f;

std::stringstream ss; ss << std::setprecision(3);
ss << "XPos: " << std::setw(5) << std::setfill(' ')
 << _currentPos.x() << ";
YPos: " << std::setw(5) << std::setfill(' ')
 << _currentPos.y();
text->setPosition(_currentPos);
text->setText(ss.str());

4. In the main entry, we simply use the convenient functions to create a text, add the
update callback to it, and use an HUD camera to display it.
osgText::Text* text = osgCookBook::createText(
 osg::Vec3(), "", 20.0f);
text->addUpdateCallback(new ScrollTextCallback);

osg::ref_ptr<osg::Geode> textGeode = new osg::Geode;
textGeode->addDrawable(text);

Animating Everything

182

osg::ref_ptr<osg::Camera> hudCamera =
 osgCookBook::createHUDCamera(0, 800, 0, 600);
hudCamera->addChild(textGeode.get());

5. Start the viewer now.
osgViewer::Viewer viewer;
viewer.setSceneData(hudCamera.get());
return viewer.run();

6. You will see the text is sliding from left to right, with the content varying all
the time. You can easily modify this example to use it in your own applications
and screensavers.

How it works...
Here we introduced the osgAnimation::LinearMotion class, which belongs to
the EaseMotion header. Easing means a change in speed. And in the osgAnimation
implementation, ease motion means transition between the moving and stopping states. The
velocity of a moving object must change when it is going to stop somewhere, and vice versa.
Easing actually decides the acceleration values when velocity is changing.

An object starts and speeds up, this is called an 'in' motion. It slows down and finally stops,
this is an 'out' motion. If we combine them with a half-and-half ratio, this is so called 'in-out'
motion. Thus, an 'in-out-cubic' motion means a cubic equation will be used while computing
the velocity values at the beginning and end parts of a motion curve.

Linear motion is special because it doesn't have velocity changes during the entire movement.
The object will start and stop suddenly without any easing. For a scrolling text, which will only
stop at the screen's right edge and start immediately at another edge, linear motion will be
the most appropriate one to use.

Chapter 5

183

There's more...
OSG provides the following types of ease motions besides linear motion, each with 'in', 'out',
and 'in-out' forms: QuadMotion (quadratic equation), CubicMotion (cubic equation),
QuartMotion (quartic equation), BounceMotion, ElasticMotion, SineMotion
(sinusoidal equation), BackMotion, CircMotion (circular equation), and ExpoMotion
(exponential equation).

For example, an 'in' type CubicMotion class is written as
osgAnimation::InCubicMotion. You may call update() method with a time parameter
(between 0 and 1) to update and get the result back with the getValue() method (also
limited in [0, 1]).

Ease motion classes can be used separately for various purposes.

There is a good website explaining the concepts and implementations of different ease
motions. You can read it for more details:

http://www.robertpenner.com/easing

Implementing morph geometry
Morphing is a special effect used in image processing and 3D animations. It always morphs
the source image or model into another through a seamless transition. Modern morphing
techniques require some advanced algorithms and operations and can work in very complex
cases. But OSG provides a lightweight solution named osgAnimation::MorphGeometry,
which can also produce fantastic results in real-time environments.

Although it is great to implement something like face morphing which is already possible in
OSG now, we have to simplify the situation here by creating a really easy geometry and change
it to another easy one. The emoticon (facial expressions represented by letters) may be simple
and interesting enough for demonstration this time.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Point>
#include <osg/Geometry>
#include <osg/Geode>
#include <osgAnimation/MorphGeometry>
#include <osgAnimation/BasicAnimationManager>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

http://www.robertpenner.com/easing

Animating Everything

184

2. The createEmoticonGeometry() function here will create an emoticon with two
points representing the eyes, and another 13 points representing the mouth. We will
pass a function address as the function argument, in which the mouth shape will be
described and pushed into the vertex array.
typedef void (*VertexFunc)(osg::Vec3Array*);
osg::Geometry* createEmoticonGeometry(VertexFunc func)
{
 osg::ref_ptr<osg::Vec3Array> vertices =
 new osg::Vec3Array(15);
 (*vertices)[0] = osg::Vec3(-0.5f, 0.0f, 1.0f);
 (*vertices)[1] = osg::Vec3(0.5f, 0.0f, 1.0f);
 (*func)(vertices.get());

 osg::ref_ptr<osg::Vec3Array> normals =
 new osg::Vec3Array(15);
 for (unsigned int i=0; i<15; ++i)
 (*normals)[i] = osg::Vec3(0.0f, -1.0f, 0.0f);

 osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;
 geom->setVertexArray(vertices.get());
 geom->setNormalArray(normals.get());
 geom->setNormalBinding(osg::Geometry::BIND_PER_VERTEX);
 geom->addPrimitiveSet(new osg::DrawArrays(
 GL_POINTS, 0, 2));
 geom->addPrimitiveSet(new osg::DrawArrays(
 GL_LINE_STRIP, 2, 13));
 return geom.release();
}

3. The emoticonSource() function creates a normal mouth which is only a straight
line (:|). It means that the person is annoyed.
void emoticonSource(osg::Vec3Array* va)
{
 for (int i=0; i<13; ++i)
 (*va)[i+2] = osg::Vec3((float)(i-6)*0.15f, 0.0f, 0.0f);
}

4. The emoticonTarget() function will create a curved mouth instead. It actually
looks like the famous emoticon (:)), that is, joking or with joy.
void emoticonTarget(osg::Vec3Array* va)
{
 float angleStep = osg::PI / 12.0f;
 for (int i=0; i<13; ++i)
 {

Chapter 5

185

 float angle = osg::PI - angleStep * (float)i;
 (*va)[i+2] = osg::Vec3(0.9f*cosf(angle), 0.0f,
 -0.2f*sinf(angle));
 }
}

5. The morph keyframes will indicate the next target geometry's index, which will be
changed into from the source geometry (at index 0).
void createMorphKeyframes(osgAnimation::FloatLinearChannel*
 ch)
{
 osgAnimation::FloatKeyframeContainer* kfs =
 ch->getOrCreateSampler()->getOrCreateKeyframeContainer();
 kfs->push_back(osgAnimation::FloatKeyframe(0.0, 0.0));
 kfs->push_back(osgAnimation::FloatKeyframe(2.0, 1.0));
}

6. In the main entry, create the channel and animate the object for morphing.
The channel must have a valid name for indicating the starting position of
the morphing targets.
osg::ref_ptr<osgAnimation::FloatLinearChannel> channel =
 new osgAnimation::FloatLinearChannel;
channel->setName("0");
channel->setTargetName("MorphCallback");
createMorphKeyframes(channel.get());

osg::ref_ptr<osgAnimation::Animation> animation =
 new osgAnimation::Animation;
animation->setPlayMode(osgAnimation::Animation::PPONG);
animation->addChannel(channel.get());

7. Add the animation to the manager.
osg::ref_ptr<osgAnimation::BasicAnimationManager> manager =
 new osgAnimation::BasicAnimationManager;
manager->registerAnimation(animation.get());
manager->playAnimation(animation.get());

8. Create the morph geometry by duplicating the source emoticon (you may also
create a new one, but you have to then add all vertices and primitives on your
own), and add the target emoticon to the morph geometry for use. The morph
geometry must be added to an osg::Geode node then. And we have to also add an
osgAnimation::UpdateMorph object as the update callback for connecting the
morph with the channel we set just now.
osg::ref_ptr<osgAnimation::MorphGeometry> morph =
 new osgAnimation::MorphGeometry(

Animating Everything

186

 *createEmoticonGeometry(emoticonSource));
morph->addMorphTarget(createEmoticonGeometry(emoticonTarget));

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(morph.get());
geode->addUpdateCallback(
 new osgAnimation::UpdateMorph("MorphCallback"));
geode->getOrCreateStateSet()->setAttributeAndModes(
 new osg::Point(20.0f));

9. Add the node to the scene graph and start the viewer.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(geode.get());
root->setUpdateCallback(manager.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

10. You will find that the emoticon is changing from normal state to a smiling form, and
then changing back. It is really rough, but still provides some of the basic conditions
of implementing morph animations in OSG: the source and target must be both
osg::Geometry objects, and must have the same number of vertices so that
the morphing operation can be performed smoothly all the time.

Chapter 5

187

How it works...
The basic concept of morphing is to construct a source geometry and one or more target
geometries. And change the original one into target ones with different weight settings.
It requires an osgAnimation::MorphGeometry object which includes the source and
target geometries, and an updater (osgAnimation::UpdateMorph) for connecting with
the animation channel. The channel's name must be the same as the index of certain target
geometry to make sure they are linked together.

There's more...
The example osganimationmorph is another good example for demonstrating the morphing
animation. It loads two pre-created models with the same number of vertices and generates
a transition from one to the other. You may find the implementation in the examples folder of
the source code.

Fading in and out
In this recipe, we will try to implement a practical functionality. When a model is far away from
the viewer, it will gradually be transparentized and finally disappear (fade out); and when the
viewer moves towards the model and is near enough, the model will appear again. The fade
in and out effects can be done by adding a material state to the model surface, or applying a
texture with an alpha channel. We will choose the former as shown in the code segments.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/BlendFunc>
#include <osg/Material>
#include <osg/Node>
#include <osgAnimation/EaseMotion>
#include <osgDB/ReadFile>
#include <osgUtil/CullVisitor>
#include <osgViewer/Viewer>

Animating Everything

188

2. The fade in/out effects will be done in the node callback. It requires an
osg::Material object which is also set to the node itself. The alpha
component of the diffuse color will be changing during the traversal in
every frame, so that the opacity of the node will vary as a result.
class FadeInOutCallback : public osg::NodeCallback
{
public:
 FadeInOutCallback(osg::Material* mat)
 : _material(mat), _lastDistance(-1.0f), _fadingState(0)
 {
 _motion = new osgAnimation::InOutCubicMotion;
 }

 virtual void operator()(osg::Node* node, osg::NodeVisitor*
 nv);

protected:
 osg::ref_ptr<osgAnimation::InOutCubicMotion> _motion;
 osg::observer_ptr<osg::Material> _material;
 float _lastDistance;
 int _fadingState;
};

3. In the operator() method, which is the actual implementation of the callback,
we have two jobs to do: one is to change the diffuse color if the fading animation is
running (_fadingState is non-zero). A cubic motion object will be used to compute
a suitable alpha value (between 0.0 and 1.0, increasing or decreasing) here.
if (_fadingState!=0)
{
 _motion->update(0.05);
 float value = _motion->getValue();
 float alpha = (_fadingState>0 ? value : 1.0f - value);
 _material->setDiffuse(osg::Material::FRONT_AND_BACK,
 osg::Vec4(1.0f, 1.0f, 1.0f, alpha));

 if (value>=1.0f) _fadingState = 0;
 traverse(node, nv); return;
}

Chapter 5

189

4. Another thing we have to check is the distance between the viewer's eye and the
node's center. If there is no fade-in/out animation running currently, the check
will be processed by calling the getDistanceFromEyePoint() method of
osgUtil::CullVisitor class. Then we will decide if there should be a new
fading-in or fading-out effect.
osgUtil::CullVisitor* cv = static_cast<osgUtil::CullVisitor*
 >(nv);
if (cv)
{
 float distance = cv->getDistanceFromEyePoint(
 node->getBound().center(), true);
 if (_lastDistance>0.0f)
 {
 if (_lastDistance>200.0f && distance<=200.0f)
 {
 _fadingState = 1; _motion->reset();
 }
 else if (_lastDistance<200.0f && distance>=200.0f)
 {
 _fadingState =-1; _motion->reset();
 }
 }
 _lastDistance = distance;
}
traverse(node, nv);

5. In the main entry, we load the model and apply a new material object to it. Don't
forget to enable blending and transparent sorting on this node.
osg::Node* loadedModel = osgDB::readNodeFile("cessna.osg");
if (!loadedModel) return 1;

osg::ref_ptr<osg::Material> material = new osg::Material;
material->setAmbient(osg::Material::FRONT_AND_BACK,
 osg::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
material->setDiffuse(osg::Material::FRONT_AND_BACK,
 osg::Vec4(1.0f, 1.0f, 1.0f, 1.0f));
loadedModel->getOrCreateStateSet()->setAttributeAndModes(
 material.get(), osg::StateAttribute::ON|osg::StateAttribute::OVE
RRIDE);
loadedModel->getOrCreateStateSet()->setAttributeAndModes(
 new osg::BlendFunc);
loadedModel->getOrCreateStateSet()->setRenderingHint(
 osg::StateSet::TRANSPARENT_BIN);

Animating Everything

190

6. Add the FadeInOutCallback as a cull callback which will be executed while culling
scene objects.
loadedModel->addCullCallback(
 new FadeInOutCallback(material.get()));

7. Add the node to the scene graph and start the viewer.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(loadedModel);

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

8. You can find the node rendered normally at first. Zoom out by pressing and dragging
the right mouse button, and the Cessna will lighten and disappear. Zoom in and then
you can see it coming out again. This provides a smooth effect when we go near
and far from a model, without any bad pop-in effects such as the model suddenly
presenting itself to the end users.

How it works...
The FadeInOutCallback class in this recipe uses a fixed value as a threshold. And start
the fading-in or fading-out animation while the real distance from eye-to-model center
comes across the threshold. It must be used as a cull callback because only the cull visitor
(osgUtil::CullVisitor) can obtain model and view matrices and, thus, compute the
position of the model in eye coordinates. You may rewrite this recipe and create a customized
node type for such situations. The compass example in Chapter 2 will be a good reference.

Maybe you have also noticed that the Cessna model is not in good shape while being
transparentized (but it requires very good eyesight here). That is because we can't perfectly sort
the polygons in the Cessna model for alpha blending. If we can split these polygons up on the fly,
sort, and redraw the Cessna in geometry level, the Cessna can be rendered well, but it will cause
efficiency losses. And it is hard to design a perfect algorithm too. A possible solution for modern
graphic cards is depth peeling. We will discuss that in the last chapter of this book.

Animating a flight on fire
OSG provides a complex particle framework, which can design the behaviour of each particle
object from its birth to its death. The creation of new particles is realized by emitters, and
all post-creation effects will be implemented by programs and its child operators. The basic
attributes of each particle will be stored in a template that is managed by the particle system.
A system is actually a drawable, and is often updated by a global updater node.

Chapter 5

191

OSG supports multiple particle systems so we can have more than one emitter, program, and
particle system. In this example, we will create a fire and a smoke particle system to simulate
a Cessna model on fire.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Point>
#include <osg/PointSprite>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgParticle/ModularEmitter>
#include <osgParticle/ParticleSystemUpdater>
#include <osgViewer/Viewer>

2. First we use the createFireParticles() function to create a fire particle system,
including the particle template settings and the emitter which handles the number,
initial positions, and velocities of new-born particles.
osgParticle::ParticleSystem* createFireParticles(
 osg::Group* parent)
{
 ...
}

3. In the function, allocate the particle system and set up a suitable particle color and a
smoke-like texture to simulate the tongue of flame.
osg::ref_ptr<osgParticle::ParticleSystem> ps =
 new osgParticle::ParticleSystem;
ps->getDefaultParticleTemplate().setLifeTime(1.5f);
ps->getDefaultParticleTemplate().setShape(
 osgParticle::Particle::QUAD);
ps->getDefaultParticleTemplate().setSizeRange(
 osgParticle::rangef(3.0f, 1.5f));
ps->getDefaultParticleTemplate().setAlphaRange(
 osgParticle::rangef(1.0f, 0.0f));
ps->getDefaultParticleTemplate().setColorRange(
 osgParticle::rangev4(osg::Vec4(1.0f,1.0f,0.5f,1.0f),
 osg::Vec4(1.0f,0.5f,0.0f,1.0f)));
ps->setDefaultAttributes("Images/smoke.rgb", true, false);

Animating Everything

192

4. Generate a random number of particles (between 30 and 50) in every frame. And set
up the shooting direction range and initial speed.
osg::ref_ptr<osgParticle::RandomRateCounter> rrc =
 new osgParticle::RandomRateCounter;
rrc->setRateRange(30, 50);

osg::ref_ptr<osgParticle::RadialShooter> shooter =
 new osgParticle::RadialShooter;
shooter->setThetaRange(-osg::PI_4, osg::PI_4);
shooter->setPhiRange(-osg::PI_4, osg::PI_4);
shooter->setInitialSpeedRange(5.0f, 7.5f);

5. Set the counter and shooter to the emitter and add it to a parent node to ensure the
emitter is part of the scene graph.
osg::ref_ptr<osgParticle::ModularEmitter> emitter =
 new osgParticle::ModularEmitter;
emitter->setParticleSystem(ps.get());
emitter->setCounter(rrc.get());
emitter->setShooter(shooter.get());
parent->addChild(emitter.get());
return ps.get();

6. The creation of a smoke-particle system is very similar to the last function, except
for some changes in particle attributes and emitter values. The smoke particle is
usually darker, bigger, and moving faster than the flame, so some related attributes
will be altered. Please refer to the source code package of this book for details of
the implementation.
osgParticle::ParticleSystem* createSmokeParticles(
 osg::Group* parent)
{
 ...
}

7. In the main entry, we will create a transformation node which will be
transformed to one of the wings of the Cessna model. Both emitters will be
added to the transformation node to make sure all the particles are emitted
under the specified local coordinates.
osg::ref_ptr<osg::MatrixTransform> parent =
 new osg::MatrixTransform;
parent->setMatrix(osg::Matrix::rotate(
 -osg::PI_2, osg::X_AXIS) * osg::Matrix::translate(
 8.0f,-10.0f,-3.0f));

osgParticle::ParticleSystem* fire = createFireParticles(

Chapter 5

193

 parent.get());
osgParticle::ParticleSystem* smoke = createSmokeParticles(
 parent.get());

8. A particle system updater will be used to update all kinds of particle systems. And an
osg::Geode node can display the particles managed by these two systems in the
3D world.
osg::ref_ptr<osgParticle::ParticleSystemUpdater> updater =
 new osgParticle::ParticleSystemUpdater;
updater->addParticleSystem(fire);
updater->addParticleSystem(smoke);

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(fire);
geode->addDrawable(smoke);

9. Add the Cessna model and all above nodes to the root node, and start the viewer.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(osgDB::readNodeFile("cessna.osg"));
root->addChild(parent.get());
root->addChild(updater.get());
root->addChild(geode.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

10. Now we successfully made it happen: a Cessna is on fire! Its motor on one of the
wings is blazing seriously. Will the Cessna crash after a while? Or someone could
save it at the last moment? Now, you can continue writing the story by yourself.

Animating Everything

194

How it works...
The osgParticle framework is as complex and powerful as osgAnimation. It is made up of at
least a particle system, an emitter that controls the birth of particles, a program that controls
a particle's behaviours after being born, and an updater that manages multiple systems and
updates them. As emitters, programs, and updaters are all scene nodes, it is possible to put
one or more of them under a transformation node to create different particle effects. Here
we only place the emitters to the wing with an osg::MatrixTransform node so that all
newly-allocated particles will come from the engine which seems to be broken, and the
particles will also float in the sky if the flight is moving or falling.

There's more...
This example actually imitates an existing OSG model file named cessnafire.osg. You
may look into the file content with any text editors and try to analyze the node and particle
structures of it.

Dynamically lighting within shaders
Using shaders is a very popular topic now-a-days. As shading language is often the base of
many advanced rendering effects, there is no reason not to use it in our OSG applications. In
Chapter 2, we have already introduced the integration of OSG and NVIDIA Cg. But in this and
the next chapter, we will return to GLSL and try to make use of different shaders with a lively
mind. In this example, we are going to implement a simple phone shader and animate the
light position so that diffuse and specular lights on the model surface will be animated
at runtime.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Program>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. First we will design the vertex shader. It requires a light position, and it computes
the direction from eye to the light point, which will be used for per-pixel lighting
implementation in the fragment shader.
static const char* vertSource =
{
 "uniform vec3 lightPosition;\n"
 "varying vec3 normal, eyeVec, lightDir;\n"

Chapter 5

195

 "void main()\n"
 "{\n"
 "vec4 vertexInEye = gl_ModelViewMatrix * gl_Vertex;\n"
 "eyeVec = -vertexInEye.xyz;\n"
 "lightDir = vec3(lightPosition - vertexInEye.xyz);\n"
 "normal = gl_NormalMatrix * gl_Normal;\n"
 "gl_Position = ftransform();\n"
 "}\n"
};

3. In the fragment shader, we will compute a suitable surface color according to the
varying normal and light direction vectors, and other uniform light parameters. The
resultant color doesn't contain texture components, but with only a little shader
programming experience, you will be able to add some more contents.
static const char* fragSource =
{
 "uniform vec4 lightDiffuse;\n"
 "uniform vec4 lightSpecular;\n"
 "uniform float shininess;\n"
 "varying vec3 normal, eyeVec, lightDir;\n"
 "void main (void)\n"
 "{\n"
 "vec4 finalColor = gl_FrontLightModelProduct.sceneColor;\n"
 "vec3 N = normalize(normal);\n"
 "vec3 L = normalize(lightDir);\n"
 "float lambert = dot(N,L);\n"
 "if (lambert > 0.0)\n"
 "{\n"
 "finalColor += lightDiffuse * lambert;\n"
 "vec3 E = normalize(eyeVec);\n"
 "vec3 R = reflect(-L, N);\n"
 "float specular = pow(max(dot(R, E), 0.0), shininess);\n"
 "finalColor += lightSpecular * specular;\n"
 "}\n"
 "gl_FragColor = finalColor;\n"
 "}\n"

};

Animating Everything

196

4. The LightPosCallback class can handle specific GLSL uniform dynamically, and
set a new value to it every frame. In this recipe, we simply set up a new position
according to current frame number.
class LightPosCallback : public osg::Uniform::Callback

{

public:

 virtual void operator()(osg::Uniform* uniform,
 osg::NodeVisitor* nv)
 {
 const osg::FrameStamp* fs = nv->getFrameStamp();
 if (!fs) return;

 float angle = osg::inDegrees((float)fs->getFrameNumber());
 uniform->set(osg::Vec3(20.0f * cosf(angle), 20.0f *
 sinf(angle), 1.0f));
 }
};

5. In the main entry, we will first load a model, apply the osg::Program object with two
shaders to its state set, and add uniforms with initial values.
osg::ref_ptr<osg::Node> model = osgDB::readNodeFile(
 "cow.osg");

osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader(new osg::Shader(osg::Shader::VERTEX,
 vertSource));
program->addShader(new osg::Shader(osg::Shader::FRAGMENT,
 fragSource));

osg::StateSet* stateset = model->getOrCreateStateSet();
stateset->setAttributeAndModes(program.get());
stateset->addUniform(new osg::Uniform("lightDiffuse",
 osg::Vec4(0.8f, 0.8f, 0.8f, 1.0f)));
stateset->addUniform(new osg::Uniform("lightSpecular",
 osg::Vec4(1.0f, 1.0f, 0.4f, 1.0f)));
stateset->addUniform(new osg::Uniform("shininess", 64.0f));

6. The light position uniform variable will be controlled by an update callback, as shown
in the following code segment:
osg::ref_ptr<osg::Uniform> lightPos = new osg::Uniform(
"lightPosition", osg::Vec3());
lightPos->setUpdateCallback(new LightPosCallback);

Chapter 5

197

stateset->addUniform(lightPos.get());
Start the viewer.
osgViewer::Viewer viewer;
viewer.setSceneData(model.get());
return viewer.run();

7. Here we actually use one moving light and compute the surface color according to
user-defined shader parameters. You may create the same effect in traditional ways,
but shaders provide more flexibility and they usually have better rendering results, for
instance, per-pixel effects (which is impossible in fixed pipeline).

How it works...
In this example, we defined few uniform light parameters in the shader code, so we can
demonstrate the usage of uniform callbacks. It is also possible in GLSL to use the inbuilt
uniform array gl_LightSource[]. For example, we can use gl_LightSource[0].
position to represent the first light's position in the scene. And to change the position
and make it work in shaders, we can add an osg::LightSource node in the scene
graph, and use a node callback to execute osg::Light's setPosition() method.

The osg::Uniform class has an update callback and an event callback, using the same
osg::Uniform::Callback structure. You may use either to update uniform variables
on the fly.

Animating Everything

198

Creating a simple Galaxian game
The Galaxian is a classic 2D game published in Japan in the 1980s. It includes a large
number of aliens attacking the player by shooting bullets and making kamikaze-like
operations. In this recipe, we will try our best to make such a Galaxian game in OSG and
implement most of its features. We don't have enough space in this book to write thousands
of lines of source code, so another important task is that we have to limit our code to at most
200-250 lines. But believe me, it is enough for implementing most kinds of functionalities, no
matter how simple or complex.

Getting ready
Let us first prepare three RGBA pictures (in PNG format) named player.png, enemy.png,
and bullet.png. They are going to be used for describing the roles' shapes in the game.
Example images are shown in the following screenshot:

How to do it...
Let us start.

1. Include necessary headers and define a macro for generating random numbers:
#include <osg/Texture2D>
#include <osg/Geometry>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
#define RAND(min, max) ((min) + (float)rand()/(RAND_MAX+1) *
 ((max)-(min)))

Chapter 5

199

2. Define a Player class which is actually a transformation node in the scene graph.
The Player class not only means the player's role in the game, but also represents
enemy aliens and bullets. Its width() and height() returns the size of the player
in a 2D space (which is in fact an HUD camera in OSG, which ignores the Z direction
but places all scene objects in the XOY plane), setSpeedVector() sets the speed
of the vector which will make it move every frame, and setPlayerType() defines
whether the node is a player, a player's bullet, an enemy, or an enemy's bullet.
class Player : public osg::MatrixTransform
{
public:
 Player() : _type(INVALID_OBJ) {}
 Player(float width, float height, const std::string&
 texfile);

 float width() const { return _size[0]; }
 float height() const { return _size[1]; }

 void setSpeedVector(const osg::Vec3& sv)
 {
 _speedVec = sv;
 }
 const osg::Vec3& getSpeedVector() const
 {
 return _speedVec;
 }

 enum PlayerType
 {
 INVALID_OBJ=0, PLAYER_OBJ, ENEMY_OBJ,
 PLAYER_BULLET_OBJ, ENEMY_BULLET_OBJ
 };
 void setPlayerType(PlayerType t) { _type = t; }
 PlayerType getPlayerType() const { return _type; }

 bool isBullet() const
 {
 return _type==PLAYER_BULLET_OBJ ||
 _type==ENEMY_BULLET_OBJ; }

 bool update(const osgGA::GUIEventAdapter& ea,
 osg::Group* root);
 bool intersectWith(Player* player) const;

protected:

Animating Everything

200

 osg::Vec2 _size;
 osg::Vec3 _speedVec;
 PlayerType _type;
};

3. The constructor of the Player class can accept width and height parameters and a
texture filename as the input arguments. It will create a textured quad, put it into an
osg::Geode node, and add the geode as its own child at the end.
Player::Player(float width, float height, const std::string&
 texfile)
: _type(INVALID_OBJ)
{
 _size.set(width, height);
 osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
 texture->setImage(osgDB::readImageFile(texfile));

 osg::ref_ptr<osg::Drawable> quad =
 osg::createTexturedQuadGeometry(
 osg::Vec3(-width*0.5f, -height*0.5f, 0.0f),
 osg::Vec3(width, 0.0f, 0.0f), osg::Vec3(0.0f, height, 0.0f));
 quad->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, texture.get());
 quad->getOrCreateStateSet()->setMode(GL_LIGHTING,
 osg::StateAttribute::OFF);
 quad->getOrCreateStateSet()->setRenderingHint(
 osg::StateSet::TRANSPARENT_BIN);

 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(quad.get());
 addChild(geode.get());
}

4. The update() method is the core function of the Player class. It defines the
behaviors of the node when user events (including FRAME event) are coming. A player
or enemy node may shoot bullets in the update() method, so the root node should
also be passed to accept newly allocated bullet nodes.
bool Player::update(const osgGA::GUIEventAdapter& ea,
 osg::Group* root)
{
 ...
}

Chapter 5

201

5. In the update() method, we will first check if user presses the left, right, or return
key. It will cause a node of the player type to move and shoot. Enemy nodes will shoot
randomly regardless of user inputs.
bool emitBullet = false;
switch (_type)
{
case PLAYER_OBJ:
 if (ea.getEventType()==osgGA::GUIEventAdapter::KEYDOWN)
 {
 switch (ea.getKey())
 {
 case osgGA::GUIEventAdapter::KEY_Left:
 _speedVec = osg::Vec3(-0.1f, 0.0f, 0.0f);
 break;
 case osgGA::GUIEventAdapter::KEY_Right:
 _speedVec = osg::Vec3(0.1f, 0.0f, 0.0f);
 break;
 case osgGA::GUIEventAdapter::KEY_Return:
 emitBullet = true;
 break;
 default: break;
 }
 }
 else if (ea.getEventType()==osgGA::GUIEventAdapter::KEYUP)
 _speedVec = osg::Vec3();
 break;
case ENEMY_OBJ:
 if (RAND(0, 2000)<1) emitBullet = true;
 break;
default: break;
}

6. Secondly, we will check if a new bullet should be generated and emitted. A player's
bullet will start from the bottom of the screen and speed up to the top; and an
enemy's bullet will go from the top to the bottom, trying to destroy the player's role.
The bullet node should be added to the root node to make it visible in the space.
osg::Vec3 pos = getMatrix().getTrans();
if (emitBullet)
{
 osg::ref_ptr<Player> bullet = new Player(
 0.4f, 0.8f, "bullet.png");
 if (_type==PLAYER_OBJ)
 {
 bullet->setPlayerType(PLAYER_BULLET_OBJ);

Animating Everything

202

 bullet->setMatrix(osg::Matrix::translate(
 pos + osg::Vec3(0.0f, 0.9f, 0.0f)));
 bullet->setSpeedVector(osg::Vec3(0.0f, 0.2f, 0.0f));
 }
 else
 {
 bullet->setPlayerType(ENEMY_BULLET_OBJ);
 bullet->setMatrix(osg::Matrix::translate(
 pos - osg::Vec3(0.0f, 0.9f, 0.0f)));
 bullet->setSpeedVector(osg::Vec3(0.0f,-0.2f, 0.0f));
 }
 root->addChild(bullet.get());
}

7. In the per-frame event, we actually add the speed vector to the transformation matrix,
so that the player/enemy/bullet will actually start to move and fight.
if (ea.getEventType()!=osgGA::GUIEventAdapter::FRAME)
return true;float halfW = width() * 0.5f, halfH = height() *
 0.5f;
pos += _speedVec;
// Don't update the player anymore if it is not in the visible //
area.
if (pos.x()<halfW || pos.x()>ea.getWindowWidth()-halfW)
 return false;
if (pos.y()<halfH || pos.y()>ea.getWindowHeight()-halfH)
 return false;
setMatrix(osg::Matrix::translate(pos));
return true;

8. The intersectWith() function can quickly check if current node is intersected
with another node. This is useful if we want to check whether the bullet hits another
node and kills it.
bool Player::intersectWith(Player* player) const
{
 osg::Vec3 pos = getMatrix().getTrans();
 osg::Vec3 pos2 = player->getMatrix().getTrans();
 return fabs(pos[0] - pos2[0]) < (width() + player->width())
 * 0.5f &&
 fabs(pos[1] - pos2[1]) < (height() + player->height())
 * 0.5f;
}

Chapter 5

203

9. OK, now we must have a global game controller who will manage all roles in the
game and update them one by one. It also removes nodes destroyed by bullets
and bullets themselves.
class GameControllor : public osgGA::GUIEventHandler
{
public:
 GameControllor(osg::Group* root)
 : _root(root), _direction(0.1f), _distance(0.0f) {}

 virtual bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa);

protected:
 osg::observer_ptr<osg::Group> _root;
 float _direction;
 float _distance;
};

10. In the handle() method, we will manage a _distance and a _direction
variable. They will help the enemy aliens move from left to right. As they will
also randomly shoot bullets, it will be not easy for us to beat all of them.
_distance += fabs(_direction);
if (_distance>30.0f)
{
 _direction = -_direction;
 _distance = 0.0f;
}

11. The most important part of the game will be done here: All nodes registered in the
controller will be updated; bullets out of the screen will be removed; the player and
enemies will be destroyed when they knock into a bullet from the opposite roles.
Although we don't have a 'welcome' and a 'game over' splash, and the aliens are so
silly that they don't have any artificial intelligence, the game is still completed with
most Galaxian features added.
osg::NodePath toBeRemoved;
for (unsigned i=0; i<_root->getNumChildren(); ++i)
{
 Player* player = static_cast<Player*>(_root->getChild(i));
 if (!player) continue;

 // Update the player matrix, and remove the player if it is
 //a bullet outside the visible area
 if (!player->update(ea, _root.get()))
 {

Animating Everything

204

 if (player->isBullet())
 toBeRemoved.push_back(player);
 }

 // Automatically move the enemies
 if (player->getPlayerType()==Player::ENEMY_OBJ)
 player->setSpeedVector(osg::Vec3(_direction, 0.0f, 0.0f));
 if (!player->isBullet()) continue;

 // Use a simple loop to check if any two of the players
 // (you, enemies, and bullets) are intersected
 for (unsigned j=0; j<_root->getNumChildren(); ++j)
 {
 Player* player2 = static_cast<Player*>(_root->getChild(j));
 if (!player2 || player==player2) continue;

 if (player->getPlayerType()==Player::ENEMY_BULLET_OBJ &&
 player2->getPlayerType()==Player::ENEMY_OBJ)
 {
 continue;
 }
 else if (player->intersectWith(player2))
 {
 // Remove both players if they collide with each other
 toBeRemoved.push_back(player);
 toBeRemoved.push_back(player2);
 }
 }
}

12. At last, remove the nodes that will be destroyed.
for (unsigned i=0; i<toBeRemoved.size(); ++i)
 _root->removeChild(toBeRemoved[i]);
return false;

13. We have nearly finished the project. In the main entry, the last step is to add the
player node to an HUD camera.
osg::ref_ptr<Player> player = new Player(
 1.0f, 1.0f, "player.png");
player->setMatrix(osg::Matrix::translate(
 40.0f, 5.0f, 0.0f));
player->setPlayerType(Player::PLAYER_OBJ);

osg::ref_ptr<osg::Camera> hudCamera =
 osgCookBook::createHUDCamera(0, 80, 0, 30);
hudCamera->addChild(player.get());

Chapter 5

205

14. And so do the enemies. We will arrange them in a 5 x 10 cavalcade.
for (unsigned int i=0; i<5; ++i)
{
 for (unsigned int j=0; j<10; ++j)
 {
 osg::ref_ptr<Player> enemy = new Player(1.0f, 1.0f,
 "enemy.png");
 enemy->setMatrix(osg::Matrix::translate(
 20.0f+1.5f*(float)j, 25.0f-1.5f*(float)i, 0.0f));
 enemy->setPlayerType(Player::ENEMY_OBJ);
 hudCamera->addChild(enemy.get());
 }
}

15. Specify a black background and start the viewer.
osgViewer::Viewer viewer;
viewer.getCamera()->setClearColor(osg::Vec4(0.0f, 0.0f,
 0.0f, 1.0f));
viewer.addEventHandler(new GameControllor(hudCamera.get()));
viewer.setSceneData(hudCamera.get());
return viewer.run();

16. Good job! Now make sure the PNG files are placed in the executable directory, press
Left arrow and Right arrow buttons to move your fighter to avoid enemies' bullets,
and press Return to fire. Your goal now is only one: defeat all bad aliens!

Animating Everything

206

How it works...
Let us review the design of this naive game rapidly. A Player class is used for representing
the player object, the enemies, and the bullets. It can move to a new position, shoot new
bullets, and check if it is intersected with others. A global game controller is used to manage
all these Player nodes and remove unused and destroyed ones. And if you like, you may
also add some sentences to show 'you win' or 'you lose' pop ups, and improve the enemies'
intelligence. No special functionailities are used except the event handlers and transformation
nodes. But these are enough to build a simple game.

Considering more game-related features? Please continue reading the last example in this
chapter which introduces integration with physics engines, and the next chapter which
discusses rendering effects.

Building a skeleton system
Skeletal animation is important among all kinds of 3D scene animations. It needs a
hierarchical set of bones that are connected to each other. Sometimes these bones are also
called rigs. Animations on one or more bones will finally lead to complex character animations
such as walking, running, and even fighting with somebody.

An OSG bone here means a joint at which two parts of the real human can make contact.
OSG bones also have hierarchical structures as any of the bone nodes can have one or more
children. To represent a bone's shape, it is always suggested to push an additional mesh to
the parent. That is because the mesh and the bone are in the same coordinate frame, so they
can be actually binded together to perform both the rendering and logic operations of a part
of the complete skeleton.

We can directly add a certain model along with a bone so that it will follow the bone's
translation and rotation. This can be used to produce some robot-like animations or simulate
cartoon characters. A real human or animal has skin and muscles over the bones. The
deformation of these muscles, or meshes in 3D developments, can be treated as the basis
of real-character animations. To achieve this, we have to bind the mesh vertices to bones,
and transform them according to bone's motion and vertex weights. The first implementation
which doesn't have a skinning process will be demonstrated in this section. And a simple
skinning work will be shown in the next one.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/LineWidth>
#include <osg/Geometry>

Chapter 5

207

#include <osgAnimation/Bone>
#include <osgAnimation/Skeleton>
#include <osgAnimation/UpdateBone>
#include <osgAnimation/StackedTranslateElement>
#include <osgAnimation/StackedQuaternionElement>
#include <osgAnimation/BasicAnimationManager>
#include <osgViewer/Viewer>

2. We create the bone shape by drawing a line from parent bone's original point (which
is also the start point of current bone), to the end point of current bone. All will be
done in parent bone's local coordinate system, so the generated osg::Geode node
will be added to that bone too.
osg::Geode* createBoneShape(const osg::Vec3& trans,
 const osg::Vec4& color)
{
 osg::ref_ptr<osg::Vec3Array> va = new osg::Vec3Array;
 va->push_back(osg::Vec3()); va->push_back(trans);
 osg::ref_ptr<osg::Vec4Array> ca = new osg::Vec4Array;
 ca->push_back(color);

 osg::ref_ptr<osg::Geometry> line = new osg::Geometry;
 line->setVertexArray(va.get());
 line->setColorArray(ca.get());
 line->setColorBinding(osg::Geometry::BIND_OVERALL);
 line->addPrimitiveSet(new osg::DrawArrays(GL_LINES, 0, 2));

 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(line.get());
 geode->getOrCreateStateSet()->setAttributeAndModes(
 new osg::LineWidth(15.0f));
 geode->getOrCreateStateSet()->setMode(GL_LIGHTING,
 osg::StateAttribute::OFF);
 return geode.release();
}

3. Create the osgAnimation::Bone node and add it to the parent bone with an
appropriate offset (trans). We will create translation and rotation animations
for each bone, so there should be an osgAnimation::UpdateBone callback
which records initial animation values. And to place the bone in its parent's local
coordinates, we must consider its current matrix in the skeleton space while using
setMatrixInSkeletonSpace() to apply the offset.
osgAnimation::Bone* createBone(const char* name,
 const osg::Vec3& trans, osg::Group* parent)
{

Animating Everything

208

 osg::ref_ptr<osgAnimation::Bone> bone =
 new osgAnimation::Bone;
 parent->insertChild(0, bone.get());
 parent->addChild(createBoneShape(trans, osg::Vec4(
 1.0f, 1.0f, 1.0f, 1.0f)));

 osg::ref_ptr<osgAnimation::UpdateBone> updater =
 new osgAnimation::UpdateBone(name);
 updater->getStackedTransforms().push_back(new
 osgAnimation::StackedTranslateElement("translate", trans));
 updater->getStackedTransforms().push_back(new
 osgAnimation::StackedQuaternionElement("quaternion"));

 bone->setUpdateCallback(updater.get());
 bone->setMatrixInSkeletonSpace(osg::Matrix::translate(trans)
 * bone->getMatrixInSkeletonSpace());
 bone->setName(name);
 return bone.get();
}

4. While creating leaf bones of the skeleton, we add an additional shape node as the
leaf bone's child. This is in fact not the leaf bone's own shape, but its child shape
which will accept the leaf bone's animation and, thus, have transformations in the
3D world. This is the reason we must have an independent function to create these
'end bones' and their child shapes.
osgAnimation::Bone* createEndBone(const char* name,
 const osg::Vec3& trans, osg::Group* parent)
{
 osgAnimation::Bone* bone = createBone(name, trans, parent);
 bone->addChild(createBoneShape(trans, osg::Vec4(
 0.4f, 1.0f, 0.4f, 1.0f)));
 return bone;
}

5. The createChannel() function will be used later to add rotation animations
to bones.
osgAnimation::Channel* createChannel(const char* name,
 const osg::Vec3& axis, float rad)
{
 osg::ref_ptr<osgAnimation::QuatSphericalLinearChannel> ch =
 new osgAnimation::QuatSphericalLinearChannel;
 ch->setName("quaternion");
 ch->setTargetName(name);

Chapter 5

209

 osgAnimation::QuatKeyframeContainer* kfs =
 ch->getOrCreateSampler()->getOrCreateKeyframeContainer();
 kfs->push_back(osgAnimation::QuatKeyframe(
 0.0, osg::Quat(0.0, axis)));
 kfs->push_back(osgAnimation::QuatKeyframe(
 8.0, osg::Quat(rad, axis)));
 return ch.release();
}

6. In the main entry, we first create the skeleton root and child bones. They are both
OSG nodes so there is no difference in maintaining bones and normal OSG nodes.
osg::ref_ptr<osgAnimation::Skeleton> skelroot =
 new osgAnimation::Skeleton;
skelroot->setDefaultUpdateCallback();

// Here the name 'bone0' means the root.
// And 'bone1*' are bones of the next level.
// The rest (bone2* - bone4*) may be deduced by analogy
// and found in the source code package
osgAnimation::Bone* bone0 = createBone("bone0",
 osg::Vec3(0.0f,0.0f,0.0f), skelroot.get());
osgAnimation::Bone* bone11 = createBone("bone11",
 osg::Vec3(0.5f,0.0f,0.0f), bone0);
osgAnimation::Bone* bone12 = createEndBone("bone12",
 osg::Vec3(1.0f,0.0f,0.0f), bone11);
...

These code segments create a mechanical hand with four claws.

7. Next we will create animations on different claw bones. This gives the hand a clasping
action as an animation. Register the animation.
osg::ref_ptr<osgAnimation::Animation> anim =
 new osgAnimation::Animation;
anim->setPlayMode(osgAnimation::Animation::PPONG);
anim->addChannel(createChannel("bone11", osg::Y_AXIS,
 osg::PI_4));
anim->addChannel(createChannel("bone12", osg::Y_AXIS,
 osg::PI_2));
...// Find rest channel settings in the source code

osg::ref_ptr<osgAnimation::BasicAnimationManager> manager =
 new osgAnimation::BasicAnimationManager;
manager->registerAnimation(anim.get());
manager->playAnimation(anim.get());

Animating Everything

210

8. Add them to the root node and start the viewer.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(skelroot.get());
root->setUpdateCallback(manager.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

9. You will see a mechanical hand rendered with lines in the space after starting the
example. It will simulate the action of grabbing something with the four claws and
then loosening. Bones are bound to their parents, so they won't break while the
animation is running in ping-pong mode. Although it is a little too simple for a real
application, it is a kind of character animation anyhow, and it can be extended to
work with some very complex situations such as the human kinematics.

How it works...
Skeleton animation uses the same osgAnimation framework as we discussed a while ago.
A complete application with bone animations still needs to have an animation manager and
several channels storing the animating data. It also has a sub-scene graph formed by parent
and child bones. The root bone (bone0 in this recipe) is linked to the skeleton node. All other
bones are its direct and indirect children. No orphan bone is allowed except the root one. A
bone must have a callback (osgAnimation::UpdateBone) who records stacked elements
to be associated with channels targeting them.

Chapter 5

211

Be careful of the method setMatrixInSkeletonSpace(). It sets the bone in the
skeleton space. So if you want to specify the bone in its parent bone's space (which is
easier to understand here), you have to convert the offset matrix to skeleton matrix first.
This requires you to ensure to first add the new bone into the skeleton scene graph; otherwise
you will not be able to get a correct bone matrix for computation. The transformation of the
bone can be easily written as the product of the new offset and the previous skeleton space
matrix (which equals the parent bone's matrix initially).

bone->setMatrixInSkeletonSpace(
 osg::Matrix::translate(trans) *
 bone->getMatrixInSkeletonSpace());

Another thing to note is, in order to add renderables to represent each bone's shape, we have
to push the geometry node to the end of the parent bone's child list, and insert the bone node
at the beginning of the list. See the following code snippet:

osg::ref_ptr<osgAnimation::Bone> bone =
 new osgAnimation::Bone;
parent->insertChild(0, bone.get());
parent->addChild(createBoneShape(trans, osg::Vec4(
 1.0f, 1.0f, 1.0f, 1.0f)));

To explain the reason in short: This ensures all bones will be traversed and updated before
any geometry is drawn. Just treat this as a rule to follow.

Skinning a customized mesh
Let us continue the last recipe which creates a simple skeleton for representing a
mechanical hand with four claws. This time we will do the skinning work, that is, bind
vertices of the character geometry with bones. Each bone can be associated with some
portion of the vertices, and each vertex can be associated with multiple bones, each with
a weight factor which will change the effect of the bone on the vertex. You may find some
detailed information in the following link, as well as some shader code:

http://tech-artists.org/wiki/Vertex_Skinning

To calculate the final position of one vertex, we must collect all bones associated with it and
apply each bone's transformation matrix to the vertex's position, as well as scale the matrix
by corresponding weight. Fortunately, OSG does everything we have just described for us.
The only thing we have to do is to build a map of the vertex and its associated bone name
and weight. We will work on the last example code to add such implementations.

http://tech-artists.org/wiki/Vertex_Skinning
http://tech-artists.org/wiki/Vertex_Skinning

Animating Everything

212

How to do it...
Let us start.

1. First, we don't need the createBoneShape() function anymore. Because we are
not going to draw the bone directly in the 3D world this time. In the createBone()
and createEndBone() functions, remove the line that adds the return value of
createBoneShape() to the parent node.
osgAnimation::Bone* createBone(const char* name,
 const osg::Vec3& trans, osg::Group* parent)
{
 osg::ref_ptr<osgAnimation::Bone> bone =
 new osgAnimation::Bone;
 parent->insertChild(0, bone.get());

 osg::ref_ptr<osgAnimation::UpdateBone> updater =
 new osgAnimation::UpdateBone(name);
 updater->getStackedTransforms().push_back(new
 osgAnimation::StackedTranslateElement("translate", trans));
 updater->getStackedTransforms().push_back(new
 osgAnimation::StackedQuaternionElement("quaternion"));

 bone->setUpdateCallback(updater.get());
 bone->setMatrixInSkeletonSpace(osg::Matrix::translate(trans)
 * bone->getMatrixInSkeletonSpace());
 bone->setName(name);
 return bone.get();
}

osgAnimation::Bone* createEndBone(const char* name,
 const osg::Vec3& trans, osg::Group* parent)
{
 osgAnimation::Bone* bone = createBone(name, trans, parent);
 return bone;
}

And there are no changes to the createChannel() function.

2. Now we should create two new functions, and use osgAnimation::RigGeometry
class to record relations between bones and vertices. The addVertices() function
adds vertices of one claw to the geometry object, and sets up bones which are bound
to these newly allocated vertices.
void addVertices(const char* name1, float length1,
 const char* name2, float length2,
 const osg::Vec3& dir, osg::Geometry* geom,

Chapter 5

213

 osgAnimation::VertexInfluenceMap* vim)
{
 osg::Vec3Array* va = static_cast<osg::Vec3Array*>(
 geom->getVertexArray());
 unsigned int start = va->size();
 // The bone shape is supposed to have 5 vertices, the first
 // two of which are unmovable
 va->push_back(dir * 0.0f);
 va->push_back(dir * length1);
 // The last 3 points will be fully controled by the rig
 // geometry so they should be assoicated with the influence
 // map
 va->push_back(dir * length1);
 (*vim)[name1].push_back(
 osgAnimation::VertexIndexWeight(start+2, 1.0f));
 va->push_back(dir * length2);
 (*vim)[name1].push_back(
 osgAnimation::VertexIndexWeight(start+3, 1.0f));
 va->push_back(dir * length2);
 (*vim)[name2].push_back(
 osgAnimation::VertexIndexWeight(start+4, 1.0f));
 // Push the very, very simple shape definition (actually
 // line strips) to the rig geometry
 geom->addPrimitiveSet(new osg::DrawArrays(
 GL_LINE_STRIP, start, 5));
}

3. The createBoneShapeAndSkin() function will simultaneously create the
geometry of the mechanical hand and finish the skinning work. It uses the
addVertices() function we just introduced internally.
osg::Geode* createBoneShapeAndSkin()
{
 ...
}

4. In this function, first we have to initialize the geometry and the osgAnimation::V
ertexInfluenceMap object, which is the association table of all the vertices and
bones. Then we allocate the vertices of each claw geometry, assemble them, and
bind them to specific bones.
osg::ref_ptr<osg::Geometry> geometry = new osg::Geometry;
geometry->setVertexArray(new osg::Vec3Array);

osg::ref_ptr<osgAnimation::VertexInfluenceMap> vim =
 new osgAnimation::VertexInfluenceMap;

Animating Everything

214

(*vim)["bone11"].setName("bone11");
(*vim)["bone12"].setName("bone12");
... // Please find details in the source code

addVertices("bone11", 0.5f, "bone12", 1.5f, osg::X_AXIS,
 geometry.get(), vim.get());
... // Please find details in the source code

5. Then we use the osgAnimation::RigGeometry object to accept the geometry
and the influence map and add it to a node, which will be added to the scene
graph later.
osg::ref_ptr<osgAnimation::RigGeometry> rigGeom =
 new osgAnimation::RigGeometry;
rigGeom->setSourceGeometry(geometry.get());
rigGeom->setInfluenceMap(vim.get());
rigGeom->setUseDisplayList(false);

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(rigGeom.get());
geode->getOrCreateStateSet()->setAttributeAndModes(
 new osg::LineWidth(15.0f));
geode->getOrCreateStateSet()->setMode(GL_LIGHTING,
 osg::StateAttribute::OFF);
return geode.release();

6. The only change in the main entry is to add the rigs and vertex binding data to the
skeleton node.
skelroot->addChild(createBoneShapeAndSkin());

7. OK, now the claws work as they did in the Building a skeleton system recipe. But
this time it has a solid mesh and you will see that the mesh is deforming along with
the bones' animations. The muscle movement may not be realistic at present, as
we have only configured simple weights of each bone on vertices, and the number
of changeable vertices is not enough for performing precise movements. Exporting
models, skeletons, and animations from some other modeling tools may be a good
idea if you need more complex characters in the application. Remember that OSG
supports characters in Collada DAE and Autodesk FBX formats currently.

Chapter 5

215

How it works...
In the Building a skeleton system recipe, we added a set of line geometries to the bone
structure. Each bone had one geometry to represent its shape and animation states. It
required bone nodes and geometry nodes to be mixed in one sub-scene graph. But this time
in the skinning example, we keep the bone hierarchy unchanged and directly add a geometry
node to the skeleton itself. Then we bind each bone with a number of vertices and set the
vertex weight. The character updating and rendering work will be done in OSG backend
internally. You may use either software or hardware technique to render the character's
rig geometry.

There's more...
OSG provides two examples to explain the usage of skeleton animation clearly: The
osganimationskinning example shows how to build a simple skeleton and skin it; the
osganimationhardware example describes how to change the transform technique used
in osgAnimation::RigGeometry (software or hardware).

Last but not least, don't try to build a complete human model and skeleton and animate it
by programming. It is possible but needs heavy work to implement. Consider converting your
character from some standard formats and commonly-used modeling software. The DAE and
FBX formats are good choices for such purposes.

Letting the physics engine be
It is a great enhancement to your applications to integrate with certain physics engines, and,
thus, have the ability to compute collisions between scene objects, simulate rigid, soft body,
fluid, and cloth behaviours in a virtual physics world. Especially in games, physics support can
make the scenario more realistic and interesting, and provide comfortable user interactions
and feedbacks.

In the last recipe of this chapter, we are going to see a simple example of physics integration
in OSG. It requires the famous NVIDIA PhysX library as dependence, and can finally produce
an interactive program demonstrating the most common rigid-collision functionality in an
OSG world.

Getting ready
You have to first download the PhysX SDK from the NVIDIA developer website. Remember to
download version 2.8, as the latest 3.0 version totally changes the API interface and won't
work with this recipe.

Animating Everything

216

Visit the following link and register to download:

http://developer.nvidia.com/physx-downloads

Then we can configure the CMake script to add PhysX dependence directories and libraries:

FIND_PATH(PHYSX_SDK_DIR Physics/include/NxPhysics.h)
FIND_LIBRARY(PHYSX_LIBRARY PhysXLoader.lib libPhysXLoader.so)

SET(EXTERNAL_INCLUDE_DIR
 "${PHYSX_SDK_DIR}/PhysXLoader/include"
 "${PHYSX_SDK_DIR}/Physics/include"
 "${PHYSX_SDK_DIR}/Foundation/include")
TARGET_LINK_LIBRARIES(${EXAMPLE_NAME} ${PHYSX_LIBRARY})

How to do it...
Let us start.

1. Include necessary headers:
#include <NxPhysics.h>
#include <osg/ShapeDrawable>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. We will create an independent class to manage all PhysX functions. It is designed
to use the singleton design pattern and create and manage physics objects with
unique ID numbers. It supports creating a few types of rigid bodies and setting their
velocities and matrices later with the ID.
class PhysXInterface : public osg::Referenced
{
public:
 static PhysXInterface* instance();

 void createWorld(const osg::Plane& plane, const osg::Vec3&
 gravity);
 void createBox(int id, const osg::Vec3& dim, double mass);
 void createSphere(int id, double radius, double mass);

 void setVelocity(int id, const osg::Vec3& pos);
 void setMatrix(int id, const osg::Matrix& matrix);
 osg::Matrix getMatrix(int id);

http://developer.nvidia.com/physx-downloads
http://developer.nvidia.com/physx-downloads

Chapter 5

217

 void simulate(double step);

protected:
 PhysXInterface();
 virtual ~PhysXInterface();

 void createActor(int id, NxShapeDesc* shape,
 NxBodyDesc* body);

 typedef std::map<int, NxActor*> ActorMap;
 ActorMap _actors;
 NxPhysicsSDK* _physicsSDK;
 NxScene* _scene;
};

3. The instance() function returns the only instance of the PhysXInterface class.
PhysXInterface* PhysXInterface::instance()
{
 static osg::ref_ptr<PhysXInterface> s_registry =
 new PhysXInterface;
 return s_registry.get();
}

4. In the constructor, we initialize the PhysX SDK object.
PhysXInterface::PhysXInterface() : _scene(NULL)
{
 NxPhysicsSDKDesc desc;
 NxSDKCreateError errorCode = NXCE_NO_ERROR;
 _physicsSDK = NxCreatePhysicsSDK(NX_PHYSICS_SDK_VERSION,
 NULL, NULL, desc, &errorCode);
 if (!_physicsSDK)
 {
 OSG_WARN << "Unable to initialize the PhysX SDK, error
 code: " << errorCode << std::endl;
 }
}

5. And in the destructor, we will release all registered PhysX actors (which are actually
objects in the physics world), the _scene variable which describes the physics world,
and the SDK variable to make sure all PhysX objects are deleted from the memory.
PhysXInterface::~PhysXInterface()
{
 if (_scene)
 {

Animating Everything

218

 for (ActorMap::iterator itr=_actors.begin();
 itr!=_actors.end(); ++itr)
 _scene->releaseActor(*(itr->second));
 _physicsSDK->releaseScene(*_scene);
 }
 NxReleasePhysicsSDK(_physicsSDK);
}

6. The createWorld() method will allocate a new physics world with specified
gravity and material values, and create a static ground object at the same time.
The protected createActor() will be always called to create new NxActor
objects and save it to the actor map.
void PhysXInterface::createWorld(const osg::Plane& plane,
 const osg::Vec3& gravity)
{
 NxSceneDesc sceneDesc;
 sceneDesc.gravity = NxVec3(gravity.x(), gravity.y(),
 gravity.z());
 _scene = _physicsSDK->createScene(sceneDesc);

 NxMaterial* defaultMaterial =
 _scene->getMaterialFromIndex(0);
 defaultMaterial->setRestitution(0.5f);
 defaultMaterial->setStaticFriction(0.5f);
 defaultMaterial->setDynamicFriction(0.5f);

 // Create the ground plane
 NxPlaneShapeDesc shapeDesc;
 shapeDesc.normal = NxVec3(plane[0], plane[1], plane[2]);
 shapeDesc.d = plane[3];
 createActor(-1, &shapeDesc, NULL);
}

7. The createBox() method creates a dynamic box object in the world. To note, it
doesn't do anything to the rendering result at present. The function only affects
the 'physics' world.
void PhysXInterface::createBox(int id, const osg::Vec3&
 dim, double mass)
{
 NxBoxShapeDesc shapeDesc; shapeDesc.dimensions =
 NxVec3(dim.x(), dim.y(), dim.z());
 NxBodyDesc bodyDesc; bodyDesc.mass = mass;
 createActor(id, &shapeDesc, &bodyDesc);
}

Chapter 5

219

8. The createSphere() method will create a dynamic sphere.
void PhysXInterface::createSphere(int id, double radius,
 double mass)
{
 NxSphereShapeDesc shapeDesc; shapeDesc.radius = radius;
 NxBodyDesc bodyDesc; bodyDesc.mass = mass;
 createActor(id, &shapeDesc, &bodyDesc);
}

9. After a rigid object is created, we can call setVelocity() method with the object ID
to set the velocity value.
void PhysXInterface::setVelocity(int id, const osg::Vec3&
 vec)
{
 NxActor* actor = _actors[id];
 actor->setLinearVelocity(NxVec3(vec.x(), vec.y(), vec.z()));
}

10. We can also set the matrix (the translation and rotation components) value of a
created object.
void PhysXInterface::setMatrix(int id, const osg::Matrix&
 matrix)
{
 NxF32 d[16];
 for (int i=0; i<16; ++i)
 d[i] = *(matrix.ptr() + i);
 NxMat34 nxMat; nxMat.setColumnMajor44(&d[0]);

 NxActor* actor = _actors[id];
 actor->setGlobalPose(nxMat);
}

11. The getMatrix() method is important because it can obtain the latest matrix
value of a physics object, which may be moved or smashed during the simulation.
The value can be set to related OSG node to ensure that the changes in the physics
world can be reflected to the rendering window too.
osg::Matrix PhysXInterface::getMatrix(int id)
{
 float mat[16];
 NxActor* actor = _actors[id];
 actor->getGlobalPose().getColumnMajor44(mat);
 return osg::Matrix(&mat[0]);
}

Animating Everything

220

12. The simulate() method must be executed in every frame to make sure the physics
simulation loop is running.
void PhysXInterface::simulate(double step)
{
 _scene->simulate(step);
 _scene->flushStream();
 _scene->fetchResults(NX_RIGID_BODY_FINISHED, true);
}

13. The internal createActor() function will create an actor according to the shape
and body descriptions, and push it into the map for future uses.
void PhysXInterface::createActor(int id, NxShapeDesc* shape,
 NxBodyDesc* body)
{
 NxActorDesc actorDesc;
 actorDesc.shapes.pushBack(shape);
 actorDesc.body = body;

 NxActor* actor = _scene->createActor(actorDesc);
 _actors[id] = actor;
}

14. After completing the PhysX interface class, we will have to establish relationships
between the physics elements and scene graph nodes, and update the physics world
in every frame. In the PhysicsUpdater class, we use a NodeMap data type which
records physics ID and OSG node in a key-value map. These IDs also correspond to
physics actors in the PhysX layer, so we can actually connect the physics and the
rendering layer together here.
class PhysicsUpdater : public osgGA::GUIEventHandler
{
public:
 PhysicsUpdater(osg::Group* root) : _root(root) {}

 void addGround(const osg::Vec3& gravity);
 void addPhysicsBox(osg::Box* shape, const osg::Vec3& pos,
 const osg::Vec3& vel, double mass);
 void addPhysicsSphere(osg::Sphere* shape,
 const osg::Vec3& pos, const osg::Vec3& vel, double mass);
 bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa);

protected:
 void addPhysicsData(int id, osg::Shape* shape,
 const osg::Vec3& pos, const osg::Vec3& vel, double mass);

Chapter 5

221

 typedef std::map<int, osg::observer_ptr<
 osg::MatrixTransform> > NodeMap;
 NodeMap _physicsNodes;
 osg::observer_ptr<osg::Group> _root;

15. In the addGround() method, we create a huge box with a very small height to
simulate the ground, and create the world element in PhysX as well.
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(new osg::ShapeDrawable(
 new osg::Box(osg::Vec3(0.0f, 0.0f,-0.5f), 100.0f,
 100.0f, 1.0f)));

osg::ref_ptr<osg::MatrixTransform> mt =
 new osg::MatrixTransform;
mt->addChild(geode.get());
_root->addChild(mt.get());

PhysXInterface::instance()->createWorld(osg::Plane(
 0.0f, 0.0f, 1.0f, 0.0f), gravity);

16. In the addPhysicsBox() method, we create a physics box actor and use
addPhysicsData() to register it and create corresponding OSG node in
the scene graph.
int id = _physicsNodes.size();
PhysXInterface::instance()->createBox(
 id, shape->getHalfLengths(), mass);
addPhysicsData(id, shape, pos, vel, mass);

17. In the addPhysicsSphere() method, we have similar work to do as in
addPhysicsBox().
int id = _physicsNodes.size();
PhysXInterface::instance()->createSphere(
 id, shape->getRadius(), mass);
addPhysicsData(id, shape, pos, vel, mass);

18. The handle() method has two events to handle. If the FRAME event comes, it
will update the physics world with a delta time value. Then all IDs registered in the
NodeMap variable will be traversed to retrieve matrix data from the physics element
and apply it to scene graph nodes. And if user presses the Return key, the updater
will create a new dynamic ball at the eye position with an initial velocity. So we can
interactively shoot at any other element in the scene and see how they collapse, roll,
and fly off.
osgViewer::View* view = static_cast<osgViewer::View*>(&aa);
if (!view || !_root) return false;

Animating Everything

222

switch (ea.getEventType())
{
 case osgGA::GUIEventAdapter::KEYUP:
 if (ea.getKey()==osgGA::GUIEventAdapter::KEY_Return)
 {
 osg::Vec3 eye, center, up, dir;
 view->getCamera()->getViewMatrixAsLookAt(eye, center, up);
 dir = center - eye; dir.normalize();
 addPhysicsSphere(new osg::Sphere(osg::Vec3(), 0.5f),
 eye, dir * 60.0f, 2.0);
 }
 break;
 case osgGA::GUIEventAdapter::FRAME:
 PhysXInterface::instance()->simulate(0.02);
 for (NodeMap::iterator itr=_physicsNodes.begin();
 itr!=_physicsNodes.end(); ++itr)
 {
 osg::Matrix matrix = PhysXInterface::instance()-
 >getMatrix(itr->first);
 itr->second->setMatrix(matrix);
 }
 break;
default: break;
}
return false;

19. The protected addPhysicsData() method will add a newly allocated OSG node to
the root, and set its ID and physics attributes as well.
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(new osg::ShapeDrawable(shape));

osg::ref_ptr<osg::MatrixTransform> mt =
 new osg::MatrixTransform;
mt->addChild(geode.get());
_root->addChild(mt.get());

PhysXInterface::instance()->setMatrix(
 id, osg::Matrix::translate(pos));
PhysXInterface::instance()->setVelocity(id, vel);
_physicsNodes[id] = mt;

Chapter 5

223

20. Now we will get into the main entry, first we will create the root node and the
updater object.
osg::ref_ptr<osg::Group> root = new osg::Group;
osg::ref_ptr<PhysicsUpdater> updater = new PhysicsUpdater(
 root.get());

21. And then we create the ground and a wall made up of many small boxes and add
them to the updater (and to the _root node which is stored in the updater class).
updater->addGround(osg::Vec3(0.0f, 0.0f,-9.8f));
for (unsigned int i=0; i<10; ++i)
{
 for (unsigned int j=0; j<10; ++j)
 {
 updater->addPhysicsBox(new osg::Box(osg::Vec3(), 0.99f),
 osg::Vec3((float)i, 0.0f, (float)j+0.5f), osg::Vec3(),
 1.0f);
 }
}

22. Start the viewer at last:
osgViewer::Viewer viewer;
viewer.addEventHandler(updater.get());
viewer.setSceneData(root.get());
return viewer.run();

23. Now we can run the application and adjust the view matrix by dragging mouse
buttons. First we can see a wall stand on the ground. It is obviously made up of many
boxes, and may even shake slightly, but won't fall down without an outside force.

Animating Everything

224

24. Aim with your eye and press the Return key to shoot a ball! Can you knock and smash
the wall with only one hit?

25. Let us have a look at the ruins we finally created. Are you imagining making an 'Angry
Birds' game by yourself?

Chapter 5

225

How it works...
NVIDIA PhysX is a powerful and legible physics library, and so it is easy to embed it into
OSG scene. The only data shared by the physics level and the rendering level is the unique
object IDs.

The meaning of an ID in the PhyxXInterface class is to identify a unique rigid element, for
instance, a rigid box, a sphere, or the ground plane. They are not visible on the screen but can
be used to carry out physics computation and calculate the resultant positions and rotations.

The same ID in the PhysicsUpdater class is used to distinguish scene nodes. They use
the same dimensions as the physics elements, but are used for rendering purpose only. This
design separates the rendering and physics computing work so that there will be less coupling
in the application.

There's more...
You may use the same idea to design your own physics integrations. There are many other
choices such as ODE (http://www.ode.org/), Bullet Physics (http://bulletphysics.
org/), Newton (http://newtondynamics.com/), and so on. Consider using one or more
classes to encapsulate the physics functionalities and don't merge them into the scene graph
rashly. A mixure of rendering objects and physics objects in the project may cause confusion
for reading and understanding.

http://www.ode.org/
http://bulletphysics.org/
http://bulletphysics.org/
http://newtondynamics.com/

6
Designing Creative

Effects

In this chapter, we will cover:

 f Using the bump mapping technique

 f Simulating the view-dependent shadow

 f Implementing transparency with multiple passes

 f Reading and displaying the depth buffer

 f Implementing the night vision effect

 f Implementing the depth-of-field effect

 f Designing a skybox with the cube map

 f Creating a simple water effect

 f Creating a piece of cloud

 f Customizing the state attribute

Introduction
Now we come to the chapter of effects. In the earlier days of 3D programming based on
OpenGL, the final results of an effect were based on the use of state attributes and modes.
Even the best developers may have various difficulties to create a realistic enough effect.
Ray tracing could be a good choice for light computation but it hardly works in real-time
environments. And the limited number of fixed pipeline attributes is also the bottleneck
for the development of real-time rendering.

Designing Creative Effects

228

The birth of programmable pipeline changed everything. Modern rendering techniques
depend heavily on shaders and can produce infinite types of effects. People can design their
own vertex, primitive assemble, tessellation, and pixel-computing solutions freely. Some other
advanced methods, such as post processing, deferred shading, deferred lighting, and the
latest global illumination techniques, were also developed in a very rapid way.

We can't discuss all these topics in one chapter or even one book. But we will talk more
about shaders and some popular post effects here, as they always provide good enough
results. Some common landscapes, such as the sky, cloud, reflection of water, and
shadows, will also be introduced in the form of recipes. Before that, we will add two
new functions to the osgCookBook namespace in the common sub-directory. First
one is the createRTTCamera() function, which creates an osg::Camera node for
rendering-to-texture operations:

osg::Camera* createRTTCamera(osg::Camera::BufferComponent
 buffer, osg::Texture* tex, bool isAbsolute)
{
 osg::ref_ptr<osg::Camera> camera = new osg::Camera;
 camera->setClearColor(osg::Vec4());
 camera->setClearMask(
 GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
 camera->setRenderTargetImplementation(
 osg::Camera::FRAME_BUFFER_OBJECT);
 camera->setRenderOrder(osg::Camera::PRE_RENDER);
 if (tex)
 {
 tex->setFilter(osg::Texture2D::MIN_FILTER,
 osg::Texture2D::LINEAR);
 tex->setFilter(osg::Texture2D::MAG_FILTER,
 osg::Texture2D::LINEAR);
 camera->setViewport(0, 0, tex->getTextureWidth(),
 tex->getTextureHeight());
 camera->attach(buffer, tex);
 }

 if (isAbsolute)
 {
 camera->setReferenceFrame(osg::Transform::ABSOLUTE_RF);
 camera->setProjectionMatrix(osg::Matrix::ortho2D(
 0.0, 1.0, 0.0, 1.0));
 camera->setViewMatrix(osg::Matrix::identity());
 camera->addChild(createScreenQuad(1.0f, 1.0f));
 }
 return camera.release();
}

Chapter 6

229

And the createScreenQuad() function will be used for post-processing work in some of
the recipes.

osg::Geode* createScreenQuad(float width, float height,
 float scale)
{
 osg::Geometry* geom = osg::createTexturedQuadGeometry(
 osg::Vec3(), osg::Vec3(width,0.0f,0.0f),
 osg::Vec3(0.0f,height,0.0f),
 0.0f, 0.0f, width*scale, height*scale);
 osg::ref_ptr<osg::Geode> quad = new osg::Geode;
 quad->addDrawable(geom);

 int values = osg::StateAttribute::OFF|
 osg::StateAttribute::PROTECTED;
 quad->getOrCreateStateSet()->setAttribute(
 new osg::PolygonMode(osg::PolygonMode::FRONT_AND_BACK,
 osg::PolygonMode::FILL), values);
 quad->getOrCreateStateSet()->setMode(GL_LIGHTING, values);
 return quad.release();
}

Using the bump mapping technique
Bump mapping is a per-pixel lighting technique that simulates bumpy surfaces of
3D objects. Instead of creating many new triangles to actually change the geometry,
bump mapping uses the surface normals for calculating the bumps and wrinkles during
lighting calculations.

A normal map with all normal vectors in tangent space is always required for a common
bump-mapping implementation. It may turn bluish because normals are often directed
along the Z axis in tangent space. Two other important vectors here are tangent and
binormal, which can be inputted as vertex attributes and used for converting light
directions into tangent space.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Program>
#include <osg/Texture2D>
#include <osg/ShapeDrawable>
#include <osg/Geode>

Designing Creative Effects

230

#include <osgDB/ReadFile>
#include <osgUtil/TangentSpaceGenerator>
#include <osgViewer/Viewer>

2. In the vertex shader code, we will try to read some vertex attributes from the user
application and set up the light direction for use in the bump-mapping model.
static const char* vertSource = {
 "attribute vec3 tangent;\n"
 "attribute vec3 binormal;\n"
 "varying vec3 lightDir;\n"
 "void main()\n"
 "{\n"
 ... // Please find details in the source code
 "}\n"
};

3. In the fragment shader, we will operate on two textures: a color one and a normal
one. The second map will provide us the normal vector for computing the correct
light value.
static const char* fragSource = {
 "uniform sampler2D colorTex;\n"
 "uniform sampler2D normalTex;\n"
 "varying vec3 lightDir;\n"
 "void main (void)\n"
 "{\n"
 ... // Please find details in the source code
 "}\n"
};

4. The vertex attributes, including the tangents and binormals, are often not set in pre-
defined models. So we have to traverse the loaded model to apply these attributes to
each drawable. The osgUtil::TangentSpaceGenerator class is a great tool for
automatically computing and generating them.
class ComputeTangentVisitor : public osg::NodeVisitor
{
public:
 void apply(osg::Node& node) { traverse(node); }

 void apply(osg::Geode& node)
 {
 for (unsigned int i=0; i<node.getNumDrawables(); ++i)
 {
 osg::Geometry* geom = dynamic_cast<osg::Geometry*>(
 node.getDrawable(i));

Chapter 6

231

 if (geom) generateTangentArray(geom);
 }
 traverse(node);
 }

 void generateTangentArray(osg::Geometry* geom)
 {
 osg::ref_ptr<osgUtil::TangentSpaceGenerator> tsg =
 new osgUtil::TangentSpaceGenerator;
 tsg->generate(geom);
 geom->setVertexAttribArray(6, tsg->getTangentArray());
 geom->setVertexAttribBinding(
 6, osg::Geometry::BIND_PER_VERTEX);
 geom->setVertexAttribArray(7, tsg->getBinormalArray());
 geom->setVertexAttribBinding(
 7, osg::Geometry::BIND_PER_VERTEX);
 }
};

5. In the main entry, we will load a model that already has normals and texture
coordinates for texturing (for example, skydome.osgt), and add tangents and
binormals to it.
osg::ArgumentParser arguments(&argc, argv);
osg::ref_ptr<osg::Node> scene = osgDB::readNodeFiles(
 arguments);
if (!scene) scene = osgDB::readNodeFile("skydome.osgt");

ComputeTangentVisitor ctv;
ctv.setTraversalMode(osg::NodeVisitor::TRAVERSE_ALL_CHILDREN);
scene->accept(ctv);

6. Create the new shader state attribute and add attribute variables. The names must fit
the ones in the shader code, and the attribute numbers must be the same as we set
in the geometries.
osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader(new osg::Shader(osg::Shader::VERTEX,
 vertSource));
program->addShader(new osg::Shader(osg::Shader::FRAGMENT,
 fragSource));
program->addBindAttribLocation("tangent", 6);
program->addBindAttribLocation("binormal", 7);

Designing Creative Effects

232

7. Add two images (the color and the normal map) and the program object to the
model's state set. We will set an OVERRIDE mask to overwrite the child nodes'
texture settings if any.
osg::ref_ptr<osg::Texture2D> colorTex = new osg::Texture2D;
colorTex->setImage(osgDB::readImageFile(
 "Images/whitemetal_diffuse.jpg"));
osg::ref_ptr<osg::Texture2D> normalTex =
 new osg::Texture2D;
normalTex->setImage(osgDB::readImageFile(
 "Images/whitemetal_normal.jpg"));

osg::StateSet* stateset = scene->getOrCreateStateSet();
stateset->addUniform(new osg::Uniform("colorTex", 0));
stateset->addUniform(new osg::Uniform("normalTex", 1));
stateset->setAttributeAndModes(program.get());

osg::StateAttribute::GLModeValue value =
 osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE;
stateset->setTextureAttributeAndModes(0, colorTex.get(),
 value);
stateset->setTextureAttributeAndModes(1, normalTex.get(),
 value);

8. Start the viewer at last.
osgViewer::Viewer viewer;
viewer.setSceneData(scene.get());
return viewer.run();

9. Now you will see a dirty and mottled dome instead of the original one. These bumps
are not really meant to modify the surface vertices and primitives, but are generated
by specifying suitable brightness, color, and shadow values. The dome itself is still as
smooth as before.

Chapter 6

233

How it works...
The tangent and binormal arrays can be automatically computed using the
osgUtil::TangentSpaceGenerator tool, unless you don't have normals specified. These
two new vertex attributes are set to index 6 and 7, and then used in the vertex shader for
constructing the tangent space's transformation matrix. Here tangents and binormals are
actually user-defined attributes as they don't contribute to fixed pipeline rendering, so there
are always certain limitations while specifying the attribute index. For example, on most
NVIDIA devices, the following indices are already reserved for built-in GLSL attributes:

Type Index Built-in attribute name
Position 0 gl_Vertex

Normal 2 gl_Normal

Color 3 gl_Color

Secondary color 4 gl_SecondaryColor

Fog coordinate 5 gl_FogCoord

Texture coordinate (0-7) 8 - 15 gl_MultiTexCoord0 to
gl_MultiTexCoord7

So it becomes clear that we can only use index 1, 6, and 7 for customized attributes. That is
exactly what we have done in this example.

Simulating the view-dependent shadow
Shadows are common in modern 3D applications. There are plenty of shadow techniques
including shadow map, shadow volume, and many other modifications and improvements
based on these basic methods. OSG provide an osgShadow library for implementing different
kinds of shadow techniques and integrating them with the scene graph.

In the book "OpenSceneGraph 3.0: Beginner's Guide", Rui Wang and Xuelei Qian, Packt
Publishing, I have already introduced the common shadow framework. So in this recipe, we
will focus on making use of the view-dependent shadows, which depends on the view frustum
and will not be too costly to obtain and render shadows, especially when scene data and
camera change dynamically.

Designing Creative Effects

234

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgShadow/ShadowedScene>
#include <osgShadow/ViewDependentShadowMap>
#include <osgGA/TrackballManipulator>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>

2. The basic structure of the view-dependent example is nearly the same as the
common shadow framework. So the receiver's mask and the caster's mask
must be preset properly.
unsigned int rcvShadowMask = 0x1;
unsigned int castShadowMask = 0x2;

3. Add the ground node which only receives shadow.
osg::ref_ptr<osg::MatrixTransform> groundNode =
 new osg::MatrixTransform;
groundNode->addChild(osgDB::readNodeFile("lz.osg"));
groundNode->setMatrix(osg::Matrix::translate(
 200.0f, 200.0f,-200.0f));
groundNode->setNodeMask(rcvShadowMask);

4. Add the cessna node which will cast shadow on the ground.
osg::ref_ptr<osg::MatrixTransform> cessnaNode =
 new osg::MatrixTransform;
cessnaNode->addChild(osgDB::readNodeFile(
 "cessna.osg.0,0,90.rot"));
cessnaNode->addUpdateCallback(
 osgCookBook::createAnimationPathCallback(50.0f, 6.0f));
cessnaNode->setNodeMask(castShadowMask);

5. Set up the view-dependent shadow technique, and add the technique as well
as all shadowed nodes to the shadow root. We are going to provide as many as
possible Cessna instances so that we can immediately benefit from the use of
view-dependent technique.
osg::ref_ptr<osgShadow::ViewDependentShadowMap> vdsm =
 new osgShadow::ViewDependentShadowMap;
//vdsm->setShadowMapProjectionHint(
 //osgShadow::ViewDependentShadowMap::ORTHOGRAPHIC_SHADOW_MAP);

Chapter 6

235

//vdsm->setBaseShadowTextureUnit(1);

osg::ref_ptr<osgShadow::ShadowedScene> shadowRoot =
 new osgShadow::ShadowedScene;
shadowRoot->setShadowTechnique(vdsm.get());
shadowRoot->setReceivesShadowTraversalMask(rcvShadowMask);
shadowRoot->setCastsShadowTraversalMask(castShadowMask);

shadowRoot->addChild(groundNode.get());
for (unsigned int i=0; i<10; ++i)
{
 for (unsigned int j=0; j<10; ++j)
 {
 osg::ref_ptr<osg::MatrixTransform> cessnaInstance =
 new osg::MatrixTransform;
 cessnaInstance->setMatrix(osg::Matrix::translate(
 (float)i*50.0f, (float)j*50.0f, 0.0f));
 cessnaInstance->addChild(cessnaNode.get());
 shadowRoot->addChild(cessnaInstance.get());
 }
}

6. Compute an appropriate initial camera position and start the viewer.
const osg::BoundingSphere& bs = groundNode->getBound();
osg::ref_ptr<osgGA::TrackballManipulator> trackball =
 new osgGA::TrackballManipulator;
trackball->setHomePosition(bs.center()+osg::Vec3(
 0.0f, 0.0f, bs.radius()*0.4f), bs.center(), osg::Y_AXIS);

osgViewer::Viewer viewer;
viewer.setCameraManipulator(trackball.get());
viewer.setSceneData(shadowRoot.get());
viewer.addEventHandler(new osgViewer::StatsHandler);
return viewer.run();

Designing Creative Effects

236

When the scene is initialized, you will find the camera very near to the ground
and the Cessna cluster's shadows are rendered smoothly, as shown in the
following screenshot:

7. Zoom out the camera and try to view the whole scene containing all 100 aircraft!
Now the frame rate drops down sharply, maybe only 4-5 fps because of the burden
of re-computation.

Chapter 6

237

How it works...
The basis of view-dependent shadow rendering has no difference with the osgShadow
framework. It requires an osgShadow::ShadowedScene node to accept a specific technique
and all child scene nodes, including shadow receivers and casters (some receivers may
also be casters too). Too many receivers or casters will lead to low performance because
of too many computations. But view-dependent techniques can slightly reduce the problem
in particular when we are handling shadows in a huge scene. Shadow interactors (eight
receivers or casters) will just be ignored if they and their assumed shadows are not visible in
the view frustum. You can simply change the recipe to replace osgShadow::ViewDepend
entShadowMap with osgShadow::ShadowMap; and you can find that the latter will always
work in a very low frame rate, no matter where the viewer is and how many shadows he
could see.

The osgShadow::ViewDependentShadowMap class is introduced in the
latest OSG trunk (version 3.1.0). Please update to a proper version before you
try this example.

Implementing transparency with multiple
passes

The osgFX library provides a framework for the purpose of multi-pass rendering. Every
sub-graph that you want to be rendered through multiple passes should be added to an
osgFX::Effect node, in which a multi-pass technique is defined and used. You may
have already been familiar with some pre-defined effects such as osgFX::Scribe and
osgFX::Outline, but in this recipe, our task is to design a multi-pass technique by
ourselves. It is so called multi-pass transparency, which can eliminate the errors while
drawing complex objects in transparent mode.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/BlendFunc>
#include <osg/ColorMask>
#include <osg/Depth>
#include <osg/Material>
#include <osgDB/ReadFile>
#include <osgFX/Effect>
#include <osgViewer/Viewer>

Designing Creative Effects

238

2. We will first provide a new technique derived from osgFX::Technique node. The
validate() method is used to check if current hardware supports this technique
and returns true if everything is OK.
class TransparencyTechnique : public osgFX::Technique
{
public:
 TransparencyTechnique() : osgFX::Technique() {}
 virtual bool validate(osg::State& ss) const
 {
 return true;
 }

protected:
 virtual void define_passes();
};

3. Another must-have method in the class is define_passes(). It is used for defining
multiple passes. In this recipe, we will have two passes: the first one disables the
color mask and records the depth buffer value if it is less than the current one; and
the second one will enable the usage of the color buffer but only to write to it when
the depth value equals to the recorded one.
osg::ref_ptr<osg::StateSet> ss = new osg::StateSet;
ss->setAttributeAndModes(new osg::ColorMask(
 false, false, false, false));
ss->setAttributeAndModes(new osg::Depth(osg::Depth::LESS));
addPass(ss.get());

ss = new osg::StateSet;
ss->setAttributeAndModes(new osg::ColorMask(
 true, true, true, true));
ss->setAttributeAndModes(new osg::Depth(osg::Depth::EQUAL));
addPass(ss.get());

4. After we complete designing the technique, we can now declare the effect class and
add the technique to it in the define_techniques() method. The META_Effect
macro here is used to define basic methods for the effect: the library name, class
name, author name, and description.
class TransparencyNode : public osgFX::Effect
{
public:
 TransparencyNode() : osgFX::Effect() {}
 TransparencyNode(const TransparencyNode& copy,
 const osg::CopyOp op=osg::CopyOp::SHALLOW_COPY)
 : osgFX::Effect(copy, op) {}

Chapter 6

239

 META_Effect(osgFX, TransparencyNode, "TransparencyNode",
 "", "");

protected:
 virtual bool define_techniques()
 {
 addTechnique(new TransparencyTechnique);
 return true;
 }
};

5. In the main entry, we will work on the classic Cessna model. But to make it
transparent, we will add a new material to it, set the alpha channel of the diffuse
color to a value less than 1, and apply the TRANSPARENT_BIN hint to the state set.
osg::Node* loadedModel = osgDB::readNodeFile("cessna.osg");

osg::ref_ptr<osg::Material> material = new osg::Material;
material->setAmbient(osg::Material::FRONT_AND_BACK,
 osg::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
material->setDiffuse(osg::Material::FRONT_AND_BACK,
 osg::Vec4(1.0f, 1.0f, 1.0f, 0.5f));
loadedModel->getOrCreateStateSet()->setAttributeAndModes(
 material.get(), osg::StateAttribute::ON|osg::StateAttribute::OVE
RRIDE);
loadedModel->getOrCreateStateSet()->setAttributeAndModes(
 new osg::BlendFunc);
loadedModel->getOrCreateStateSet()->setRenderingHint(
 osg::StateSet::TRANSPARENT_BIN);

6. Create an instance of the newly-defined class and add the model.
osg::ref_ptr<TransparencyNode> fxNode = new TransparencyNode;
fxNode->addChild(loadedModel);
Start the viewer now.
osgViewer::Viewer viewer;
viewer.setSceneData(fxNode.get());
return viewer.run();

Designing Creative Effects

240

7. Now you will see the transparent Cessna rendered properly.

8. If you still remember the fade-in and out example in Chapter 5, you will soon realize
the advantage of this multi-pass transparency technique: it removes the unnatural
mottled blocks on the Cessna without changing the drawing sequence of polygons.
Directly set the loadedModel node to the viewer and recompile the example. This
time you can see errors on the Cessna body, as a result of wrong blending orders.

Chapter 6

241

How it works...
The multi-pass transparency technique will draw the object twice. First pass, as shown in
the following block of code, is to update only the depth buffer and find polygons in front of
any others:

osg::ref_ptr<osg::StateSet> ss = new osg::StateSet;
ss->setAttributeAndModes(new osg::ColorMask(
 false, false, false, false));
ss->setAttributeAndModes(new osg::Depth(osg::Depth::LESS));
addPass(ss.get());

The second pass will draw into the color buffer, but because of the depth values set in the
first one, only front polygons can pass the depth test and their colors will be drawn and
blended with current ones. This avoids the order problem we have discussed before.
The code segments are shown here:

ss = new osg::StateSet;
ss->setAttributeAndModes(new osg::ColorMask(
 true, true, true, true));
ss->setAttributeAndModes(new osg::Depth(osg::Depth::EQUAL));
addPass(ss.get());

There's more...
But is this solution perfect? Of course not, a translucent Cessna should not be rendered in
this manner. A translucent model's back faces may also be visible from the viewer, using
alpha blending with the front polygons occluding these back faces. In that case, the rendering
order of each polygon must be considered before we really put the vertex and primitive data
into the OpenGL pipeline. Unfortunately it is nearly impossible for a complex model to do such
a sorting work in every frame. Depth peeling may solve the problem in another way, and we
will talk about it in the last chapter.

Reading and displaying the depth buffer
Rendering-to-texture (RTT) is a modern technique that can be used in different fields. It
means to draw a scene data to a user-defined target instead of just to the screen. The render
target can be a texture or an image object, and even an off-screen render buffer with the FBO
(frame buffer object) extension.

In this chapter, we will use RTT to demonstrate the implementations of post-processing and
easily deferred shading techniques within more than one featured example. The common
function osgCookBook::createRTTCamera() will be heavily used for allocating a new
camera and redraw the color or depth of its child scene to a texture. In this beginning
recipe, we will first show how to read and display the depth buffer values with a simple
post-processing framework.

Designing Creative Effects

242

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Texture2D>
#include <osg/Group>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. First we load a model to construct the scene.
osg::ArgumentParser arguments(&argc, argv);
osg::ref_ptr<osg::Node> scene =
 osgDB::readNodeFiles(arguments);
if (!scene) scene = osgDB::readNodeFile("cessna.osg");

3. We must allocate an empty texture by specifying its size for RTT operation. As we
are going to handle the depth buffer, we have to set up correct texture parameters
here (GL_DEPTH_COMPONENT24 for internal format and GL_DEPTH_COMPONENT for
source format).
osg::ref_ptr<osg::Texture2D> tex2D = new osg::Texture2D;
tex2D->setTextureSize(1024, 1024);
tex2D->setInternalFormat(GL_DEPTH_COMPONENT24);
tex2D->setSourceFormat(GL_DEPTH_COMPONENT);
tex2D->setSourceType(GL_FLOAT);

4. We will create a new camera node and apply the required buffer value
(DEPTH_BUFFER) and the texture object to it. The loaded model (or any other
scene objects) will be added to the camera to make it rendered to the texture.
osg::ref_ptr<osg::Camera> rttCamera =
 osgCookBook::createRTTCamera(osg::Camera::DEPTH_BUFFER, tex2D.
get());
rttCamera->addChild(scene.get());

5. Create an HUD camera over the main scene, and add a quad shown at the left-hand
side of the screen. It will be used to represent the pre-rendered texture that contains
the sub-graph we loaded before.
osg::ref_ptr<osg::Camera> hudCamera =
 osgCookBook::createHUDCamera(0.0, 1.0, 0.0, 1.0);
hudCamera->addChild(osgCookBook::createScreenQuad(0.5f, 1.0f));
hudCamera->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, tex2D.get());

Chapter 6

243

6. Now add all the nodes to the root. To note, we are going to add the model node
here too, so that it will be rendered twice: first on the texture, and then on the main
camera. Because the HUD quad will only overlay half of the screen, we can now
observe the color and depth values of the scene in a comparative view.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(rttCamera.get());
root->addChild(hudCamera.get());
root->addChild(scene.get());

7. Before starting the view, we would better disable the automatic near-far
computation. That is because the computation changes the near/far plane
values all the time and may produce a confusing result when we are trying to
retrieve the depth-buffer values.
osgViewer::Viewer viewer;
viewer.getCamera()->setComputeNearFarMode(
 osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR);
viewer.setSceneData(root.get());
return viewer.run();

You will find the depth texture at the left-hand side of the screen. The depth texture
looks white at a first glance, but the Cessna part will soon turn dark when you zoom
in the scene. It is easy to understand this because the depth always ranges from 0.0
(the nearest) to 1.0 (the farthest). Note that OpenGL always has a non-linear depth
buffer so that objects close to the eye will be rendered in greater detail.

Designing Creative Effects

244

How it works...
In this recipe, we constructed a simple and quick framework for implementing different
post-processing effects. The basic concept is listed here:

1. Render the original scene to a texture.

2. Create a quad just filling the entire rendering window and map the texture onto
the quad.

3. Now you can enable desired shaders on this quad to make changes to the quad
fragments, that is, to make changes to the scene's content.

4. These steps can be repeated if you need more than one shading process; just create
another quad to contain the rendering result.

5. Use an HUD camera to render the quad that has the final rendered texture, and show
it in full screen to the end users.

The recipe here doesn't show the final texture full screen as it leaves the right half for
rendering the original scene (which is linked to the root node as well as the RTT camera
node). The scene graph of the reading depth buffer example can be described in the
following diagram:

Root

RTTCamera
Depth texture

HUDCamera

Screen quad
Sub-graph

(cessna.osg)

There's more...
In the osgCookBook::createRTTCamera() function, we use FRAME_BUFFER_OBJECT as
the render-target implementation method by default. It means to use OpenGL's FBO extension
for the offline rendering work. You can switch to other supported methods if required:

 f FRAME_BUFFER: Use OpenGL's glCopySubImage() function to read buffer values.
It can work on early devices that don't support FBO or PBO.

Chapter 6

245

 f PIXEL_BUFFER: Use OpenGL's Pixel Buffer Object (PBO) extension for
rendering-to-texture support.

 f PIXEL_BUFFER_RTT: Use the WGL_ARB_render_texture extension for
rendering-to-texture support.

 f SEPERATE_WINDOW: Use a separate window for displaying the content in
the buffer. It is sometimes useful for debugging.

Implementing the night vision effect
Now we will use the post-processing framework to implement a practical effect called night
vision. It means to see in very low-light conditions, which is commonly used by military forces.
Because humans have poor night vision compared to other animals, they often use special
devices with large lenses to gather and concentrate light, for example, night vision goggles.

The reflection of the Light Interference Filters (LIF) will make the scene in the lenses green.
And images from these devices also tend to have some noise and blur. To design such an
effect with shaders, we have to consider about these factors and merge the original scene
color with a noise map, and then lighten the green parts to simulate the real conditions.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Texture2D>
#include <osg/Group>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. The vertex shader will be used after the main scene is rendered to texture. It simply
transfers the positions and texture coordinates.
static const char* vertSource = {
 "void main(void)\n"
 "{\n"
 "gl_Position = ftransform();\n"
 "gl_TexCoord[0] = gl_MultiTexCoord0;\n"
 "}\n"
};

Designing Creative Effects

246

3. The fragment shader for post processing will implement the real 'night vision' effect
using a noise texture. It reads from the noise texture with random values and uses it
to add uncertain changes to the final composition.
static const char* fragSource = {
 "uniform sampler2D sceneTex;\n"
 "uniform sampler2D noiseTex;\n"
 "uniform float osg_FrameTime;\n"

 "void main(void)\n"
 "{\n"
 // Get noise value from texture, changing by frame time
 "float factor = osg_FrameTime * 100.0;\n"
 "vec2 uv = vec2(0.4*sin(factor), 0.4*cos(factor));\n"
 "vec3 n = texture2D(noiseTex, (gl_TexCoord[0].st*3.5) +
 uv).rgb;\n"

 // Get scene and compute greyscale intensity
 "vec3 c = texture2D(sceneTex, gl_TexCoord[0].st +
 (n.xy*0.005)).rgb;\n"
 "float lum = dot(vec3(0.30, 0.59, 0.11), c);\n"
 "if (lum < 0.2) c *= 4.0;\n"

 // Mix a 'night vision' color with the RTT texture
 "vec3 finalColor = (c+(n*0.2)) * vec3(0.1,0.95,0.2);\n"
 "gl_FragColor = vec4(finalColor, 1.0);\n"
 "}\n"
};

4. We will make a convenient function for reading an image and applying it to a 2D
texture which will automatically repeat at the edge.
osg::Texture* createTexture2D(const std::string& fileName)
{
 ... // Please find details in the source code
}
In the main entry, we load the model first.
osg::ArgumentParser arguments(&argc, argv);
osg::ref_ptr<osg::Node> scene =
 osgDB::readNodeFiles(arguments);
if (!scene) scene = osgDB::readNodeFile("cessna.osg");

Chapter 6

247

5. The creation of the rendering-to-texture camera is similar to Reading and displaying
the depth buffer recipe. But this time, it will use GL_RGBA as the internal format and
read from the color buffer.
osg::ref_ptr<osg::Texture2D> tex2D = new osg::Texture2D;
tex2D->setTextureSize(1024, 1024);
tex2D->setInternalFormat(GL_RGBA);

osg::ref_ptr<osg::Camera> rttCamera =
 osgCookBook::createRTTCamera(osg::Camera::COLOR_BUFFER, tex2D.
get());
rttCamera->addChild(scene.get());

6. Create the HUD quad at the left-hand side of the screen and apply the 'post' shaders,
uniforms, and textures to it.
osg::ref_ptr<osg::Camera> hudCamera =
 osgCookBook::createHUDCamera(0.0, 1.0, 0.0, 1.0);
hudCamera->addChild(osgCookBook::createScreenQuad(
 0.5f, 1.0f));

osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader(new osg::Shader(osg::Shader::VERTEX,
 vertSource));
program->addShader(new osg::Shader(osg::Shader::FRAGMENT,
 fragSource));

// Applying the state set to camera will inherit it to the
// child quad, but you may also set the program to the sub-
// graph directly.
osg::StateSet* stateset = hudCamera->getOrCreateStateSet();
stateset->setTextureAttributeAndModes(0, tex2D.get());
stateset->setTextureAttributeAndModes(
 1, createTexture2D("noise_tex.jpg"));
stateset->setAttributeAndModes(program.get());
stateset->addUniform(new osg::Uniform("sceneTex", 0));
stateset->addUniform(new osg::Uniform("noiseTex", 1));

7. For the last step, we will build the scene graph and start the viewer.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(rttCamera.get());
root->addChild(hudCamera.get());
root->addChild(scene.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

Designing Creative Effects

248

Now you can see the scene is applied to the HUD quad with a good night vision
effect, as if we are using night glasses to observe the Cessna at night. You can make
this recipe look even better by adding a mask uniform that simulates the circular
outline of the telescope, and discard all pixels outside the telescope's scope in the
fragment shader.

How it works...
To implement the night vision effect, we have to do some tricks in the fragment shader.
Every time we read a color value from the scene texture, we compare it with a constant
vector vec3(0.30, 0.59, 0.11), which is used to compute the grey scale intensity.
If the intensity is too low, that is, if the area is too dark, it will be lightened. And the final
color will be multiplied by a green light, to imitate the reflection color on the glass.

Another interesting topic here is how can we apply the main camera manipulator (which is
automatically set by viewer.run() in this recipe) to the final scene on the HUD full screen
quad. The answer can be found in the osgCookBook::createRTTCamera() function.
It has an isAbsolute argument for choosing absolute or relative reference frame of the
camera node.

Chapter 6

249

As far as we know from some other OSG tutorials and related books, OSG uses RELATIVE_RF
to specify that the node belongs to the relative reference frame of its parent. When the RTT
camera is set to RELATIVE_RF, it will inherit the main camera's view and projection matrices
and, thus, allow child scene to be affected by the manipulator. But if it is ABSOLUTE_RF, it
must use its own matrix settings to project the scene to a desired range, as the view and
projection matrices settings are reset before this camera is rendered. The relative frame
mode must be applied to the first RTT camera which directly adds the original scene as child
so that all navigation operations can work as usual. And the absolute frame is useful when
your post-processing framework has more than one middle pass, because you have to make
these middle-level RTT cameras view only their child quads to obtain correct rendering results
all the time.

Implementing the depth-of-field effect
The classic depth-of-field (DOF) means that when camera lens is focused on an object, only
the object and its nearby area will appear sharp in the final image, but subjects outside the
area will appear blurred. It is a famous and common post-processing effect used in most
'next generation' computer games, especially the first-person ones, to enhance the reality.

We will use more than one pass to implement a basic DOF effect.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Texture2D>
#include <osg/Group>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. The post processing vertex shader is the same as the last one.
static const char* vertSource = {
 "void main(void)\n"
 "{\n"
 "gl_Position = ftransform();\n"
 "gl_TexCoord[0] = gl_MultiTexCoord0;\n"
 "}\n"
};

Designing Creative Effects

250

3. The post-blurring shader reads from the past color texture and accumulates
neighboring texels to obtain the final blurred value.
static const char* blurFragSource = {
 "uniform sampler2D inputTex;\n"
 "uniform vec2 blurDir;\n"
 "void main(void)\n"
 "{\n"
 ... // Please find details in the source code
 "}\n"
};

4. After the blurring work, we have to combine the original color texture and the blurred
ones according to the depth value of each pixel. Pixels with farther depth values will
use a blurred color, and the nearer ones will use the original color to make them clear
to viewers. We will use two uniform variables here to decide if a pixel is near or far to
the viewer.
static const char* combineFragSource = {
 "uniform sampler2D sceneTex;\n"
 "uniform sampler2D blurTex;\n"
 "uniform sampler2D depthTex;\n"
 "uniform float focalDistance;\n"
 "uniform float focalRange;\n"

 "float getBlurFromLinearDepth(vec2 uv)\n"
 "{\n"
 "float z = texture2D(depthTex, uv).x;\n"
 "z = 2.0 * 10001.0 / (10001.0 - z * 9999.0) - 1.0;\n"
 // Considering the default znear/zfar
 "return clamp((z - focalDistance)/focalRange, 0.0, 1.0);\n"
 "}\n"

 "void main(void)\n"
 "{\n"
 "vec2 uv = gl_TexCoord[0].st;\n"
 "vec4 fullColor = texture2D(sceneTex, uv);\n"
 "vec4 blurColor = texture2D(blurTex, uv);\n"
 "float blurValue = getBlurFromLinearDepth(uv);\n"
 "gl_FragColor = fullColor + blurValue * (blurColor –
 fullColor);\n"
 "}\n"
};

Chapter 6

251

5. We will use a few independent functions to implement each pass of the depth-of-field
effect. Each function will return the created camera node and the texture object at
the same time.
typedef std::pair<osg::Camera*, osg::Texture*> RTTPair;

6. The original scene's color will be processed and outputted to a texture in the
createColorInput() function.
RTTPair createColorInput(osg::Node* scene)
{
 osg::ref_ptr<osg::Texture2D> tex2D = new osg::Texture2D;
 tex2D->setTextureSize(1024, 1024);
 tex2D->setInternalFormat(GL_RGBA);

 osg::ref_ptr<osg::Camera> camera =
 osgCookBook::createRTTCamera(osg::Camera::COLOR_BUFFER,
 tex2D.get());
 camera->addChild(scene);
 return RTTPair(camera.release(), tex2D.get());
}

7. The original scene's depth values will be processed and outputted in the
createDepthInput() function.
RTTPair createDepthInput(osg::Node* scene)
{
 osg::ref_ptr<osg::Texture2D> tex2D = new osg::Texture2D;
 tex2D->setTextureSize(1024, 1024);
 tex2D->setInternalFormat(GL_DEPTH_COMPONENT24);
 tex2D->setSourceFormat(GL_DEPTH_COMPONENT);
 tex2D->setSourceType(GL_FLOAT);

 osg::ref_ptr<osg::Camera> camera =
 osgCookBook::createRTTCamera(osg::Camera::DEPTH_BUFFER,
 tex2D.get());
 camera->addChild(scene);
 return RTTPair(camera.release(), tex2D.get());
}

8. The color texture will be blurred in the createBlurPass() function. It also has an
input argument to change the blur direction (horizontally or vertically).
RTTPair createBlurPass(osg::Texture* inputTex,
 const osg::Vec2& dir)
{
 osg::ref_ptr<osg::Texture2D> tex2D = new osg::Texture2D;
 tex2D->setTextureSize(1024, 1024);

Designing Creative Effects

252

 tex2D->setInternalFormat(GL_RGBA);
 osg::ref_ptr<osg::Camera> camera =
 osgCookBook::createRTTCamera(
 osg::Camera::COLOR_BUFFER, tex2D.get(), true);

 osg::ref_ptr<osg::Program> blurProg = new osg::Program;
 blurProg->addShader(new osg::Shader(osg::Shader::VERTEX,
 vertSource));
 blurProg->addShader(new osg::Shader(osg::Shader::FRAGMENT,
 blurFragSource));

 osg::StateSet* ss = camera->getOrCreateStateSet();
 ss->setTextureAttributeAndModes(0, inputTex);
 ss->setAttributeAndModes(blurProg.get(),
 osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE);
 ss->addUniform(new osg::Uniform("sceneTex", 0));
 ss->addUniform(new osg::Uniform("blurDir", dir));
 return RTTPair(camera.release(), tex2D.get());
}

9. In the main entry, we load an example terrain first.
osg::ArgumentParser arguments(&argc, argv);
osg::ref_ptr<osg::Node> scene =
 osgDB::readNodeFiles(arguments);
if (!scene) scene = osgDB::readNodeFile("lz.osg");

10. There are four passes before the final composition: read the original color and depth
values, blur the color horizontally, and then blur the output vertically.
RTTPair pass0_color = createColorInput(scene.get());
RTTPair pass0_depth = createDepthInput(scene.get());
RTTPair pass1 = createBlurPass(pass0_color.second,
 osg::Vec2(1.0f, 0.0f));
RTTPair pass2 = createBlurPass(pass2.second, osg::Vec2(
 0.0f, 1.0f));

11. The final pass is to create the HUD quad for compositing past passes and generating
the final result. The quad this time will overlay the entire screen.
osg::ref_ptr<osg::Camera> hudCamera =
 osgCookBook::createHUDCamera(0.0, 1.0, 0.0, 1.0);
hudCamera->addChild(osgCookBook::createScreenQuad(
 1.0f, 1.0f));

Chapter 6

253

12. Add the final shaders, textures, and uniforms to the quad's state set.
osg::ref_ptr<osg::Program> finalProg = new osg::Program;
finalProg->addShader(new osg::Shader(osg::Shader::VERTEX,
 vertSource));
finalProg->addShader(new osg::Shader(osg::Shader::FRAGMENT,
 combineFragSource));

osg::StateSet* stateset = hudCamera->getOrCreateStateSet();
stateset->setTextureAttributeAndModes(0, pass0_color.second);
stateset->setTextureAttributeAndModes(1, pass2.second);
stateset->setTextureAttributeAndModes(2, pass0_depth.second);
stateset->setAttributeAndModes(finalProg.get());
stateset->addUniform(new osg::Uniform("sceneTex", 0));
stateset->addUniform(new osg::Uniform("blurTex", 1));
stateset->addUniform(new osg::Uniform("depthTex", 2));
stateset->addUniform(new osg::Uniform("focalDistance",
 100.0f));
stateset->addUniform(new osg::Uniform("focalRange", 200.0f));

13. Build the scene graph and start the viewer. As we depend on the depth buffer values
heavily, we have to remember to disable automatic near/far planes computation.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(pass0_color.first);
root->addChild(pass0_depth.first);
root->addChild(pass1.first);
root->addChild(pass2.first);
root->addChild(hudCamera.get());

osgViewer::Viewer viewer;
viewer.getCamera()->setComputeNearFarMode(
 osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR);
viewer.setSceneData(root.get());
return viewer.run();

Designing Creative Effects

254

14. OK, we have finally finished the DOF work. Navigate in the scene and you will find that
only ground and trees near enough are clear, and far away objects will turn out of
focus. This acts much more like a high-level camera in the real world whose lens can
be changed precisely to focus at one distance at a time. There is no doubt that this
effect can give us a different feeling while simulating walking or running in a
huge scene.

How it works...
The following diagram shows the scene graph of the DOF implementation, and can best
explain what we have done in each passes:

Root

RTTCameraHUDCamera

Screen quad

RTTCamera RTTCamera RTTCamera

VerBlurred HorBlurred Color texture

Sub-graph

(cessna.osg)
Screen quad Screen quad

Depth texture

Chapter 6

255

The first step is to obtain and store the color and depth values of the original scene into two
different textures. The colored one is shown in the following screenshot:

Then we will blur the color texture per pixel (blur it twice—first horizontally, and then vertically)
to create a blurred version of the scene image as shown in the following screenshot:

Designing Creative Effects

256

The last pass is to combine the sharp and blurred images based on the depth value of
each fragment. The depth buffer values are not linear initially, so we have to create a
getBlurFromLinearDepth() function in the fragment shader. It recalculates values from
the depth texture with a linear method, according to known near and far values, as shown in
the following block of code:

// Znear = 1.0 & Zfar = 10000.0
z = 2.0 * (10000 + 1.0) / (10000 + 1.0) - z *
 (10000 - 1.0)) - 1.0
 = 2.0 * 10001.0 / 10001.0 - z * 9999.0) - 1.0

These values are actually the default projection-matrix settings of OSG's main camera.
Because we use DO_NOT_COMPUTE_NEAR_FAR to disable automatic near/far computation,
they will never be changed unless you set them with the setProjectionMatrix() method.

There's more...
Now it's your turn to consider more post-processing effects. Some of them (including DOF)
are used heavily in modern 3D games and applications and can make the scene much
more realistic or dramatic. Of course, because the original scene should be rendered
twice, there will be a remarkable performance loss when we have to handle huge data
set. You may consider the multiple render-target solution for optimizing. Have a look at the
osgmultiplerendertargets example in the core source code.

Here are some materials about other kinds of post-processing effects. You may also search for
more introductions and implementations yourselves:

Gaussian Blur:
http://www.gamerendering.com/2008/10/11/gaussian-blur-filter-shader/

Motion Blur: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch27.html

Bloom: http://en.wikipedia.org/wiki/Bloom_(shader_effect)

High Dynamic Range (HDR): http://transporter-game.googlecode.com/files/
HDRRenderingInOpenGL.pdf

Screen Space Ambient Occlusion (SSAO): http://en.wikipedia.org/wiki/Screen_
Space_Ambient_Occlusion

Fast Approximate Anti-Aliasing (FXAA): http://developer.download.nvidia.com/
assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf

And don't forget the great NVIDIA shader library: http://developer.download.nvidia.
com/shaderlibrary/webpages/shader_library.html

http://www.gamerendering.com/2008/10/11/gaussian-blur-filter-shader/
http://www.gamerendering.com/2008/10/11/gaussian-blur-filter-shader/
http://www.gamerendering.com/2008/10/11/gaussian-blur-filter-shader/
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch27.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch27.html
http://en.wikipedia.org/wiki/Bloom_(shader_effect)
http://en.wikipedia.org/wiki/Bloom_(shader_effect)
http://transporter-game.googlecode.com/files/HDRRenderingInOpenGL.pdf
http://transporter-game.googlecode.com/files/HDRRenderingInOpenGL.pdf
http://en.wikipedia.org/wiki/Screen_Space_Ambient_Occlusion
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/shaderlibrary/webpages/shader_library.html
http://developer.download.nvidia.com/shaderlibrary/webpages/shader_library.html

Chapter 6

257

Designing a skybox with the cube map
A sky box is a method of creating background images. It often uses a cube to display the sky,
mountains, and oceans. It can create realistic 3D surroundings for user applications and
provide rich features comparing with a single background image, which was introduced in
Chapter 2.

A standard real-time sky box requires a cube made up of six faces and will project six different
textures onto these faces. It always remains stationary with respect to the eye position so
that the sky and other distant objects are always very far away no matter how the camera is
moved and rotated. The geometry of a sky box can be a cube too; sometimes they can also be
constructed of a sphere or a hemisphere instead (so called a sky dome).

How to do it...
Let us start.

1. Include necessary headers:.
#include <osg/Depth>
#include <osg/TexGen>
#include <osg/TextureCubeMap>
#include <osg/ShapeDrawable>
#include <osg/Geode>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgUtil/CullVisitor>
#include <osgViewer/Viewer>

2. We will first design a new kind of transformation node for representing sky dome. The
most important methods to override will be computeLocalToWorldMatrix() and
computeWorldToLocalMatrix(). The former is often called in the cull traversal
for computing the model matrix. So we can do some tricks here to make the node
follow the viewer's eyes all the time.
class SkyBox : public osg::Transform
{
public:
 SkyBox();

 SkyBox(const SkyBox& copy, osg::CopyOp copyop=
 osg::CopyOp::SHALLOW_COPY)
 : osg::Transform(copy, copyop) {}

 META_Node(osg, SkyBox);

Designing Creative Effects

258

 void setEnvironmentMap(unsigned int unit, osg::Image* posX,
 osg::Image* negX, osg::Image* posY, osg::Image* negY,
 osg::Image* posZ, osg::Image* negZ);

 virtual bool computeLocalToWorldMatrix(osg::Matrix& matrix,
 osg::NodeVisitor* nv) const;
 virtual bool computeWorldToLocalMatrix(osg::Matrix& matrix,
 osg::NodeVisitor* nv) const;

protected:
 virtual ~SkyBox() {}
};

3. In the SkyBox constructor, we must use setCullingActive() method to disable
any further culling work on this node. That is because the sky box is following the eye
and its actual position and bound (these will be used for view frustum culling) can
hardly be calculated. Another interesting matter here is the operation on the state
set. If you still remember the background image example in Chapter 2, you will easily
understand the reason why we set up an osg::Depth attribute and make the state
set rendered later by calling setRenderBinDetails() method.
SkyBox::SkyBox()
{
 setReferenceFrame(osg::Transform::ABSOLUTE_RF);
 setCullingActive(false);

 osg::StateSet* ss = getOrCreateStateSet();
 ss->setAttributeAndModes(new osg::Depth(
 osg::Depth::LEQUAL, 1.0f, 1.0f));
 ss->setMode(GL_LIGHTING, osg::StateAttribute::OFF);
 ss->setMode(GL_CULL_FACE, osg::StateAttribute::OFF);
 ss->setRenderBinDetails(5, "RenderBin");
}

4. The setEnvironmentMap() method will read six images and merge them together
as a cube map texture to be applied on the sky geometry.
void SkyBox::setEnvironmentMap(unsigned int unit,
 osg::Image* posX, osg::Image* negX,
 osg::Image* posY, osg::Image* negY,
 osg::Image* posZ, osg::Image* negZ)
{
 osg::ref_ptr<osg::TextureCubeMap> cubemap =
 new osg::TextureCubeMap;
 cubemap->setImage(osg::TextureCubeMap::POSITIVE_X, posX);
 cubemap->setImage(osg::TextureCubeMap::NEGATIVE_X, negX);

Chapter 6

259

 cubemap->setImage(osg::TextureCubeMap::POSITIVE_Y, posY);
 cubemap->setImage(osg::TextureCubeMap::NEGATIVE_Y, negY);
 cubemap->setImage(osg::TextureCubeMap::POSITIVE_Z, posZ);
 cubemap->setImage(osg::TextureCubeMap::NEGATIVE_Z, negZ);
 ... // Please find details in the source code
 cubemap->setResizeNonPowerOfTwoHint(false);
 getOrCreateStateSet()->setTextureAttributeAndModes(
 unit, cubemap.get());
}

5. In the computeLocalToWorldMatrix() method, we will try to obtain current
eye position from the osgUtil::CullVisitor object and apply it to the sky box's
matrix so that the center of the sky box will automatically be set to the eye point in
every frame.
bool SkyBox::computeLocalToWorldMatrix(osg::Matrix& matrix,
 osg::NodeVisitor* nv) const
{
 if (nv && nv->getVisitorType()==
 osg::NodeVisitor::CULL_VISITOR)
 {
 osgUtil::CullVisitor* cv =
 static_cast<osgUtil::CullVisitor*>(nv);
 matrix.preMult(osg::Matrix::translate(cv->getEyeLocal()));
 return true;
 }
 else
 return osg::Transform::computeLocalToWorldMatrix(matrix, nv);
}

6. The computeLocalToWorldMatrix() method will work on the
world-to-local matrix. So all its operations will be just opposite to the
ones in the computeLocalToWorldMatrix() method.
bool SkyBox::computeWorldToLocalMatrix(osg::Matrix& matrix,
 osg::NodeVisitor* nv) const
{
 if (nv && nv->getVisitorType()==
 osg::NodeVisitor::CULL_VISITOR)
 {
 osgUtil::CullVisitor* cv =
 static_cast<osgUtil::CullVisitor*>(nv);
 matrix.postMult(osg::Matrix::translate(
 -cv->getEyeLocal()));
 return true;
 }
 else
 return osg::Transform::computeWorldToLocalMatrix(matrix, nv);
}

Designing Creative Effects

260

7. In the main entry, we load the terrain model again.
osg::ArgumentParser arguments(&argc, argv);
osg::ref_ptr<osg::Node> scene = osgDB::readNodeFiles(
 arguments);
if (!scene) scene =
 osgDB::readNodeFile("lz.osg.90,0,0.rot");

8. Create a simple sphere as the sky geometry. Of course a box can fit the class name
SkyBox better, but a sphere is sometimes easier to handle and it has no seams.
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(new osg::ShapeDrawable(
 new osg::Sphere(osg::Vec3(), scene->getBound().radius())));

9. Apply the cube map to the sky node. Note that the sphere geometry needs to have a
new texture coordinate array for correct texture mapping. A default osg::TexGen is
enough in this recipe.
osg::ref_ptr<SkyBox> skybox = new SkyBox;
skybox->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, new osg::TexGen);
skybox->setEnvironmentMap(0,
 osgDB::readImageFile("Cubemap_snow/posx.jpg"),
 osgDB::readImageFile("Cubemap_snow/negx.jpg"),
 osgDB::readImageFile("Cubemap_snow/posy.jpg"),
 osgDB::readImageFile("Cubemap_snow/negy.jpg"),
 osgDB::readImageFile("Cubemap_snow/posz.jpg"),
 osgDB::readImageFile("Cubemap_snow/negz.jpg"));
skybox->addChild(geode.get());

10. Create the scene graph and start the viewer.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(scene.get());
root->addChild(skybox.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

11. Now manipulate the camera to view the example terrain, and you will see the clouds
and snow mountains at an unreachable distance. This makes the entire scene look
larger and more vivid, and there is no need to render real sky geometries at all, which
may slow down the frame rate sharply.

Chapter 6

261

How it works...
The scenery is projected to the sky-box faces using a technique named cube mapping.
This is a kind of environment mapping method that uses a six-sided cube as the map
shape. You have to provide six separated panoramic sky images and use them to generate
such a cube map texture. An unfolded picture of the six faces of the cube is shown in the
following screenshot:

Designing Creative Effects

262

OSG uses osg::TextureCubeMap class to support cube mapping. It requires the
geometries to have 3D texture coordinates (XYZ, or STR in texture coordinates). The
osg::TexGen class can generate them in object mode quickly, but it is still suggested
that you specify the texture coordinates yourselves to provide more flexibility in your
own applications.

Creating a simple water effect
Real-time water rendering is one of the most interesting and challenging topics in
computer games and virtual reality applications. There are several types of water in the
natural world such as the ocean, lake, river, and so on. The basic components of a complete
water simulation include water waves, ripples, reflections, refractions, foams, and caustics.
Of course it is difficult work to implement all of them in just one example. In fact, we can even
write another book to talk about various water rendering techniques. So we would like to make
this recipe as an easy start for people who have an interest in this topic.

In Chapter 2, we have already discussed about the reflection of a scene. And in the last few
recipes, we worked with rendering-to-texture cameras. This time we will merge them together
to have a flight flying in the air with its inverted image on the water plane. After that, we are
going to add some noise as waves and ripples, and combine them to generate a simple but
workable water scene.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/TexGen>
#include <osg/ShapeDrawable>
#include <osg/Geometry>
#include <osg/ClipNode>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>

2. Although this is so called 'a simple water effect', the vertex shader code is still too
long to read through. We will try to explain its main theory later in the How it works
section. Please find details in the source code package of this book.
static const char* waterVert = {
 ... // Please find details in the source code
};

Chapter 6

263

3. The fragment shader is lengthy too. It requires at least two input textures: the default
water texture, reflection map, refraction map, and the normal map for lighting.
static const char* waterFrag = {
 ... // Please find details in the source code
};

The createTexture() function reads an image file and returns a new 2D texture.
osg::Texture2D* createTexture(const std::string& filename)
{
 ... // Please find details in the source code
}

4. In the main entry, load a model and use it as the scene reflected on the
water surface.
osg::ArgumentParser arguments(&argc, argv);
osg::ref_ptr<osg::Node> scene = osgDB::readNodeFiles(
 arguments);
if (!scene) scene = osgDB::readNodeFile("cessna.osg");

5. Use transformation and clip nodes to construct the reversed scene. This is exactly the
same as we have done in the reflection example in Chapter 2.
float z = -20.0f;
osg::ref_ptr<osg::MatrixTransform> reverse =
 new osg::MatrixTransform;
reverse->preMult(osg::Matrix::translate(0.0f, 0.0f, -z) *
 osg::Matrix::scale(1.0f, 1.0f, -1.0f) *
 osg::Matrix::translate(0.0f, 0.0f, z));
reverse->addChild(scene.get());

osg::ref_ptr<osg::ClipPlane> clipPlane = new osg::ClipPlane;
clipPlane->setClipPlane(0.0, 0.0, -1.0, z);
clipPlane->setClipPlaneNum(0);

osg::ref_ptr<osg::ClipNode> clipNode = new osg::ClipNode;
clipNode->addClipPlane(clipPlane.get());
clipNode->addChild(reverse.get());

6. Use a render-to-texture camera to render the reversed scene to a texture.
osg::ref_ptr<osg::Texture2D> tex2D = new osg::Texture2D;
tex2D->setTextureSize(1024, 1024);
tex2D->setInternalFormat(GL_RGBA);

osg::ref_ptr<osg::Camera> rttCamera =
 osgCookBook::createRTTCamera(osg::Camera::COLOR_BUFFER,
 tex2D.get());
rttCamera->addChild(clipNode.get());

Designing Creative Effects

264

7. Now let us create the water plane and map the reflection map onto it later with
the shaders.
const osg::Vec3& center = scene->getBound().center();
float planeSize = 20.0f * scene->getBound().radius();
osg::Vec3 planeCorner(center.x()-0.5f*planeSize,
 center.y()-0.5f*planeSize, z);
osg::ref_ptr<osg::Geometry> quad =
 osg::createTexturedQuadGeometry(
 planeCorner, osg::Vec3(planeSize, 0.0f, 0.0f),
 osg::Vec3(0.0f, planeSize, 0.0f));

osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(quad.get());

8. Add all other textures to the water plane's state set.
osg::StateSet* ss = geode->getOrCreateStateSet();
ss->setTextureAttributeAndModes(0, tex2D.get());
// the reflection texture (RTT of the cessna)
ss->setTextureAttributeAndModes(1,
 createTexture("Images/skymap.jpg")); // the default texture
ss->setTextureAttributeAndModes(2,
 createTexture("water_DUDV.jpg")); // the refraction texture
ss->setTextureAttributeAndModes(3,
 createTexture("water_NM.jpg")); // the normal texture

9. Add create the shader program object and uniforms.
osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader(new osg::Shader(osg::Shader::VERTEX,
 waterVert));
program->addShader(new osg::Shader(osg::Shader::FRAGMENT,
 waterFrag));
ss->setAttributeAndModes(program.get());
ss->addUniform(new osg::Uniform("reflection", 0));
ss->addUniform(new osg::Uniform("defaultTex", 1));
ss->addUniform(new osg::Uniform("refraction", 2));
ss->addUniform(new osg::Uniform("normalTex", 3));

Chapter 6

265

10. Build the scene graph and start the viewer.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(rttCamera.get());
root->addChild(geode.get());
root->addChild(scene.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
return viewer.run();

11. Use your mouse to manipulate the camera and get near to the Cessna model and its
inverted reflection in water. You can see the waves and ripples on the water plane.
Although it is still rough for use in real applications, you may find that it contains most
basic elements of water simulation and can be improved to provide much better
effects in future.

Designing Creative Effects

266

How it works...
Although it will be much better if you construct grid geometry and perform transformations
on it to simulate waves, we still select to use noise textures here to simplify the program. The
vertex shader helps calculate the light and eye directions of each vertex, and transform them
to the tangent space, which is also mentioned in the bump mapping example. We assume
that the normal is always vec3(0.0, 0.0, 1.0) and, thus, directly have the tangent
transformation matrix as shown in the following block of code:

vec3 T = vec3(0.0, 1.0, 0.0);
vec3 N = vec3(0.0, 0.0, 1.0);
vec3 B = vec3(1.0, 0.0, 0.0);
...
mat3 TBNmat;
TBNmat[0][0] = T[0]; TBNmat[1][0] = T[1]; TBNmat[2][0] = T[2];
TBNmat[0][1] = B[0]; TBNmat[1][1] = B[1]; TBNmat[2][1] = B[2];
TBNmat[0][2] = N[0]; TBNmat[1][2] = N[1]; TBNmat[2][2] = N[2];

Another important step in the vertex shader is to compute two texture coordinates for wave
and ripple computing. They come from the built-in OSG uniform osg_FrameTime, so they will
change all the time when the program is running.

In the fragment shader, we read from the refraction map, which is in fact the derivation of a
normal map (a DUDV map), for texture coordinate distortion. The distorted UV values are
used for retrieving normal vectors from the normal map for light computation, as well as
reading from the base and reflection textures for final output. The wave and ripple effects
are generated because of the distortion too.

There's more...
If you have interests in learning more about water simulation, especially realistic ocean
simulation, you must not miss the osgOcean project, which is developed as part of an
EU funded research initiative. You can find more information and the full source code at
http://code.google.com/p/osgocean/.

Creating a piece of cloud
Clouds are ubiquitous, unique, and beautiful existences of the world. They exist in the
atmosphere and can have different shapes and types due to the meteorology factors. A huge
aggregation of clouds may lead to precipitation as a result. All of these will be great features
in computer games if they can be simulated in a certain way.

http://code.google.com/p/osgocean/
http://code.google.com/p/osgocean/

Chapter 6

267

As clouds are made up of many small liquid droplets or frozen crystals, they can be treated
as a visible mass of these particles, with each particle placed at a certain position with
brightness and a color value. This is actually the basic concept of our cloud simulation
implementation in this recipe.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/BlendFunc>
#include <osg/Depth>
#include <osg/Texture2D>
#include <osg/Drawable>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
#include <algorithm>
#include <fstream>
#include <iostream>

2. Define the CloudBlock class. As it is a drawable class, the most important methods
to derive will be computeBound() and drawImplementation(). It also includes
two structure definitions—the CloudCell records a basic cloud cell's attributes, and
the LessDepthSortFunctor functor (function object) for sorting cloud cells from
back to front (in depth order).
class CloudBlock : public osg::Drawable
{
public:
 struct CloudCell
 {
 ...
 };

 struct LessDepthSortFunctor
 {
 ...
 };

public:
 ... // Please find details in the source code

protected:
 void renderCells(const osg::Matrix& modelview) const;

 mutable CloudCells _cells;
};

Designing Creative Effects

268

3. Define the CloudCell structure. A cloud cell in our recipe must have the position,
brightness, and density (transparency) parameters.
CloudCell() : _brightness(0.0f), _density(0.0f) {}

bool operator==(const CloudCell& copy) const
{
 return _pos==copy._pos && _brightness==copy._brightness &&
 _density==copy._density;
}

osg::Vec3d _pos;
float _brightness;
float _density;

4. The LessDepthSortFunctor structure will calculate a hypothetical depth value (as
the cells are not really rendered so there are no values in the depth buffer, we have to
compute approximate ones here) for each cell according to current view matrix, which
is passed as the constructor's argument. It is used as a descending sort functor
(depth values from the largest to smallest) while drawing and blending cloud cells.
LessDepthSortFunctor(const osg::Matrix& matrix)
{
 _frontVector.set(-matrix(0,2), -matrix(1,2),
 -matrix(2,2), -matrix(3,2));
}

bool operator()(const CloudCell& lhs, const CloudCell& rhs)
 const
{
 return getDepth(lhs._pos) > getDepth(rhs._pos);
}

// The front vector is just the direction from view center to
// the viewer's eye, so we compute the depth by obtaining the
// dot product (in fact projects pos on the vector)
float getDepth(const osg::Vec3d& pos) const
{
 return (float)pos[0] * _frontVector[0] +
 (float)pos[1] * _frontVector[1] +
 (float)pos[2] * _frontVector[2] + _frontVector[3];
}

osg::Vec4 _frontVector;

Chapter 6

269

5. Computing the cloud's bounding box can help cull it correctly.
osg::BoundingBox CloudBlock::computeBound() const
{
 osg::BoundingBox bb;
 for (CloudCells::const_iterator itr=_cells.begin();
 itr!=_cells.end(); ++itr)
 {
 bb.expandBy(itr->_pos);
 }
 return bb;
}

6. In the drawImplementation() method, we first re-sort all cloud cells using the
LessDepthSortFunctor, and then call the renderCells() method internally.
void CloudBlock::drawImplementation(osg::RenderInfo&
 renderInfo) const
{
 const osg::State* state = renderInfo.getState();
 if (!state || !_cells.size()) return;

 const osg::Matrix& modelview = state->getModelViewMatrix();
 std::sort(_cells.begin(), _cells.end(),
 LessDepthSortFunctor(modelview));

 glPushMatrix();
 renderCells(modelview);
 glPopMatrix();
}

7. The renderCells() will do the actual rendering work.
void CloudBlock::renderCells(const osg::Matrix& modelview) const
{
 ...
}

Designing Creative Effects

270

8. Prepare for the rendering. Here px and py are calculated from the model-view
matrix. They in fact represent the right and up vectors in the eye coordinates. These
parameters can help draw cloud cells later because they must face the screen all the
time if rendered as a quad.
osg::Vec3d px = osg::Matrix::transform3x3(modelview,
 osg::X_AXIS);
osg::Vec3d py = osg::Matrix::transform3x3(modelview,
 osg::Y_AXIS);
px.normalize(); py.normalize();

double size = 1.0f, scale = 1.0f;
osg::Vec3d right, up;
glBegin(GL_QUADS);

9. Now for each cloud cell, we will compute a suitable color and alpha value according
to the preset variables in the CloudCell object and draw a quad directly. This is not
efficient but flexible enough if we need more operations on specified cloud cells, and
don't depend on any shader code so that it can work on some early machines.
unsigned int detail = 1;
unsigned int numOfCells = _cells.size();
for (unsigned int i=0; i<numOfCells; i+=detail)
{
 const CloudCell& cell = _cells[i];
 osg::Vec3d pos = cell._pos;
 unsigned char alpha = (unsigned char)(cell._density);
 unsigned char color = (unsigned char)(cell._brightness *
 cell._density / 255.0f);
 right.set(px * size * scale);
 up.set(py * size * scale);
 ... // Use OpenGL calls. Find it in the source code
}
glEnd();

10. Don't forget to design a glow image for the cloud cell. This will be done in the
makeGlow() function, which designs glow images on the fly.
osg::Image* makeGlow(int width, int height, float expose,
 float sizeDisc)
{
 ... // Please find details in the source code
}

Chapter 6

271

11. The readCloudCells() function reads thousands of cloud cells from a data file
and, thus, generates a complete piece of cloud.
void readCloudCells(CloudBlock::CloudCells& cells,
 const std::string& file)
{
 ... // Please find details in the source code
}

12. In the main entry, we read the cloud data and construct the CloudBlock instance.
The data.txt file can be found in the source code directory of this book.
CloudBlock::CloudCells cells;
readCloudCells(cells, "data.txt");

osg::ref_ptr<CloudBlock> clouds = new CloudBlock;
clouds->setCloudCells(cells);

13. The next three steps: Add the osg::BlendFunc attribute to enable transparency;
disable writing to the depth buffer so cloud cells are drawn regardless of their
distances to eye, and then apply a glow texture on the cloud object.
osg::StateSet* ss = clouds->getOrCreateStateSet();
ss->setAttributeAndModes(new osg::BlendFunc(GL_ONE,
 GL_ONE_MINUS_SRC_ALPHA));
ss->setAttributeAndModes(new osg::Depth(osg::Depth::LESS,
 0.0, 1.0, false));
ss->setTextureAttributeAndModes(
 0, new osg::Texture2D(makeGlow(32, 32, 2.0f, 0.0f)));

14. Start the viewer at last:
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(clouds.get());

osgViewer::Viewer viewer;
viewer.setLightingMode(osg::View::SKY_LIGHT);
viewer.setSceneData(geode.get());
return viewer.run();

Designing Creative Effects

272

Now a big piece of cloud is created and rendered in the scene! It may cause a low
frame rate because of the heavy sorting and rendering work in OpenGL's immediate
mode. But at least we can learn to design our own clouds from this recipe, and as
there are no shaders in use, the source code can be migrated to some very early
devices to support cloud managing and rendering.

How it works...
The key work of this recipe is to sort the cloud particles (called CloudCell here) and render
them one by one. The first step is really costly as it must compute the depth value of each
cell and then arrange them from the largest to the smallest. The depth is the dot product of
current cloud cell position and the front vector, which is defined as the direction from the
eye to the view point. Cells with larger depth will be placed at the front indices of the list, so
they will be rendered at the beginning, and then blended with successor cells to generate
approximate cloud effects.

We may speed up the program by replacing the outdated glBegin()/glEnd() functions
with OpenGL's point sprite extension. But the sorting process can hardly be removed because
of the transparency sorting feature. Maybe you can think of some GPU-based algorithms in
the future to improve this example for your own use.

Chapter 6

273

Customizing the state attribute
OSG provides over 40 kinds of state attributes that can be applied to the state set of a node
or geometry. These attributes work well with OpenGL's state machine mechanism as they
are set before the geometries and are rendered to support fixed and shader effects. Some
attributes can cooperate with modes, which enable or disable a specific state immediately. All
these operations are defined and executed in osg::StateAttribute derived classes. So,
how can we inherit the osg::StateAttribute class? This is actually what we are going to
talk about.

You may still remember that we have already integrated NVIDIA Cg and OSG within the
camera draw callbacks in Chapter 2. Now we would like to rewrite this example to use a
custom-state attribute instead. Most Cg-related functions and initialization methods are
just the same as before, so we can focus on the implementation of the new attribute class
in the following sections.

How to do it...
Let us start.

1. The headers to be included are just the same as the Cg integration example in
Chapter 2. And we will define a new macro that will be used to identify our Cg
state attribute later.
#define CGPROGRAM_ID 0x1000

2. Declare the CgProgram class derived from osg::StateAttribute. The
META_StateAttribute macro must be used with the identity macro to
make the attribute register in the state set.
class CgProgram : public osg::StateAttribute
{
public:
 CgProgram() : _initialized(false) {}

 CgProgram(const CgProgram& copy, const osg::CopyOp&
 copyop=osg::CopyOp::SHALLOW_COPY)
 : osg::StateAttribute(copy, copyop),
 _profiles(copy._profiles), _programs(copy._programs),
 _initialized(copy._initialized)
 {}

 META_StateAttribute(osg, CgProgram, (
 osg::StateAttribute::Type)CGPROGRAM_ID);

 void addProfile(CGprofile profile);

Designing Creative Effects

274

 void addCompiledProgram(CGprogram prog)
 {
 _programs.push_back(prog);
 }

 virtual int compare(const osg::StateAttribute& sa) const;
 virtual void apply(osg::State& state) const;

protected:
 virtual ~CgProgram() {}

 std::vector<CGprofile> _profiles;
 std::vector<CGprogram> _programs;
 mutable bool _initialized;
};

3. We have to create a global Cg profile list here. We will see its usage later.
static std::vector<CGprofile> g_profiles;

4. The addProfile() method will add to the CgProgram class' member list and the
global list together.
void CgProgram::addProfile(CGprofile profile)
{
 _profiles.push_back(profile);
 g_profiles.push_back(profile);
}

5. The compare() (virtual method) is used to check if current attribute is different
from another one and, thus, share it or remove the redundancy. It uses kinds of
comparison macros for convenience.
int CgProgram::compare(const osg::StateAttribute& sa) const
{
 COMPARE_StateAttribute_Types(CgProgram, sa)
 COMPARE_StateAttribute_Parameter(_profiles)
 COMPARE_StateAttribute_Parameter(_programs)
 COMPARE_StateAttribute_Parameter(_initialized)
 return 0;
}

Chapter 6

275

6. The apply() method will be called during the drawing process. So we are going to
load and enable all Cg programs applied to the state attribute. To note, Cg profiles
must be disabled at the end of each frame, but OSG doesn't provide any virtual
method such as applyEnd(). A solution using the global profile list is shown
in the following code segment, and will be explained in the next section:
void CgProgram::apply(osg::State& state) const
{
 if (!_profiles.size())
 {
 // Disable all profiles in the default attribute
 for (unsigned int i=0; i<g_profiles.size(); ++i)
 cgGLDisableProfile(g_profiles[i]);
 return;
 }

 if (!_initialized)
 {
 for (unsigned int i=0; i<_programs.size(); ++i)
 cgGLLoadProgram(_programs[i]);
 _initialized = true;
 }

 for (unsigned int i=0; i<_programs.size(); ++i)
 cgGLBindProgram(_programs[i]);
 for (unsigned int i=0; i<_profiles.size(); ++i)
 cgGLEnableProfile(_profiles[i]);
}

7. The next work, including creating the NVIDIA Cg shader code and compiling/
releasing them in the main entry, is very similar to the code we have already
written in Chapter 2 earlier. The only difference is that we won't use the main
camera's post-draw callbacks but apply an instance of the customized
CgProgram attribute on the model instead.

The creation of the Cg program attribute is shown as follows:
osg::ref_ptr<CgProgram> cgProg = new CgProgram;
cgProg->addProfile(vertProfile);
cgProg->addProfile(fragProfile);
cgProg->addCompiledProgram(vertProg);
cgProg->addCompiledProgram(fragProg);
root->getOrCreateStateSet()->setAttribute(cgProg.get());

Designing Creative Effects

276

8. OK, the result seems completely the same as we had seen in Chapter 2. But this
time we use a completely different method to achieve the goal. A customized state
attribute is used to replace the camera callbacks. This gives us more flexibility as
state attributes can be applied to any nodes and geometries in a scene graph,
but camera callbacks must be set to a camera and will always affect all its child
nodes together.

How it works...
You must be interested about the use of the global profile list, g_profiles, and how can
OSG provide an 'end' process for attributes that require a finish sign (for example, Cg needs
cgGLDisableProfile() function to disable a shader after rendering). The following code
segments will disable all registered profiles:

if (!_profiles.size())
{
 for (unsigned int i=0; i<g_profiles.size(); ++i)
 cgGLDisableProfile(g_profiles[i]);
 return;
}

As a global variable, g_profiles has no relation to any concrete instance of the CgProgram
class and can only be called when there is no element in the _profiles member variable.
So, how can the _profiles be empty? The answer is simple, a newly allocated CgProgram
without calling the addProfile() method. But we never created such an empty object in
this recipe.

Chapter 6

277

However, OSG does. Every time we add a new attribute to the scene graph, another one using
the default constructor and default values will be created at the same time and stored in the
internal global state set of OSG's rendering back end.

When a drawable is going to be rendered, it will always apply the global state set first, and the
other state sets in its parent node path. That means the CgProgram attribute will be reset
at the very beginning of each geometry's rendering process. So cgGLDisableProfile()
function will be executed at the time when a geometry without applying Cg shaders is going
to be drawn. That just works as if we have an 'end' process! You can always provide such
'finishing' code in the apply() method and make sure it is called when the attribute is
allocated in default mode.

We can directly use osg::StateSet's getAttribute() and removeAttribute()
methods to obtain and erase this new attribute type. For example:

CgProgram* prog = static_cast<CgProgram*>(
 stateset->getAttribute(CGPROGRAM_ID));

7
Visualizing the World

In this chapter, we will cover:

 f Preparing the VirtualPlanetBuilder (VPB) tool

 f Generating a small terrain database

 f Generating a terrain database on the earth

 f Working with multiple imagery and elevation data

 f Patching an existing terrain database with newer data

 f Building NVTT support for device-independent generation

 f Using SSH to implement cluster generation

 f Loading and rendering terrain from the Internet

Introduction
It is always exciting to create and view a large area, for example, the earth, in our OSG-based
applications. A detailed terrain which can be paged dynamically and rendered smoothly is
necessary for geographic information system (GIS). And that is what we are going to discuss
in this chapter.

Early OSG developers may have heard of a simple utility named osgdem in the core OSG
releases at that time. It can build terrain data from original elevation and texture files and
makes the results easy to merge into the scene graph. There is even a BlueMarbleViewer
project showing how to build earth models with NASA's BlueMarble imagery using
OpenSceneGraph 1.2 at http://www.andesengineering.com/BlueMarbleViewer/.

http://www.andesengineering.com/BlueMarbleViewer/

Visualizing the World

280

The osgdem utility has grown to a complete terrain generation tool set named
VirtualPlanetBuilder, which is also managed by Robert Osfield, the OSG team leader. And
there are some other very good terrain builders and renderers. We will introduce one of them
in this chapter—the osgEarth project, which is maintained by developers at Pelican Mapping
(http://pelicanmapping.com/).

Building terrain requires original data. Some low-resolution data can be downloaded freely
from the Internet, but some of them cannot be used directly for commercial purposes. You
may have to obtain data from regular map-service providers and get permits first while
developing paid software such as GIS systems and earth viewers.

Preparing the VirtualPlanetBuilder (VPB) tool
The VirtualPlanetBuilder (VPB) is the best known terrain-creation tool based on OSG. It
uses the famous GDAL library to read a wide range of geospatial imagery and elevation
data formats, and build paged terrain database for real-time viewing and analyzing.

VPB was first designed as a terrain-generation tool in OpenSceneGraph 1.2. As it developed
so rapidly, it soon became a separate project focusing only on databases creation. It
now supports working under projected and earth coordinates, processing gigabyte- and
terabyte-sized data, cluster building using SSH, and different database optimization methods.

At the time the book is being written, VPB is still on its way to the stable 1.0 release. So we will
work on the latest trunk version of it while studying the next few recipes in this chapter.

You can read more about VPB at the following website:

http://www.openscenegraph.org/projects/VirtualPlanetBuilder

And for more about the GDAL project and its derivatives, refer to the following link:

http://www.gdal.org/

Getting ready
Before we build VPB from the source code and use it for terrain creation later, we should
establish some prerequisites. One is to install OSG headers and libraries at a reachable
location. Of course every reader of this book should be able to achieve this.

The other requirement is that you must have the GDAL library installed, which will be used
heavily in VPB for reading and parsing original raster data. You may download the source code
and build it from the source code too. But GDAL has already provided various downloadable
binaries for different platforms and versions. Linux, Mac OS X, and Windows users please see
the download link for details:

http://trac.osgeo.org/gdal/wiki/DownloadingGdalBinaries

http://pelicanmapping.com/
http://pelicanmapping.com/
http://www.openscenegraph.org/projects/VirtualPlanetBuilder
http://www.openscenegraph.org/projects/VirtualPlanetBuilder
http://www.gdal.org/
http://www.gdal.org/
http://trac.osgeo.org/gdal/wiki/DownloadingGdalBinaries
http://trac.osgeo.org/gdal/wiki/DownloadingGdalBinaries

Chapter 7

281

And Debian and Ubuntu developers can also make use of the common apt-get command to
obtain GDAL binaries and developer files:

apt-get install gdal-bin

apt-get install libgdal-dev

How to do it...
Let us start.

1. You will have to check out the VPB source code with any Subversion tool:
svn checkout http://www.openscenegraph.org/svn/

 VirtualPlanetBuilder/trunk VirtualPlanetBuilder

2. Start the cmake-gui executable and select the VPB source's root directory and a
new folder to place the building-related files.

3. Choose a suitable generator and start the configuration. Like the recipes in
Chapter 1, there will be a few options for you to check and edit before really
generating the makefiles or solution.

Visualizing the World

282

4. The GDAL group and the OSG group are the most important, without which you will
fail to make the VPB system work. Please open these two groups and see if include
directories and libraries are set. Under Linux, this is always done automatically
because most developer files can be located in the /usr and /usr/local
directories. But Windows users may have to specify the folders by themselves.

5. Click on Generate to create the makefiles. Note that it is disabled until you choose
Configure again to set up the options, as shown in the preceding screenshot. Next,
you can compile VPB in the build folder immediately using the following command:
sudo make

sudo make install

6. Windows users could choose Visual Studio as the generator. And Mac OS X users may
either use XCode project or UNIX makefiles.

7. Now you will find some more executables in the bin directory of your installation
folder. Among them, vpbmaster is the most important one and the only one to be
introduced in the remainder part of this chapter.

Chapter 7

283

How it works...
Most OSG-based projects, including VPB and some other projects introduced before
(osgOcean and so on), use CMake as the building system. So it is important for them to find
various OSG libraries as dependencies. CMake provides an automatic searching script which
can look for OSG installations under /usr and /usr/bin directories, as well as the place
indicated by the environment variable OSG_DIR. The CMake system will then try to find OSG's
necessary header files in the include subdirectory of each folder specified in OSG_DIR, and
library files in the lib subdirectory. If successful, it presets these locations as the default
values before the user-configuration process. This, of course, brings convenience when there
are too many options to set for the same dependency.

There is a similar solution for specifying GDAL options in CMake, but it uses another
environment variable GDAL_DIR instead, which indicates where GDAL binaries and
libraries are installed.

Generating a small terrain database
Looking into the installation folder, there are at least four new applications in the
bin directory:

 f vpbmaster: The main processor for terrain database generation. It is a
command-line tool without any GUI.

 f vpbcache: A tool for creating cache or building re-projections of original source data.

 f vpbsizes: A convenient calculator for computing tile sizes of specified terrain width
and height.

 f osgdem: The terrain-creating tool used internally for handling different terrain
tiles. There may be multiple osgdem applications running parallel when users use
vpbmaster to build a huge database.

The next step is to create a small terrain database (only a few megabytes) using the
vpbmaster tool. Of course, the first thing is to look for some adequate original data.

Getting ready
The Large Geometric Models Archive project at Georgia Tech has some excellent terrain data
that can be used here to show how VPB works with original geographic data. The project site
is managed by Greg Turk and Brendan Mullins. You can visit it at http://www.cc.gatech.
edu/projects/large_models/.

And we are mainly interested in the Grand Canyon data, which can be found at
http://www.cc.gatech.edu/projects/large_models/gcanyon.html.

http://www.cc.gatech.edu/projects/large_models/
http://www.cc.gatech.edu/projects/large_models/
http://www.cc.gatech.edu/projects/large_models/gcanyon.html
http://www.cc.gatech.edu/projects/large_models/gcanyon.html

Visualizing the World

284

Download the BMP format of the elevation and texture maps. We will use them along with the
vpbmaster tool soon.

You can't use these data for commercial purposes
without their permission.

How to do it...
Let us start.

1. First, we should put the downloaded BMP files in a suitable place. They can't be
used for generation yet as GDAL doesn't directly support this format. So we would
better convert these raster data into GeoTiff format, which allows geo-referenced
information to be integrated within a TIFF file. Now open a new terminal and type
the following command:
gdal_translate data/gcanyon_color_4k2k.bmp data/

 gcanyon_color_4k2k.png

gdal_translate data/gcanyon_height.bmp data/gcanyon_height.png

2. Here we assume that all terrain data are stored in the data folder of the working
directory, and use relative paths to specify them.

3. Use vpbmaster to build our first terrain database now. Here the argument -d
will specify the digital elevation map to use, and -t decides the imagery used as
textures. The option -o determines the output directory and root filename.
vpbmaster -d data/gcanyon_height.png -t data/

 gcanyon_color_4k2k.png -o output/out.osgb

4. The generation process may take a while depending on your system, so you can just
serve yourself a cup of tea while VPB is working. The output will be located at the
output folder. It will be created automatically if it doesn't exist.

Chapter 7

285

5. After the building process is completed, run osgviewer to see the terrain model.
osgviewer output/out.osgb

6. The entire output folder's size is over 150 MB, but it can be rendered and displayed
smoothly. You can either view the canyon in a global perspective, or press close to
one of the hills and valleys.

How it works...
Have a look at the generated directory. It includes a large number of files and folders with the
same name infix—L[a]_X[b]_Y[c]. Here a means the level number, and b and c are range
identifiers. Level 0 is the rough level, and level 6 in this example is the most detailed. In the
following screenshot, there is only one L0 subfolder and several L2 subfolders. So what do
they mean here?

Visualizing the World

286

VPB will always try to split the input image to some square sections, for instance, 4096 x
2048 (L0) will be separated into two 2048 x 2048 tiles. And they are named L1_X0_Y0 and
L1_X1_Y0, which lie in the out_root_L0_X0_Y0 folder. The L1 sections will then be split
again using the quad-tree structure, that is, each level's tile is divided into four pieces of the
next level. So we can see in the output folder four L2 subfolders (X0_Y0 to X1_Y1) for
L1_X0_Y0, and the other four (X2_Y0 to X3_Y1) for L1_X1_Y0. All child levels will be
placed in these L2 subfolders.

Thanks to OSG's paged LOD (level-of-details) mechanism, the tile will only be replaced by
its four sub-tiles when the viewer is near enough, and will render data of its range with a
higher resolution. The basic structure of a quad-tree LOD in terrain rendering is shown in
the following diagram:

PagedLOD

Geode
(rough)

Group
(refined)

PagedLOD
(nextLv)

PagedLOD
(nextLv)

PagedLOD
(nextLv)

PagedLOD
(nextLv)

Geode
(rough)

Group
(refined)

And the node structure can be described as follows:

osg::Group* nextLvGroup;
...
nextLvGroup->addChild(pagedNextTile1);
nextLvGroup->addChild(pagedNextTile2);
nextLvGroup->addChild(pagedNextTile3);
nextLvGroup->addChild(pagedNextTile4);
osg::PagedLOD* pagedThisTile;
...
thisTile->addChild(dataOfThisLevel); // The rough level
thisTile->addChild(nextLvGroup); // The refined level

The nodes pagedNextTile1 to pagedNextTile4 are actually files with the prefix
out_La'_Xb'_Yc'. In this case:

a' = a + 1
For tile1: b' = 2 * b, c' = 2 * c
For tile2: b' = 2 * b + 1, c' = 2 * c
For tile3: b' = 2 * b, c' = 2 * c + 1
For tile4: b' = 2 * b + 1, c' = 2 * c + 1

Chapter 7

287

There's more...
As .osgb is a binary native format, it is nearly impossible to quickly read and understand the
contents of the generated database. We can slightly change the command-line arguments of
vpbmaster to support writing to ASCII files (.osg or .osgt), as well as writing out tile images
(using --image-ext to set a valid image extension) at the same time:

vpbmaster -d data/gcanyon_height.png -t data/

 gcanyon_color_4k2k.png -o output/out.osg --image-ext bmp

By default, each tile of VPB is formed by 64 x 64 vertices and mapped by a 256 x 256 texture.
As the original elevation and texture size is 4096 x 2048, VPB must build at least seven
levels to get to the highest data resolution. The entire generation time may be too long and
the result may not be necessary in some situations. In this case, we can control the levels to
generate manually by specifying the -l parameter:

vpbmaster -l 3 -d data/gcanyon_height.png -t data/

 gcanyon_color_4k2k.png -o output/out.osgb

Other two useful arguments are --terrain (default) and --polygonal. The option
--terrain means to use the osgTerrain::TerrainTile class for generating grid
geometries based on height fields, which is used by default. The option --polygonal will
treat the data as triangle faces and must tessellate and simplify them while creating tiles,
which is much slower and not good for further analyzing work. The two opinions can't co-exist
in one terrain generation process.

Generating terrain database on the earth
The terrain we just generated comes from two simple bitmaps and is constructed with height
values along the Z axis. We can say that it is computed in a projected coordinate system. It
actually means that the terrain is defined on a flat, two-dimensional surface (with height). The
two dimensions (x- and y-coordinates) determine the area covered by the terrain. This model
can be easily understood and used in a scene, but it doesn't correspond with the geographic
coordinate system or with an existing place on the earth. As far as we know, terrain data are
often acquired by aircraft and satellites flying over a real region. So could we just build the
data in the earth's coordinate? This kind of coordinate system is always called the geographic
coordinate system.

Visualizing the World

288

Getting ready
You may either download the earth's imagery from the TrueMarble or BlueMarble website:

TrueMarble:
http://www.unearthedoutdoors.net/global_data/true_marble/download

BlueMarble: http://earthobservatory.nasa.gov/Features/BlueMarble/

We are going to make use of the free data from TrueMarble. Here is their copyright information:

"Unearthedoutdoors.net contains graphics, information, data, reviews, and other content
accessible by any Internet user. All Content is owned and/or copyrighted by Unearthed
Outdoors, LLC (unless otherwise explicitly noted), and may be used only in accordance
with this limited use license.

Unearthed Outdoors, LLC is protected by copyright pursuant to U.S. copyright laws,
international conventions, and other copyright laws."

You can't use these data for commercial purpose without the permissions from Unearthed
Outdoors, LLC.

How to do it...
Let us start.

1. To build databases in geographic coordinate, we can simply use the --geocentric
option while executing vbpmaster. The complete command is:
vpbmaster -t data/TrueMarble.4km.10800x5400.tif --geocentric

 -o output/out.osgb

Don't doubt the arguments we used this time. Yes, there is no -d option and thus no
elevation map specified. As we have already indicated to use the geocentric system
to build from the source, VPB will automatically use flat sea-level elevation data and
construct the earth geometry according to the given GeoTiff imagery.

2. After the generation process, you may view the terrain by calling osgviewer.

osgviewer output/out.osgb

And you will find that the result is a six-level quad-tree structure, which simulates a
realistic earth model with TrueMarble overlays, as shown in the following screenshot:

http://www.unearthedoutdoors.net/global_data/true_marble/download
http://www.unearthedoutdoors.net/global_data/true_marble/download
http://www.unearthedoutdoors.net/global_data/true_marble/download
http://earthobservatory.nasa.gov/Features/BlueMarble/
http://earthobservatory.nasa.gov/Features/BlueMarble/

Chapter 7

289

To note, the gcanyon data used in the last recipe is not suitable this
time. Those data don't have a valid WKT (well-known text) coordinate
system and must be re-projected so that VPB may then recognize
them as a piece of ground in the real world.

How it works...
OSG has a special node type osg::CoordinateSystemNode for the viewer system to
convert data between XYZ and latitude/longitude/height, and it also builds a local transition
matrix internally for node transformations in the scene graph. In polygonal mode (set
with the option --polygonal), VPB will set it as the parent node of the entire terrain
sub-graph to guide the creation of all sub-tiles on the earth. But in grid mode (--terrain),
the osgTerrain::Terrain, which is the derivative class, will be used instead. Both classes
store the earth dimension and coordinate information. The --geocentric option here will
indicate VPB to use the center of the earth as the terrain's center and defines units in meters
directly. It is actually defined as the ECEF coordinate system, which has an ellipsoid as the
measurement of the earth shape, called World Geodetic System 1984 (WGS-84). Refer
to the following link for details:

http://en.wikipedia.org/wiki/ECEF

http://en.wikipedia.org/wiki/ECEF
http://en.wikipedia.org/wiki/ECEF

Visualizing the World

290

There's more...
We can make use of some other coordinate systems by specifying the --cs option. It uses a
PROJ4 format string to declare new coordinate systems, for instance:

vpbmaster -cs "+proj=latlong +datum=WGS84" ...

More information about the coordinate system string format can be found at the following
PROJ4 project website:

http://trac.osgeo.org/proj/

Working with multiple imagery and
elevation data

It is impractical to put the whole earth's elevation or texture into only one file. That is because
the original data may be terabyte-sized or even larger and, thus, not easy to maintain. Saving
multiple images of different areas is a more suitable way, and convenient for outputting data
from surveying equipment. This requires VPB to read data from multiple inputs or from a
subdirectory including many smaller tiles' images, and merge them into one complete
terrain model. Fortunately, this can be done directly with the -d and -t options.

Getting ready
We will continue working on the earth model and try to add some height fields at a certain
longitude and latitude range. Thanks to the SRTM project, we can freely download and use
the globa-elevation data along with the textures for non-commercial purposes. The download
link is:

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp

Citation:

"Jarvis A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Hole-filled seamless SRTM data V4,
International Centre for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org."

You must read the disclaimer given in the following link before making use of SRTM's
elevation data for any purposes:

http://srtm.csi.cgiar.org/SELECTION/SRT_disclaimer.htm

http://trac.osgeo.org/proj/
http://trac.osgeo.org/proj/
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://srtm.csi.cgiar.org/SELECTION/SRT_disclaimer.htm
http://srtm.csi.cgiar.org/SELECTION/SRT_disclaimer.htm

Chapter 7

291

How to do it...
Let us start.

1. Let us first open the website and select a few areas we are interested in.

2. Download the elevation files found by SRTM's data search engine.

3. Put all TIFF files into a separate folder named srtm. Now it's time to start the
vpbmaster tool again.
vpbmaster -d data/srtm -t data/TrueMarble.4km.10800x5400.tif

 --geocentric -o output/out.osgb

Visualizing the World

292

4. View the final result with osgviewer. As VPB can automatically handle assemblage
of multiple files, you may either specify a directory as the parameter of -d and -t,
or use the same option for more than one time to add multiple files to the building
process, for example:
vpbmaster -d data/srtm/srtm_54_05.tif -d data/srtm/

 srtm_55_05.tif -d data/srtm/srtm_54_06.tif -d data/srtm/

 srtm_55_06.tif -t data/TrueMarble.4km.10800x5400.tif

 --geocentric -o output/out.osgb

5. The final result is shown in the following screenshot. You will find that there are
higher-resolution elevation data around the British Isles.

How it works...
You can find in the working directory a series of new files and folders, which are created and
managed by VPB. The build_master.source is an ASCII file wrapping up all the source
data and build options. Open it with any text editor, and you will find that the file looks like a
OSG native scene file (.osgt) and may even be loaded with the osgDB::readNodeFile()
function. It has an osgTerrain::TerrainTile node to save build options (output name,
extents, levels, and others) via the vpb::DatabaseBuilder object, and save child layers
for different input data.

Chapter 7

293

The build_master.tasks file records all the sub-tiles to be generated during the whole
process. The status of each sub-tile task can be found in the tasks folder. A standard status
file may be automatically written, as shown in the following code block:

application : osgdem --run-path /usr/local/bin -s
 build_master.source --record-subtile-on-leaf-tiles -l 8 --
 subtile 3 0 0 --task tasks/build_subtile_L3_X0_Y0.task --
 log logs/build_subtile_L3_X0_Y0.log
date : [building time]
duration : [building duration]
fileListBaseName : output\out_subtile_L3_X0_Y0/
 out_L3_X0_Y0.osgb.task.0
hostname : [host name]
pid : [pid]
source : build_master.source
status : [pending/completed]

A pending task indicates that the sub-tile is not created yet; and completed task means there
is no need to work on the sub-tile unless the user needs a complete rebuild. If the building
process is canceled, or crashes due to some system reason, you can make use of the task
files' status and rerun vpbmaster with the --tasks argument:

vpbmaster --tasks build_master.tasks

Tasks that are marked as completed will be skipped this time. Otherwise, when you execute
vpbmaster again, the finished data will be overwritten instead of a resuming process.

Patching an existing terrain database with
newer data

As you may see in Google Earth and some other 3D GIS explorers, sometimes newer and
more refined images captured by satellites may be added to the entire earth model, and this
helps you take a closer look at the places that are not distinct enough before. It might be
important to integrate newly obtained data to the scene and distribute them to end users
as soon as possible.

VPB can support patching of existing terrain database too. It requires the source file and
all the original data for reference, and will add new raster and elevation data to update the
database with higher resolution patches. It is extremely useful if we need to make some
changes on a generated terrain model or use higher resolution images to replace the
old ones.

Visualizing the World

294

How to do it...
To make use of the patching functionality, there are two prerequisites: first, you must have the
new data; and second, you should keep the build_master.source file and all source files
used to produce the old database, as they are needed for handling resolution and boundary
problems. Sub-tiles that are not affected by the new patch will not be rebuilt anymore.

Let us start.

1. We will patch the gcanyon data used in the first recipe in this chapter. Of course,
there are no real patches for use, so we have to create one by ourselves. Open your
Photoshop or GIMP and create a new white-colored picture, then save it as a TIFF file
(sub_gcanyon_height.tif, 1024 x 512 sized in this recipe). If we use this file as
an elevation patch, it means that the height field will be set to a very high value, and
old values will be totally overwritten.

2. We may have to create a world file (sub_gcanyon_height.wld) for specifying the
resolution and range of the patch file. The content of this ASCII file can be simply
written as shown in the following code block (this will be explained later):
0.5
0.0
0.0
-0.5
1000
500

3. Now place the world file and the TIFF file together in the data directory, and
start vpbmaster:
vpbmaster --patch build_master.source -d data/

 sub_gcanyon_height.tif

4. The build_master.source is the source file generated during the last build. The
building process may take less time than creating a complete gcanyon terrain. As
we specify the -d option this time, the height field will be recalculated to merge the
effect of the patch.

Chapter 7

295

5. Use osgviewer to view the output model. The white-colored elevation map is
constructed as a raised cube on the terrain, as shown in the following screenshot:

How it works...
The world file is an ASCII parameter file used for geo-referencing raster map images. It was
first introduced by the ESRI. This kind of files (with the extension .tfw, .tifw, or .wld) often
describes the location, scale, and rotation of the map with six lines (each with a decimal
number). When GDAL is going to read a TIFF file, it will automatically look for a world file with
the same name and associate these two files together for gathering necessary information.

The meaning of the six-line parameter is as follows:

 f Line 1: pixel size along X (0.5 here).

 f Line 2: rotation about X (0 in most cases).

 f Line 3: rotation about Y (0 in most cases).

 f Line 4: pixel size along Y. It's often a negative number because image data are stored
from top to bottom (-0.5 here).

 f Line 5: center X of the upper-left pixel (1000 here).

 f Line 6: center Y of the upper-left pixel (500 here).

Because the newly-created patch file (sub_gcanyon_height.tif) doesn't contain any
geographic information inside, we have to provide a world file to place it at an appropriate
place and with suitable resolution. If you have GDAL installed, we will find an executable
named gdalinfo. Let us use it to check the image with the associated .wld file:

gdalinfo data/sub_gcanyon_height.tif

Visualizing the World

296

And you will get some report, as shown in the following code block:

Corner Coordinates:
Upper Left (999.750, 500.250)
Lower Left (999.750, 244.250)
Upper Right (1511.750, 500.250)
Lower Right (1511.750, 244.250)
Center (1255.750, 372.250)

Because the patch is 1024 x 512 but only covers a 500 x 250 area, the maximized level will
increase to 7. And you could see some L7 files in part of the subfolders of output, maybe
L2_X0_Y0 and L2_X1_Y0 in this recipe, as the new patch has intersections with them.

In fact it is common to obtain geospatial data in the GeoTIFF format instead, which already
has such metadata embedded.

Building NVTT support for
device-independent generation

By default, VPB uses the osg::Image and osg::Texture classes to generate compressed
data formats for internal use, and create mipmaps if required. They both encapsulate OpenGL
functions for implementing such work, and thus must be used on systems where a graphic
card, capable of providing an OpenGL rendering context, is available. This may not be a
problem in most cases, but because of the development of new compressed texture formats,
there are still possibilities that your graphic cards don't afford these features, or you simply
don't have a graphics card supporting OpenGL at all (for example, headless cluster or server
computers). All these may lead to VPB's functionality missing and a failure to build terrain
database on such machines.

Fortunately we could make use of the NVIDIA Texture Tools (NVTT), which is an open source
image processing and texture manipulation project. In this recipe, we will compile and use it
to configure a new OSG plugin named osgdb_nvtt, and make VPB depend on it to generate
device-independent textures and terrain models.

Getting ready
You can download the latest NVTT source code from the following link:

http://code.google.com/p/nvidia-texture-tools/downloads/list

Or you can use SVN to check it out:

svn checkout http://nvidia-texture-tools.googlecode.com/

 svn/branches/2.0/ nvtt

http://code.google.com/p/nvidia-texture-tools/downloads/list
http://code.google.com/p/nvidia-texture-tools/downloads/list

Chapter 7

297

NVTT also provides CMake scripts for cross-platform building. But for Linux users, you can
directly compile it by executing the following commands under the NVTT root directory:

./configure
make
make install

An important note for building NVTT with CMake: By default, CMake will generate makefiles for
compiling static libraries, but in this way the results will not work for the corresponding OSG
plugin. So you must add a definition NVTT_SHARED=1 to force generating shared libraries
while running the cmake executable, that is:

cmake /home/nvtt -DNVTT_SHARED=1

The cmake-gui tool can't be used here as it doesn't allow macros to be added as arguments.

How to do it...
Let us start.

1. Now start the cmake-gui tool and select to configure the OpenSceneGraph
directory. Find the group NVTT and set nvcore as the NVTT_LIBRARY, and the
directory containing nvtt/nvtt.h as the NVTT_INCLUDE_DIR value.

Visualizing the World

298

2. Rebuild OpenSceneGraph now. If you have kept all the build files before, the building
process will be much faster as only a few projects should be compiled.

3. Make sure to run 'make install' and see if there is a new osgdb_nvtt plugin in
the dynamic library's directory (lib for UNIX and bin for Windows).

Do we have to rebuild VPB as well? The answer is absolutely not. VPB will
automatically look for the NVTT plugin and make use of it for terrain generation
regardless of graphics contexts.

4. Now, if you have an old enough computer, turn it on and try to run VPB to generate
the gcanyon data again. You will see that VPB can work smoothly under such
devices too.

How it works...
As we know, OSG uses the osgDB::ReaderWriter class as the base interface of all
reader/writer plugins. Every file format is parsed within a certain plugin and then returned an
osg::Image or osg::Node pointer as the result (or save to specified filename while writing
scene nodes and images). For instance, COLLADA 3D models are handled by osgdb_dae. You
will see a ReaderWriterDAE class defined in the DAE plugin source code which implements
the concrete data reading and conversion.

But in this recipe, we meet another kind of OSG plugins—the image processor plugin. It uses
a base interface called osgDB::ImageProcessor and implements its derived classes in
plugins. This class has two important virtual methods to override:

virtual void compress(osg::Image&,
 osg::Texture::InternalFormatMode, bool, bool,
 CompressionMethod, CompressionQuality);
virtual void generateMipMap(osg::Image&, bool,
 CompressionMethod);

Re-implement them and then the processor will be able to compress images to specific
formats and generate mipmaps for them. That is also what the osgdb_nvtt plugin does
with the external NVTT library.

Using SSH to implement cluster generation
The computer cluster is a more and more common concept in modern development. It means
a group of linked computers working together, and often connecting to each other through the
Local Area Network (LAN). It improves the performance and availability compared with just a
single computer, but of course it is much more costly.

Chapter 7

299

Could we use VPB on such a cluster system and benefit from the high availability and speed?
Of course. As we already know, it is not a short task to build terrain with VPB, especially when
the original data are extremely large. So a computer cluster used for computational purposes
can be of great help. The original data can be stored using the Network File System (NFS)
technique so that all computers can get access to data stored in the same place. And there
should be one primary computer which takes care of the task distribution and keeps in
communication with all other slave nodes who build parts of the
tiles simultaneously.

In the following section, we will mainly introduce the configuration under Linux. Windows
and Mac OS X users may have troubles using the same steps. Please first read the related
instructions on the OpenSSH website, and set up your own SSH environment.

How to do it...
Let us start.

1. We can use the Secure Shell (SSH) protocol to communicate with a remote
computer and send commands to it. Please make sure you have had the OpenSSH
(http://www.openssh.com/) service installed and enabled. Type the following
command to connect to user user1 at remote computer 192.168.1.10 (of course,
they are both fictional), and execute the vpbmaster tool without parameters:
ssh user1@192.168.1.10 vpbmaster

2. If you have already installed OSG and VPB on the remote computer, the command
should work. But you may have to input the password before login. VPB will also try
to execute ssh internally while working with cluster systems, so it is important to
prevent inputting the password all the time. Developers who are familiar with SSH
can quickly do this by sending a public key to each remote host:
ssh-keygen -t rsa

ssh-copy-id user1@192.168.1.10

3. Create a new text file named machinepool.txt (or any other name) and provide
all remote computer names and numbers of CPUs you want to use, as shown in the
following code block:
Machine {
 hostname user1@192.168.1.10
 processes 1
}
Machine {
 hostname user2@192.168.1.11
 processes 1
}

http://www.openssh.com/

Visualizing the World

300

Machine {
 hostname user3@192.168.1.12
 processes 1
}
...

4. Now let us start building the real global data with the --machines option (assuming
they are stored in /nfs/data):
vpbmaster --machines machinepool.txt -d /nfs/data/srtm

 -t /nfs/data/TrueMarble.4km.10800x5400.tif --geocentric

 -o output/out.osgb

5. Enjoy the process. Is it a much shorter journey this time?

How it works...
Do you remember the sub-tile task files in the tasks folder? Let us open some task files
randomly this time and have a look at the hostname line:

fileListBaseName : output\out.osgb.task.0
hostname : user1@192.168.1.10
...
fileListBaseName :
 output\out_subtile_L3_X0_Y0/out_L3_X0_Y0.osgb.task.0
hostname : user2@192.168.1.11
...
fileListBaseName :
 output\out_subtile_L3_X0_Y1/out_L3_X0_Y1.osgb.task.0
hostname : user3@192.168.1.12
...

You can find that VPB automatically divides the tasks and sends commands to different hosts
within the local network. It's really good to see that a series of high-performance computers
can cooperate so smoothly on a huge generation work. It really is a time-saving idea if you
have such an environment!

There's more...
To build a NFS system, you can try the GlusterFS at http://www.gluster.org/.

And for SSH implementations under different platforms, see the OpenSSH website for details:

http://www.openssh.com/

http://www.gluster.org/
http://www.openssh.com/

Chapter 7

301

Loading and rendering terrain from the
Internet

VPB generated terrain tiles are so small that they can be easily transferred on the Internet or
an intranet. And because of the osgdb_curl plugin, which depends on the cURL library, OSG
can quickly read these files from remote servers through multiple protocols. These will be the
foundation for loading and rendering terrain databases from the web.

OSG also provides a simple file-cache mechanism that writes temporary files, reads from the
web to local disk, and loads the disk file directly when the same transferring request comes
again. At present, it only works for paged nodes that are dynamically managed (loaded or
removed due to current view point) by the osgDB::DatabasePager class. This solution
prevents user applications from visiting remote websites and downloading unchanged data
repeatedly and thus saves bandwidth and loading time.

How to do it...
Let us start.

1. It is easy to get a quick taste of rendering-terrain databases on a web server. First
you should have a website to store terrain files and provide access authority to
anonymous visitors. AppServ (http://www.appservnetwork.com/) might
be a way to create such a site.

2. Copy all the files in the output directory to the site. They are just generated by VPB in
the last recipes of this chapter.

3. Make sure the server is enabled and running. Assume the hostname is 127.0.0.1
(localhost), and start osgviewer:
osgviewer http://127.0.0.1/output/out.osgb

4. Now you will be able to view the database previously created. Of course it may be too
simple to show the powerful web support in OSG. So this time we will try to display a
larger earth model from a real remote server:
osgviewer http://www.openscenegraph.org/data/

 earth_bayarea/earth.ive

This 547 MB paged database is composed of the NASA BlueMarble data and the
high-resolution bay area of California, USA. You may navigate to the area to have a
look at some very detailed data. And if your Internet service provider doesn't have a
good bandwidth, the loading of sub-tiles may be slow, and it will be painful when you
zoom in and out multiple times.

http://www.appservnetwork.com/
http://www.appservnetwork.com/

Visualizing the World

302

5. Now it's time to use the file cache mechanism. Just set a new environment and create
a new folder for caching:
export OSG_FILE_CACHE = /home/cache

mkdir /home/cache

6. You may specify any folder as the cache folder. Make sure you have read/write
permissions there.

7. Now try step 4 again. Enjoy the picture of the bay area, and exit the viewer program
after a while.

8. Go to the cache folder and you will find that it records the sub-tiles you have visited,
and thus makes the loading speeds of same files faster.

How it works...
The file cache is checked and reused while the database pager is processing paged nodes
in request. First, it determines if a new name is a remote filename (with the hostname at the
beginning of the name string). If so, it will try to find the required hostname and filename in
the cache folder. If it succeeds, the pager will mark the request as 'high latency' and directly
read from the local cached files later.

You can also decide if a file should be cached or not by specifying an
osgDB::FileLocationCallback object. It has two virtual methods to override:

virtual Location fileLocation(const std::string& filename,
 const Options* options);
virtual bool useFileCache() const;

The first method will return if the file is local (LOCAL_FILE) or remote (REMOTE_FILE), and
local files will not be added to the cache. The second method can quickly enable or disable
the use of caching. You can at any time specify your own location callback by calling the
setFileLocationCallback() method of the reading option object:

osg::ref_ptr<osgDB::Options> options = new osgDB::Options;
options->setFileLocationCallback(ownCallback);
pagedNode->setDatabaseOptions(options.get());

Chapter 7

303

There's more...
OSG also supports a revision mechanism that can provide adding/removing/modifying
information of the remote terrain database. The database pager will then decide if the scene
graph must be updated due to changes on the remote server. This functionality is not enabled
by default at the time of writing this book, but you can try the osgdatabaserevisions
example in the OSG source code to see how it works.

8
Managing Massive

Amounts of Data

In this chapter, we will cover:

 f Merging geometry data

 f Compressing textures

 f Sharing scene objects

 f Configuring the database pager

 f Designing simple culling strategy

 f Using occlusion query to cull objects

 f Managing scene objects with an octree algorithm

 f Rendering point cloud data with draw instancing

 f Speeding up the scene intersections

Introduction
It is more and more common to handle massive scene data in 3D programs. Terrain
visualization is one common usage that converts extremely high-resolution images into grid
or triangular models. We have already discussed terrain building with VPB in Chapter 7.
However, this is not enough. Many types of unordered data, such as the geographical and
geological information, point cloud from scanners, crowded people and vehicle models, and
other scientific data, should also be reconstructed and rendered in 3D applications. It is not
surprising if these kinds of data include millions or even billions of points and triangles. Also,
we must think of some solutions to cull and render them within the limits of the operating
system and hardware abilities.

Managing Massive Amounts of Data

306

In this chapter, we will introduce some common methods to optimize nodes, geometries, and
textures in OSG, and provide several ways to cull scene objects, in order to reduce the number
of objects before they are sent to the rendering pipeline. A spatial indexing algorithm called an
octree is also introduced here with a very simple example.

We will add some more common functions in the osgCookBook namespace. They are used
for generating random values for constructing huge scenes. The randomValue() function
will return a float value between min and max. The randomVector() function returns a 3D
vector with one component each between the min and max values. The randomMatrix()
function will return a new 4x4 matrix, which is made up of a translation and an euler rotation
operation. The translation and the angle values are randomly generated between the input
min and max parameters.

Namespace osgCookBook {

float randomValue(float min, float max)
{
 return (min + (float)rand()/(RAND_MAX+1.0f) * (max - min));
}

osg::Vec3 randomVector(float min, float max)
{
 return osg::Vec3(randomValue(min, max),
 randomValue(min, max),
 randomValue(min, max));
}

osg::Matrix randomMatrix(float min, float max)
{
 osg::Vec3 rot = randomVector(-osg::PI, osg::PI);
 osg::Vec3 pos = randomVector(min, max);
 return osg::Matrix::rotate(rot[0], osg::X_AXIS, rot[1],
 osg::Y_AXIS, rot[2], osg::Z_AXIS)*osg::Matrix::translate(pos);
}

}

Merging geometry data
It is common in a complex program to contain hundreds of thousands of geometry objects. For
example, a digital city running on the local machine or the Internet may have 10,000 detailed
houses, and each house can have doors, windows, fences, and many other components.

Chapter 8

307

It may be sometimes confusing for developers in this situation—should we try to merge all
(or majority) of them in to one osg::Geometry object or use more geometries to represent
the different house elements? The answer depends on different situations that we may face.
However, less geometry objects always perform better while rendering the same number of
triangles, as the shown in the following section.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Geometry>
#include <osg/Group>
#include <osgDB/ReadFile>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>

2. We will try to show the importance of merging geometries, so the first thing is to have
a createTilescreateTiles() function to create as many geometries as possible
and force the scene to be slow:
osg::Node* createTiles(unsigned int cols, unsigned int
 rows)
{
 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 for (unsigned int y=0; y<rows; ++y)
 {
 for (unsigned int x=0; x<cols; ++x)
 {
 osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;
 ... // Please see the source code for details
 geode->addDrawable(geom.get());
 }
 }
 return geode.release();
}

3. Now, let us try rendering these geometries:
osgViewer::Viewer viewer;
viewer.setSceneData(createTiles(300, 300));
viewer.addEventHandler(new osgViewer::StatsHandler);
return viewer.run();

Managing Massive Amounts of Data

308

4. Press the S key to see the frame rate. I have tested it on an Intel Dual-Core computer
with a GTX 460 graphics card, which achieved an underwhelming 20FPS. Absolutely
not a good performance!

5. Rewrite the createTiles() function and use only one osg::Geometry instance
to contain all the quads. Compile and check the frame rate again:
osg::Node* createTiles(unsigned int cols, unsigned int
 rows)
{
 unsigned int totalNum = cols * rows, index = 0;
 osg::ref_ptr<osg::Vec3Array> va = new
 osg::Vec3Array(totalNum * 4);
 osg::ref_ptr<osg::Vec3Array> na = new
 osg::Vec3Array(totalNum);
 osg::ref_ptr<osg::Vec4Array> ca = new
 osg::Vec4Array(totalNum);

 osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;

Chapter 8

309

 for (unsigned int y=0; y<rows; ++y)
 {
 for (unsigned int x=0; x<cols; ++x)
 {
 ... // Please see the source code for details
 }
 }

 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(geom.get());
 return geode.release();
}

6. The rendering result is not changed, but the frame rate can rise to at least 60FPS this
time (60 is the refreshed frequency for most kinds of displays unless you disable the
vertical sync feature).

How it works...
Every osg::Drawable object by default will generate a display list on the GPU side, which
can speed up the rendering process of static elements. These display lists, if too many, will
decrease the frame rate, and affect the rendering performance. That happens because there
is always a fixed cost for the execution of a display list, no matter how much or how little work
that list does. Thus, if possible, we have to merge the osg::Geometry objects in this recipe
to reduce such cost.

Of course, merging of geometries may lose some necessary information. For example, if each
of the geometries has a different texture applied, it is nearly impossible to combine them into
one osg::Geometry object. In that case, some other solutions may have to be considered,
such as dividing the scene using quadtree or octrees.

The same problem may occur if you want to use vertex buffer object (VBO) on geometries and
don't merge them, as VBO has to create buffer data for each of the geometry's vertices and
vertex attribute arrays.

Managing Massive Amounts of Data

310

Compressing texture
OpenGL provides a series of texture compression methods and new internal texture formats
for faster rendering and lower memory requirements. The compression mainly boosts the
speed of downloading textures into the texture memory and reduces the file size on the local
disk. Also, it massively reduces the GPU memory consumption, which is one of the most
important reasons to use it. This technique is used frequently in modern 3D development
because it can produce high-quality results with a much smaller size on both CPU and
GPU sides.

OSG has already supported a very simple way to make use of different built-in
compression algorithms. In this recipe, we will again create a huge number of quads
and apply random textures to them, and also show the difference between using and
not using compressed textures.

Getting ready
We will introduce the Process Explorer utility, which is developed by Mark Russinovich. It
is an advanced process management tool that will show detailed information of a particular
process and list all the DLLs it has loaded. It can also compute total and available virtual and
physical memory, as well as the CPU and GPU usage on the fly. Its ability for tracking GPU
usage and memory information is extremely useful here because we cannot read current GPU
information directly in common ways. This functionality is not workable under non-Windows
systems or versions lower than Windows 7.

You can download Process Explorer at:

http://technet.microsoft.com/en-us/sysinternals/bb896653

In order to view the GPU information, you must first start the procexp.exe executable and
select System Information from View on the menu bar. Then you can change to the GPU tab
to view current usage and available video memory if your operating system supports it, as
shown in the following screenshot:

http://technet.microsoft.com/en-us/sysinternals/bb896653
http://technet.microsoft.com/en-us/sysinternals/bb896653

Chapter 8

311

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Texture2D>
#include <osg/Geometry>
#include <osg/Group>
#include <osgDB/ReadFile>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>

2. We will use a createRandomImage() function to make numerous random
images for texturing, instead of loading limited numbers of existing images
from the local disk.
osg::Image* createRandomImage(int width, int height)
{
 osg::ref_ptr<osg::Image> image = new osg::Image;

 image->allocateImage(width, height, 1, GL_RGB,
 GL_UNSIGNED_BYTE);

Managing Massive Amounts of Data

312

 unsigned char* data = image->data();
 for (int y=0; y<height; ++y)
 {
 for (int x=0; x<width; ++x)
 {
 *(data++) = osgCookBook::randomValue(0.0f, 255.0f);
 *(data++) = osgCookBook::randomValue(0.0f, 255.0f);
 *(data++) = osgCookBook::randomValue(0.0f, 255.0f);
 }
 }
 return image.release();
}

3. First, let us see how much memory is occupied without any compression methods,
that is, the default GL_RGB format will be used and passed to the OpenGL pipeline.
osg::Node* createQuads(unsigned int cols, unsigned int
 rows)
{
 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 for (unsigned int y=0; y<rows; ++y)
 {
 for (unsigned int x=0; x<cols; ++x)
 {
 osg::ref_ptr<osg::Texture2D> texture = new
 osg::Texture2D;
 texture->setImage(createRandomImage(512, 512));

 osg::Vec3 center((float)x, 0.0f, (float)y);
 osg::ref_ptr<osg::Drawable> quad =
 osg::createTexturedQuadGeometry(
 center, osg::Vec3(0.9f, 0.0f, 0.0f), osg::Vec3(0.0f,
 0.0f, 0.9f));
 quad->getOrCreateStateSet()->
 setTextureAttributeAndModes(0, texture.get());
 geode->addDrawable(quad.get());
 }
 }
 return geode.release();
}

4. Now start the viewer:
osgViewer::Viewer viewer;
viewer.setSceneData(createQuads(20, 20));
viewer.addEventHandler(new osgViewer::StatsHandler);
return viewer.run();

Chapter 8

313

5. Open the ProcessExplorer and write down the available memory values on the
CPU and GPU sides (~730MB on the GPU side on the author's PC).

6. Now add two lines in the createQuads() function, after the texture object is
just created:
texture->setInternalFormatMode(
 osg::Texture2D::USE_S3TC_DXT1_COMPRESSION);
texture->setUnRefImageDataAfterApply(true);

Managing Massive Amounts of Data

314

7. Rebuild and re-run the application, and record the values in ProcessExplorer.
You will find that both the free system memory and used graphics memory are much
larger than the last time (~250MB on the GPU side). This of course saves space for
further use of resources.

How it works...
It is really simple to use OpenGL-supported compressed textures in OSG applications. The
setInternalFormatMode() method can be used to quickly specify the compression type,
and OpenGL will internally do the work. For instance, in this recipe we indicate OSG to change
all textures to S3TC DXT1 format:

texture->setInternalFormatMode(
 osg::Texture2D::USE_S3TC_DXT1_COMPRESSION););

Chapter 8

315

Other supported formats include:

Internal format mode Supported
image type

Description

USE_IMAGE_DATA_
FORMAT

Any

USE_USER_
DEFINED_FORMAT

Any Let the developer decide the texture format by
calling setInternalFormat().

USE_ARB_
COMPRESSION

Any
uncompressed

Use the ARB_texture_compression
specification to compress the texture.

USE_S3TC_DXT1_
COMPRESSION

RGB and RGBA Use S3TC DXT1 compression type.

http://en.wikipedia.org/wiki/S3_
Texture_Compression

USE_S3TC_DXT3_
COMPRESSION

RGBA only (RGB
is handled by
DXT1)

Use S3TC DXT3 compression type.

USE_S3TC_DXT5_
COMPRESSION

RGBA only (RGB
is handled by
DXT1)

Use S3TC DXT5 compression type.

USE_PVRTC_2BPP_
COMPRESSION

USE_PVRTC_4BPP_
COMPRESSION

RGB and RGBA Use the GLES compression type:

http://www.khronos.org/registry/
gles/extensions/IMG/IMG_texture_
compression_pvrtc.txt

USE_ETC_
COMPRESSION

RGB Use another GLES compression type:

http://en.wikipedia.org/wiki/
Ericsson_Texture_Compression

USE_RGTC1_
COMPRESSION

USE_RGTC2_
COMPRESSION

RGB and RGBA Use the OpenGL 2.0 compression type:

http://www.opengl.org/registry/
specs/EXT/texture_compression_rgtc.
txt

This reduces the graphics card storage requirements effectively and accelerates the dynamic
loading of textures, as you can see from the Process Explorer utility. However, a more
optimal way for using compressed textures is to pre-compress them before rendering. Some
utilities, such as NVTT, which is introduced in the last chapter, can produce .DDS images
using compressed format and save them to disk files. These types of files can be directly
recognized and used by OSG and OpenGL in user applications.

Another useful method here is setUnrefImageDataAfterApply(), as it can be set to
true to force OSG to release the osg::Image objects (on the CPU side) after they are
compiled into the GPU side, and thus release more system memory for other uses.

http://en.wikipedia.org/wiki/S3_Texture_Compression
http://en.wikipedia.org/wiki/S3_Texture_Compression
http://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
http://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
http://en.wikipedia.org/wiki/Ericsson_Texture_Compression
http://en.wikipedia.org/wiki/Ericsson_Texture_Compression
http://www.opengl.org/registry/specs/EXT/texture_compression_rgtc.txt
http://www.opengl.org/registry/specs/EXT/texture_compression_rgtc.txt
http://www.opengl.org/registry/specs/EXT/texture_compression_rgtc.txt

Managing Massive Amounts of Data

316

Note that as the image objects are deleted from the memory after being applied, they can
never be read or written after deletion on the CPU side, and can only be retrieved by calling
functions such as glReadPixels() or loading them from disk files again. It is suggested
that you only use this feature on static textures.

Sharing scene objects
You may have already learnt some ways for sharing scene nodes, drawables, and state
attributes to improve the storage and rendering performance. For example, you can make
multiple mid-layer nodes, share the same child while building the scene graph, and you can
also use osgDB::SharedStateManager to automatically collect and share texture objects
of paged nodes.

In this recipe, we are going to use a share list to manage nodes read from the disk files, and
cache the file reading process by comparing the filename with the names stored in this list. If
a node in the share list is no longer referred to any other nodes or scene objects (that is, it is
only referred by the list), it will be removed from the list to release system memory. This will be
done at regular intervals (some seconds) in a 'prune' process.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>
#include <fstream>
#include <iostream>

2. The osgDB::ReadFileCallback will replace the default implementation.
Hence, we can make use of this class to check if a new file reading request is
already recorded in the sharing list, and use the referenced object stored instead
of reading from the file again.
class ReadAndShareCallback : public osgDB::ReadFileCallback
{
 public:
 virtual osgDB::ReaderWriter::ReadResult readNode(const
 std::string& filename, const osgDB::Options* options);
 void prune(int second);

 protected:
 osg::Node* getNodeByName(const std::string& filename);

Chapter 8

317

 typedef std::map<std::string, osg::ref_ptr<osg::Node> >
 NodeMap;
 NodeMap _nodeMap;
 OpenThreads::Mutex _shareMutex;

3. The readNode() function must be re-implemented to take control of the file reading
and sharing process. First, we check simply to see if the filename exists in the sharing
list. If not, we will redirect to the default implementation to read the file from a certain
plugin, and add the new name to the list; otherwise, we inform the caller that we have
found an existing filename and will directly use the stored one as the return value:
osgDB::ReaderWriter::ReadResult
 ReadAndShareCallback::readNode(const std::string&
 filename, const osgDB::Options* options)
{
 OpenThreads::ScopedLock<OpenThreads::Mutex> lock(
 _shareMutex);
 osg::Node* node = getNodeByName(filename);
 if (!node)
 {
 osgDB::ReaderWriter::ReadResult rr =
 osgDB::Registry::instance()->readNodeImplementation(
 filename, options);
 if (rr.success()) _nodeMap[filename] = rr.getNode();
 return rr;
 }
 else
 std::cout << "[SHARING] The name " << filename << " is
 already added to the sharing list." << std::endl;
 return node;
}

4. The prune() function will traverse the sharing list and check if an element has
no more reference besides the sharing list itself. It should be executed every few
seconds to optimize the list, but not every frame because it takes some time for
each call:
void ReadAndShareCallback::prune(int second)
{
 if (!(second%5)) // Prune the scene every 5 seconds
 return;

 OpenThreads::ScopedLock<OpenThreads::Mutex> lock(
 _shareMutex);
 for (NodeMap::iterator itr=_nodeMap.begin();
 itr!=_nodeMap.end();)

Managing Massive Amounts of Data

318

 {
 if (itr->second.valid())
 {
 if (itr->second->referenceCount()<=1)
 {
 std::cout << "[REMOVING] The name " << itr->first
 << " is removed from the sharing list." <<
 std::endl;
 itr->second = NULL;
 }
 }
 ++itr;
 }
}

5. The checking and getting of the node pointer from a filename is done in the
getNodeByName() method.
osg::Node* ReadAndShareCallback::getNodeByName(const
 std::string& filename)
{
 NodeMap::iterator itr = _nodeMap.find(filename);
 if (itr!=_nodeMap.end()) return itr->second.get();
 return NULL;
}

6. We can have a RemoveModelHandler class to implement a picking and removing
handler in the scene. Another important task is to call the pruning method in the
FRAME event:
class RemoveModelHandler : public osgCookBook::PickHandler
{
public:
 RemoveModelHandler(ReadAndShareCallback* cb) :
 _callback(cb) {}

 virtual bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa)
 {
 if (ea.getEventType()==osgGA::GUIEventAdapter::FRAME)
 {
 if (_callback.valid())
 _callback->prune((int)ea.getTime());
 }
 return osgCookBook::PickHandler::handle(ea, aa);
 }

Chapter 8

319

 virtual void doUserOperations(
 osgUtil::LineSegmentIntersector::Intersection& result)
 {
 ... // Please see the source code for details
 }

 osg::observer_ptr<ReadAndShareCallback> _callback;
};

7. The addFileList() function can read model filenames and positions from an ASCII
file and add the transformed node to the root. It doesn't handle the case of passing
the same filename multiple times in the same file. But the ReadAndShareCallback
will do this work instead:
void addFileList(osg::Group* root, const std::string& file)
{
 ... // Please see the source code for details
}

8. In the main entry, we add the sharing callback to the database registry singleton.
Also, read the multi-line data from the data.txt.
osg::ref_ptr<ReadAndShareCallback> sharer = new
 ReadAndShareCallback;
osgDB::Registry::instance()->setReadFileCallback(
 sharer.get());

osg::ref_ptr<osg::Group> root = new osg::Group;
addFileList(root.get(), "files.txt");

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
viewer.addEventHandler(new
 RemoveModelHandler(sharer.get()));
viewer.addEventHandler(new osgViewer::StatsHandler);
return viewer.run();

9. The application will read multiple lines of filenames and load them. You can use
Ctrl + left mouse button to remove models from the current scene graph.

Managing Massive Amounts of Data

320

10. The result and the terminal output are both shown in the following screenshot.
Remove the line of setReadFileCallback() and restart the program. Open
Process Explorer and see if there are any changes to the system memory.
The more files read, the clearer result you will see:

How it works...
The most important step here is to design the file reading callback, which will be
used to replace the standard file reading operation. In the readNode() method of
ReadAndShareCallback, we first check if the input filename is already saved in
the _nodeMap variable, and then directly return the stored node object if there is a
matched result; otherwise, the standard method will be called and the returned value
will be cached for further reading requests.

The following line defines a scoped read/write lock for multithreaded developing in both
readNode() and prune() methods.

OpenThreads::ScopedLock<OpenThreads::Mutex> lock(_shareMutex);

It will work if either readNode() or prune() is called, and will be automatically disabled
when the method ends. While the lock is enabled, all other threads will be blocked if they are
trying to execute the same two methods. Therefore, it prevents the same reading process from
being called by multiple threads, and avoids possible problems and crashes.

There's more...
In fact, OSG has already provided a much simpler way to implement caching of nodes
and images. For instance, we can use the setObjectCacheHint() method of
osgDB::Options class to indicate that the node or image to be read should be
recorded in the OSG internal registry and thus avoid replicated loading of files.
An example code segment is given as follows:

osg::ref_ptr<osgDB::Options> options = new osgDB::Options;
options->setObjectCacheHint(osgDB::Options::CACHE_NODES);
osg::Node* model = osgDB::readNodeFile("cow.osg", options.get());

You can use the CACHE_IMAGES value instead to cache images while calling the
osgDB::readImageFile() function.

Chapter 8

321

Configuring the database pager
It is not the first time we come across OSG's powerful database pager. It is actually an internal
osgDB::DatabasePager object, which manages the loading of external files in a separate
thread. It synchronizes the loaded files with the scene graph and makes them render properly
in the rendering thread. It can also remove nodes that are out of view from the memory
to reduce system resource consumption, and reload them when they are visible to the
viewer again.

The osg::PagedLOD and osg::ProxyNode nodes, both use the database pager for
implementing their underlying functionalities. The paged LOD nodes depend heavily on the
pager to load and unload child levels dynamically. In this recipe, we will introduce several
practical functions, which may help a lot when handling very large landscapes (possibly
made up of hundreds of thousands of paged LODs).

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Texture>
#include <osg/Node>
#include <osgDB/DatabasePager>
#include <osgDB/ReadFile>
#include <osgUtil/PrintVisitor>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>

2. We will get the scene filename to load from the argument parser. Meanwhile, we will
set up the maximum texture pool size to 64000 bytes. We will explain the usage of a
texture pool later:
osg::ArgumentParser arguments(&argc, argv);
osg::ref_ptr<osg::Node> root =
 osgDB::readNodeFiles(arguments);

osg::Texture::getTextureObjectManager(0)->

 setMaxTexturePoolSize(64000);

Managing Massive Amounts of Data

322

3. Every viewer object will have a default database pager. We can directly obtain it and
alter its parameters. The meanings of the two methods (setDoPreCompile() and
setTargetMaximumNumberOfPageLOD()) used here will be discussed later in the
How it works… section, too:
osgViewer::Viewer viewer;
osgDB::DatabasePager* pager = viewer.getDatabasePager();
pager->setDoPreCompile(true);
pager->setTargetMaximumNumberOfPageLOD(10);

4. Now start the viewer:
viewer.setSceneData(root.get());
viewer.addEventHandler(new osgViewer::StatsHandler);
return viewer.run();

5. We have to pass a filename for the recipe to load and render it. For example, you
may work on the gcanyon terrain generated in the last chapter (assuming that the
executable is named as cookbook_08_04):

 # cookbook_08_04 output/out.osgb

6. With modern devices and full-fledged computers, you may not be able to figure out
the performance difference between using this application and using osgviewer
directly. In this case, the system memory and IO usage graphs provided in the
Process Explorer (in the System Information dialog) may help you understand
something. View the same terrain with this recipe's code and the osgviewer. Use
your mouse to zoom in and zoom out the scene for more than one time. You may get
graphs as shown in the following screenshot:

7. The first line shows the memory utilization of the two executables with the same
paged terrain file. You can see that this recipe (left-side) has a more frequent
increasing and decreasing alternation of the memory, which surely occurs when
the camera is zooming in and out. This means the paged nodes of the terrain are
dynamically loaded and unloaded in a more frequent way. In contrast, the result
for osgviewer holds a constant memory usage, which means there are nearly
no unloading processes during the navigation of the scene.

Chapter 8

323

8. The second pair of graphs graphs record the disk I/O requests. It actually
indicates how often OSG reads the files from disk, which are the child nodes of
the osg::PagedLOD nodes. The implementation of this recipe obviously requires
more I/O operations, but the other one has a higher number of I/O requests
simultaneously, which may lead to frame dropping and low scene performance.

How it works...
The setMaxTexturePoolSize() method enables OSG's internal texture object pool,
which can be used for recycling orphaned texture objects or reusing textures that are out of
date. Without a texture pool, we may have to repeatedly free and allocate memories used by
textures while paged nodes are loaded and unloaded with a high frequency. This can lead to
memory fragmentation problems and thus slow down the system.

The texture pool partly solves this issue. It preserves a piece of system memory (64000
bytes in this recipe, but this can be customized), which can be reused at any time for texture
creation requests. When we allocate space for new textures, the pool will be considered first
and its available space will be split and used directly instead of asking for new ones. This
feature can efficiently avoid or reduce the frame drops due to un-needed memory allocation
and freeing.

The setDoPreCompile() is another important method that we should pay attention to,
especially when there are too many objects loaded in one frame. However, all these GL
objects (buffers, textures, and so on) must be compiled immediately for OpenGL to render
them. It may cause terrible frame drops as the system is too busy to handle so many requests
and allocations.

However, incremental setDoPreCompile(true) enables an incremental pre-compilation
mechanism, that is, the objects will be compiled and rendered in succession during several
frames instead of just one frame. So, if we have too many scene objects to compile at the
same time (mostly, because of improper LOD scales or spatial index strategies), we had better
use this feature to avoid excessive stalls because of hanging up the newly loaded nodes until
they are compiled. Of course, more balanced scene graphs, compressed and pre-mipmapped
textures, and consistent texture sizes (good for the texture pool mechanism) are always very
helpful. The performance of the graphics hardware and operating system can often make a
big difference too.

In the last part of this section, we will explain why the previous screenshot gives different
memory and I/O monitoring results. It is the unloading and reloading of nodes from disk
files that makes a difference! Thus, we can conclude that the cookbook_08_04 executable
unloads scene objects (and re-reads them) much more frequently than osgviewer. That
is happening because of the use of the setTargetMaximumNumberOfPageLOD()
method, which can set a maintaining target for the database pager. When the number of
osg::PagedLOD nodes loaded into the scene is greater than the target, the pager will
automatically recycle the paged LODs, as they are out-of-date or outside the view frustum.
If not, it will just leave these paged nodes in the system memory for caching.

Managing Massive Amounts of Data

324

By default, the maximum number of paged nodes is 300. However, we changed it to 10 in
this recipe. It means that any invisible paged nodes should be removed as soon as possible
in order to fit in a very small target value, and we re-read them when they are in the range of
vision again. This leads to drastic changes of memory and I/O as we have seen earlier.

Designing a simple culling strategy
Scene culling is a very important step of the scene rendering operation. In every frame, it
checks the visibility of each of the geometries in the current field of vision and reduces the
total number of scene objects as much as possible before sending them to the rendering
pipeline. A good culling strategy makes the rendering work smooth and does not take
much time.

OSG has already provided some efficient culling algorithms that can be used directly.
However, sometimes we may have some easier and better solutions for some special cases.
In this recipe, we will take a maze game as an example. A maze can be described as a 2D
map and an extrusion about the Z axis. Hence, we can cull elements in the maze according
to the 2D map. It can be simple but significant if there are massive numbers of small objects
to be rendered in the maze.

How to do it...
Let us start.

1. Include necessary headers.
#include <osg/Texture2D>
#include <osg/Geometry>
#include <osg/ShapeDrawable>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgGA/FirstPersonManipulator>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>
#include <fstream>
#include <sstream>
#include <iostream>

2. The maze map is in fact a 2D table with several columns and rows. The index of
an element at a certain column and row is defined with a CellIndex. Each table
element's value can be either 0 (ground) or 1 (wall), which decides the shape of a
1x1 area in the maze:
typedef std::pair<int, int> CellIndex;
typedef std::map<CellIndex, int> CellMap;
CellMap g_mazeMap;

Chapter 8

325

3. We will use the getOrCreatePlane() function to create a 1x1 quad on the XOY
plane. It can be transformed and used to construct a ground tile in the maze, which
is walkable:
osg::Geode* getOrCreatePlane()
{
 ... // Please see the source code for details
}

4. Use the getOrCreateBox() function to create a 1x1x1 box. It will be transformed
to construct an impassable area surrounded by walls, that is, form one of the maze
"blocks". Everything placed in this area is invisible and can be culled before the
rendering process:
osg::Geode* getOrCreateBox()
{
 ... // Please see the source code for details
}

5. The next step is to create the maze according to the specified maze map information.
We are going to design simple mazes using the following ASCII format:
1 1 1 1 1 1 0 1
1 0 0 0 0 0 0 1
1 0 1 0 1 1 0 1
1 0 1 0 1 0 0 1
1 0 1 0 1 1 1 1
1 1 1 0 0 0 0 1
0 0 0 0 1 0 1 1
1 1 1 1 1 1 1 1

6. The previous step generates a maze with 8x8 cells, each of which may be set to 0 or
1. The player (or the viewer) can only walk on the ground cells set to 0, and can only
see objects placed on the ground. The createMaze() function will read the map
information text from a file:
osg::Node* createMaze(const std::string& file)
{
 ...
}

7. In the function, we first open the map file and fill the g_mazeMap variable with
read values. This variable will not only be used to create the maze geometry, but
also for checking the visibility of scene objects and helping manipulate the viewer
(in first-person mode):
std::ifstream is(file.c_str());
if (is)
{

Managing Massive Amounts of Data

326

 std::string line;
 int col = 0, row = 0;
 while (std::getline(is, line))
 {
 std::stringstream ss(line);
 while (!ss.eof())
 {
 int value = 0; ss >> value;
 g_mazeMap[CellIndex(col, row)] = value;
 col++;
 }
 col = 0;
 row++;
 }
}

8. The second part of the createMaze() function is to generate maze geometries,
create all ground or wall tiles, and place them at the correct columns and rows.
osg::ref_ptr<osg::Group> mazeRoot = new osg::Group;
for (CellMap::iterator itr=g_mazeMap.begin();
 itr!=g_mazeMap.end(); ++itr)
{
 const CellIndex& index = itr->first;
 osg::ref_ptr<osg::MatrixTransform> trans = new
 osg::MatrixTransform;
 trans->setMatrix(osg::Matrix::translate(index.first,
 index.second, 0.0f));
 mazeRoot->addChild(trans.get());

 int value = itr->second;
 if (!value) // Ground
 trans->addChild(getOrCreatePlane());
 else // Wall
 trans->addChild(getOrCreateBox());
}
return mazeRoot.release();

9. OSG already provides us a well-designed osgGA::FirstPersonManipulator that
is controlled by moving the mouse (look direction) and wheel (move forwards and
backwards). However, we have to rewrite it a little to make sure that the viewer can
never go into impassable tiles. This is done in the derived MazeManipulator class:
class MazeManipulator : public osgGA::FirstPersonManipulator
{
 public:
 virtual bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa);
};

Chapter 8

327

10. In the handle() function, we will first record the manipulator's unhandled matrix, do
the default manipulating, and then obtain the viewer's position from the new matrix.
The position will be converted to index value and passed to the maze map. If it is
outside the maze or in an impassable area, roll back the viewer to the last unhandled
matrix variable lastMatrix. The method of checking the maze cells is simpler and
faster than doing intersections with scene objects directly:
osg::Matrix lastMatrix = getMatrix();
bool ok = osgGA::FirstPersonManipulator::handle(ea, aa);

if (ea.getEventType()==osgGA::GUIEventAdapter::FRAME ||
 ea.getEventType()==osgGA::GUIEventAdapter::SCROLL)
{
 osg::Matrix matrix = getMatrix();
 osg::Vec3 pos = matrix.getTrans();
 if (pos[2]!=0.5f) // Fix the player height
 {
 pos[2] = 0.5f;
 matrix.setTrans(pos);
 setByMatrix(matrix);
 }

 CellIndex index(int(pos[0] + 0.5f), int(pos[1] + 0.5f));
 CellMap::iterator itr = g_mazeMap.find(index);
 if (itr==g_mazeMap.end()) // Outside the maze
 setByMatrix(lastMatrix);
 else if (itr->second!=0) // Don't intersect with walls
 setByMatrix(lastMatrix);
}
return ok;

11. Now, in the main entry, we will create the maze from a file named maze.txt (you can
find it in the source code directory of this book). However, this is not enough. We will
then randomly add a lot of small objects (dumptruck.osg in this recipe, which has
over 26000 points) to test the performance of the scene:
osg::ref_ptr<osg::Group> root = new osg::Group;
root->getOrCreateStateSet()->setMode(GL_NORMALIZE,
 osg::StateAttribute::ON);
root->getOrCreateStateSet()->setMode(GL_LIGHTING,
 osg::StateAttribute::OFF);
root->addChild(createMaze("maze.txt"));

osg::Node* loadedModel =
 osgDB::readNodeFile("dumptruck.osg");
for (int i=0; i<2000; ++i)

Managing Massive Amounts of Data

328

{
 float x = osgCookBook::randomValue(0.5f, 6.5f);
 float y = osgCookBook::randomValue(0.5f, 6.5f);
 float z = osgCookBook::randomValue(0.0f, 1.0f);

 osg::ref_ptr<osg::MatrixTransform> trans = new
 osg::MatrixTransform;
 trans->setMatrix(osg::Matrix::scale(0.001, 0.001, 0.001) *
 osg::Matrix::translate(x, y, z));
 trans->addChild(loadedModel);

 osg::ref_ptr<osg::Group> parent = new osg::Group;
 parent->addChild(trans.get());
 root->addChild(parent.get());
}

12. Create the MazeManipulator object and set its home position to the maze
entrance. Start the viewer and have a look at the result.
osg::ref_ptr<MazeManipulator> manipulator = new MazeManipulator;
manipulator->setHomePosition(osg::Vec3(6.0f, 0.0f, 0.5f),
 osg::Vec3(6.0f, 1.0f, 0.5f), osg::Z_AXIS);

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
viewer.addEventHandler(new osgViewer::StatsHandler);
viewer.setCameraManipulator(manipulator.get());
return viewer.run();

13. Scroll the mouse wheel and make yourself move forward. We can see a huge number
of trucks in front of you, as shown in the following screenshot. In order to display
them, it will cost us lots of CPU and GPU resources. Press the S key to see the frame
rate, which may be already slower than desired rate:

Chapter 8

329

14. Now, it is time for us to design our own culling strategy. We will make use of the
node's cull callback instead of deriving a new node type and re-implementing the
traverse() method. It is non-intrusive and can be easily applied to most built-in
types of OSG nodes:
class MazeCullCallback : public osg::NodeCallback
{
 public:
 virtual void operator()(osg::Node* node,
 osg::NodeVisitor* nv);

 bool getCellIndex(CellIndex& index, const osg::Vec3& pos);
};

15. We must re-implement the operator() to cull the node according to the eye
position provided by the cull visitor (nv). It is not the first time that we derive the
NodeCallback class to implement cull callbacks; but here we will give up traversing
the node's children if the getCellIndex() method returns false. It means the eye
or the node itself is not in the visible area:
void MazeCullCallback::operator()(osg::Node* node,
 osg::NodeVisitor* nv)
{
 osg::Vec3 eye = nv->getEyePoint();
 osg::Vec3 center = node->getBound().center();

Managing Massive Amounts of Data

330

 osg::Matrix l2w = osg::computeLocalToWorld(node->
 getParentalNodePaths()[0]);
 eye = eye * l2w; center = center * l2w;

 CellIndex indexEye, indexNode;
 if (getCellIndex(indexEye, eye) &&
 getCellIndex(indexNode, center))
 {
 traverse(node, nv);
 }
}

16. The getCellIndex() method reads the position value and returns whether its
corresponding index is 0 or 1 in the maze map. 0 means current position is not in
a wall and can be seen by the viewer:
bool MazeCullCallback::getCellIndex(CellIndex& index,
 const osg::Vec3& pos)
{
 index.first = int(pos[0] + 0.5f);
 index.second = int(pos[1] + 0.5f);
 CellMap::iterator itr = g_mazeMap.find(index);
 if (itr!=g_mazeMap.end() && itr->second==0)
 return true;
 return false;
}

17. Now, when we are creating dump-trucks in the loop. Add the MazeCullCallback
instance to each truck's parent node:
parent->setCullCallback(new MazeCullCallback);

18. Done! Now, recompile and see the result again, as shown in the following screenshot.
You will find that the application runs much smoother than the last time and the cull
time is a little longer because of the extra customized culling process:

Chapter 8

331

How it works...
The osg::NodeCallback class, when used as cull callbacks, can determine whether a node
should be culled or not by calling the traverse() method at an appreciated time. If the
traverse() method is not executed in a certain condition, it means that the node will be
ignored and all its children will not be visited by the cull visitor. Thus, we can design our own
strategy, as shown in the following code:

if (getCellIndex(indexEye, eye) && getCellIndex(indexNode,
 center))
{
 traverse(node, nv);
}
// else ignore this node and it's subgraph.

In this example, we use the getCellIndex() method to check if a position in the maze is a
wall or a ground. We can only accept the node to be rendered later when both the eye and the
node center are in the ground area, and cull others to improve the performance.

Of course this algorithm can be modified to work even better. We can treat the maze walls as
occluders, and check if all the line segments from the eye to one node intersect with these
walls. Just figure out a solution by yourselves if you are interested in it.

Using occlusion query to cull objects
In the last recipe, we mentioned about the occluders that can be used to skip rendering
objects behind them. You may already know the osg::OccluderNode class if you have
ever read another OSG book published by Packt Publishing, that is, "OpenSceneGraph 3.0:
Beginner's Guide", Rui Wang and Xuelei Qian. In that book, we introduced how to add convex
planar occluders to the scene and make them work. This node can create highly efficient
results for large scenes where only a small part is visible in each frame (others are hidden
behind a few occluders).

However, the occlude node class is a software solution and can cost too much time for
culling and unexpectedly decrease the rendering efficiency. Hence, is it possible for the user
applications to ask the graphics hardware whether a pixel can be drawn or not? For example,
any object hidden by other objects that are closer to the eye can be ignored before it is
rendered to the buffer. Can the low-level 3D API check and return the query results
efficiently enough?

The answer is yes. There are two possible ways for such kind of occlusion culling: occlusion
query and early-Z algorithm. They both increase the rendering performance simply by not
rendering geometries that are covered by other scene objects. We will introduce the first
solution here, just because it can be done via the NV/ARB_occlusion_query OpenGL
extension, and is already encapsulated in the osg::OcclusionQueryNode class in the
core OSG library.

Managing Massive Amounts of Data

332

How to do it...
Let us start.

1. The definition of g_mazeMap, the creation of the maze, and the maze manipulator's
implementation are just the same as what we did in the last example. Of course, this
time we will not use customized callbacks again, but will use occlusion-query
nodes instead.

2. In the main entry, the addition of 2000 dump-trucks will be done like this:
osg::Node* loadedModel =
 osgDB::readNodeFile("dumptruck.osg");
for (int i=0; i<2000; ++i)
{
 float x = osgCookBook::randomValue(0.5f, 6.5f);
 float y = osgCookBook::randomValue(0.5f, 6.5f);
 float z = osgCookBook::randomValue(0.0f, 1.0f);

 osg::ref_ptr<osg::MatrixTransform> trans = new
 osg::MatrixTransform;
 trans->setMatrix(osg::Matrix::scale(0.001, 0.001, 0.001) *
 osg::Matrix::translate(x, y, z));
 trans->addChild(loadedModel);

 osg::ref_ptr<osg::OcclusionQueryNode> parent = new
 osg::OcclusionQueryNode;
 parent->setVisibilityThreshold(10); // Ten pixels
 parent->addChild(trans.get());
 root->addChild(parent.get());
}

3. The only change is to replace the type of truck parent nodes from osg::Group to
osg::OcclusionQueryNode and set the necessary threshold attributes. Now, let
us start the viewer and see if there are any improvements:

Chapter 8

333

How it works...
The OSG implementation of occlusion query is really simple here. You may just create a new
osg::OcclusionQueryNode node and use it as the to-be-culled geometry's parent node.
The remainder of the scene will be automatically used to check if it can completely cover any
of the query nodes. A query node, if proved to be 'invisible' after the checking process, will be
culled and not rendered in the current frame. In this recipe, we have 2000 dump trucks in
the query list. They will be efficiently culled by the maze geometries when the application
is running.

The real OpenGL's occlusion query, which is working under the hood is a little more complex.
It requires us to disable writing to depth buffer, and render the query object's bounding boxes
to get the computation result. The result is in fact the number of visible pixels of the current
query object's bounding box that are visible. If it is greater than a predefined threshold, then
we can enable writing the depth and render this object normally; otherwise it can be treated
as 'invisible' and ignored. The method setVisibilityThreshold() records the threshold
value here.

However, occlusion query is not efficient enough at present. These queries need too many
additional draw calls, and the returning of query results has latency, too. It still has a long
way to go before becoming the most useful culling strategy of high efficiency 3D applications.

Managing scene objects with an octree
algorithm

In the last chapter, we took enough time to discuss the structure of VPB's terrain models and
are already familiar with its quad-tree scene graphs. With the help of LODs and paged LODs,
we can quickly manage terrain tiles using the quad-tree algorithm and render unlimited size
of terrain data. In fact, many other applications also use quad-tree to optimize the scene
while working with massive data, such as city buildings, crowds of people, kinds of networks,
and so on. A quad-tree's internal node has exactly four children, so it is always good at
handling objects placed on the XOY plane.

Managing Massive Amounts of Data

334

What should we do if we have to partition a 3-dimensional space? For example, if we have
a number of balls randomly placed in the 3D world, how can we manage them using an
efficient spatial indexing algorithm? One of the solutions is called octree. It is another tree
structure whose internal node (a 3D region) has exactly eight child regions, as shown in the
following diagram:

VPB uses a 2D quad-tree to structure the terrain, similarly we can use a 3D octree to structure
volume data or a complex scene (for example, the solar system with massive planets and
asteroids) as well. In this recipe, we will use LOD nodes to construct such an octree structure
for rendering massive numbers of sphere elements. These spheres are located at random
positions in the 3D world and can have different sizes.

OSG also implements a KDTree internally, which can speed up the intersection computation.
We will introduce it in the following recipe.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/PolygonMode>
#include <osg/ShapeDrawable>
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/LOD>
#include <osgDB/ReadFile>
#include <osgUtil/PrintVisitor>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>
#include <iostream>
#include <fstream>
#include <sstream>

Chapter 8

335

2. We will first declare an OctreeBuilder class for constructing a scene graph using
the octree algorithm. It uses the setMaxChildNumber() method to determine
how many geometries can be contained in one leaf node (default is 16), and the
setMaxTreeDepth() method decides the maximum number of levels that the
octree can have (default is 32):
class OctreeBuilder
{
 public:
 OctreeBuilder() : _maxChildNumber(16), _maxTreeDepth(32),
 _maxLevel(0) {}
 int getMaxLevel() const { return _maxLevel; }

 void setMaxChildNumber(int max) { _maxChildNumber= max; }
 int getMaxChildNumber() const { return _maxChildNumber; }

 void setMaxTreeDepth(int max) { _maxTreeDepth = max; }
 int getMaxTreeDepth() const { return _maxTreeDepth; }

 typedef std::pair<std::string, osg::BoundingBox>
 ElementInfo;
 osg::Group* build(int depth, const osg::BoundingBox&
 total, std::vector<ElementInfo>& elements);

protected:
 osg::LOD* createNewLevel(int level, const osg::Vec3&
 center, float radius);
 osg::Node* createElement(const std::string& id, const
 osg::Vec3& center, float radius);
 osg::Geode* createBoxForDebug(const osg::Vec3& max,
 const osg::Vec3& min);

 int _maxChildNumber;
 int _maxTreeDepth;
 int _maxLevel;
};

3. The build() method will be recursively called to create each level of the octree
structure. User can manually call it with the depth set to 0, and total elements to
specify the global boundaries and all the elements of the huge scene:
osg::Group* OctreeBuilder::build(int depth, const
 osg::BoundingBox& total, std::vector<ElementInfo>& elements)
{
 ...
}

Managing Massive Amounts of Data

336

4. We have two 3-dimensional arrays for calculating the basic attributes of a region.
The s[] array represents all eight cells in any level of an octree. Each value in the
array can be 0 or 1 to describe the side (left or right) of the cell on three of the axes
(X/Y/Z). The extentSet[] array records the minimum, average, and maximum
points in a level's region, which will be used later for calculating the region of
its children:
int s[3]; // axis sides (0 or 1)
osg::Vec3 extentSet[3] = {
 total._min,
 (total._max + total._min) * 0.5f,
 total._max
};

5. The elements variable contains all the elements in the scene, and hence we have to
find out, which of those really intersect with current region total and save them to
a temporary list childData. If elements in current region are few enough to form a
leaf node, set isLeafNode to true; otherwise set it to false to go on splitting the
space into eight children of the next level:
std::vector<ElementInfo> childData;
for (unsigned int i=0; i<elements.size(); ++i)
{
 const ElementInfo& obj = elements[i];
 if (total.contains(obj.second._min) &&
 total.contains(obj.second._max))
 childData.push_back(obj);
 else if (total.intersects(obj.second))
 {
 osg::Vec3 center = (obj.second._max + obj.second._min) * 0.5f;
 if (total.contains(center)) childData.push_back(obj);
 }
}

bool isLeafNode = false;
if ((int)childData.size()<=_maxChildNumber ||
 depth>_maxTreeDepth) isLeafNode = true;

osg::ref_ptr<osg::Group> group = new osg::Group;
if (!isLeafNode)
{
 ...
}
else
{
 ...
}

Chapter 8

337

6. If isLeafNode is false, we will have to set up the region box of eight new child
regions of the next level. These child regions are created using osg::Group and
added to a parent group node. The build() method will be called recursively with
different region parameters to check and build the sub-graphs for them:
osg::ref_ptr<osg::Group> childNodes[8];
for (s[0]=0; s[0]<2; ++s[0])
{
 for (s[1]=0; s[1]<2; ++s[1])
 {
 for (s[2]=0; s[2]<2; ++s[2])
 {
 osg::Vec3 min, max;
 for (int a=0; a<3; ++a)
 {
 min[a] = (extentSet[s[a] + 0])[a];
 max[a] = (extentSet[s[a] + 1])[a];
 }

 int id = s[0] + (2 * s[1]) + (4 * s[2]);
 childNodes[id] = build(depth+1, osg::BoundingBox
 (min, max), childData);
 }
 }
}

for (unsigned int i=0; i<8; ++i)
{
 if (childNodes[i] && childNodes[i]->getNumChildren())
 group->addChild(childNodes[i]);
}

7. If the current region is available as a leaf of the octree, we can simply call
createElement() to generate the sphere and set the necessary parameters for
rendering it. The renderable element will be added to the group node representing
the leaf node of the octree:
for (unsigned int i=0; i<childData.size(); ++i)
{
 const ElementInfo& obj = childData[i];
 osg::Vec3 center = (obj.second._max + obj.second._min) * 0.5;
 float radius = (obj.second._max -
 obj.second._min).length() * 0.5f;
 group->addChild(createElement(obj.first, center, radius));
}

Managing Massive Amounts of Data

338

8. The last step of the build() method is to use an osg::LOD node to finish the
construction of the current level. It displays a rough level of details, which only
contains a debug box (or may contain nothing) when the viewer's eye is still far away.
If the viewer is near enough, it turns to the second child, which may either contain
eight child nodes or may be used as a leaf node with a few final spheres (determined
by _maxChildNumber):
osg::Vec3 center = (total._max + total._min) * 0.5;
float radius = (total._max - total._min).length() * 0.5f;
osg::LOD* level = createNewLevel(depth, center, radius);
level->insertChild(0, createBoxForDebug(total._max,
 total._min)); // For debug use
level->insertChild(1, group.get());
return level;

9. The createNewLevel() method is used for creating a customized LOD node:
osg::LOD* OctreeBuilder::createNewLevel(int level, const
 osg::Vec3& center, float radius)
{
 osg::ref_ptr<osg::LOD> lod = new osg::LOD;
 lod->setCenterMode(osg::LOD::USER_DEFINED_CENTER);
 lod->setCenter(center);
 lod->setRadius(radius);
 lod->setRange(0, radius * 5.0f, FLT_MAX);
 lod->setRange(1, 0.0f, radius * 5.0f);

 if (_maxLevel<level) _maxLevel = level;
 return lod.release();
}

10. The createElement() method creates a renderable sphere and returns it.
osg::Node* OctreeBuilder::createElement(const std::string&
 id, const osg::Vec3& center, float radius)
{
 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(new osg::ShapeDrawable(new
 osg::Sphere(center, radius)));
 geode->setName(id);
 return geode.release();
}

Chapter 8

339

11. The createBoxForDebug() method will create a wire-frame box, which can
represent the region's bounding box. It is drawn only for debug purposes here:
osg::Geode* OctreeBuilder::createBoxForDebug(const
 osg::Vec3& max, const osg::Vec3& min)
{
 ... // Please see source code for details
}

12. We will also implement a scene graph printing visitor that can write out the scene
graph structure and leaf spheres' names to disk files. It is enough to only derive it
from the osgUtil::PrintVisitor class:
class PrintNameVisitor : public osgUtil::PrintVisitor
{
 public:
 PrintNameVisitor(std::ostream& out) :
 osgUtil::PrintVisitor(out) {}

 void apply(osg::Node& node)
 {
 if (!node.getName().empty())
 {
 output() << node.getName() << std::endl;
 enter();
 traverse(node);
 leave();
 }
 else osgUtil::PrintVisitor::apply(node);
 }
};

13. We are nearly done. Now, in the main entry, we add 5000 spheres with different
positions and radii to the globalElements variable. The global bounding box is
computed at the same time. After that, we call the build() method to create the
top-level of the octree graph:
osg::BoundingBox globalBound;
std::vector<OctreeBuilder::ElementInfo> globalElements;
for (unsigned int i=0; i<5000; ++i)
{
 osg::Vec3 pos = osgCookBook::randomVector(-500.0f, 500.0f);
 float radius = osgCookBook::randomValue(0.5f, 2.0f);
 std::stringstream ss; ss << "Ball-" << i+1;

 osg::Vec3 min = pos - osg::Vec3(radius, radius, radius);
 osg::Vec3 max = pos + osg::Vec3(radius, radius, radius);

Managing Massive Amounts of Data

340

 osg::BoundingBox region(min, max);
 globalBound.expandBy(region);
 globalElements.push_back(OctreeBuilder::ElementInfo(ss.str(),
 region));
}

OctreeBuilder octree;
osg::ref_ptr<osg::Group> root = octree.build(0, globalBound,
 globalElements);

14. Print the generated scene graph to an ASCII file and start the viewer to render the
huge scene:
std::ofstream out("octree_output.txt");
PrintNameVisitor printer(out);
root->accept(printer);

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
viewer.addEventHandler(new osgViewer::StatsHandler);
return viewer.run();

15. When the application is started, you can see only a box in the view field. Zoom in the
camera and you can find the box is divided into smaller ones. Zoom in again, and the
spheres in the leaf nodes will be shown when you are close enough to these spheres,
as shown in the following screenshot:

Chapter 8

341

How it works...
Let's open the outputted file (which is written out after the application ran once) and paste a
part of it here:

osg::LOD
 osg::Geode
 osg::Group
 osg::LOD
 osg::Geode
 osg::Group
 Ball-438
 …
 osg::LOD
 osg::Geode
 osg::Group
 Ball-729
 …
 osg::LOD
 …

The node named Ball-* are random spheres that have to be rendered in the scene. As we
can see from the preceding code, ball nodes are stored in group nodes (leaf nodes of the
octree), and group nodes are added as the finer level of LOD nodes. The LOD nodes have
customized centers and radii, and will decide when the child leaves can be shown according
to the distance between the node center and the eye.

Every eight LOD nodes in the same level will be held together in a group node, and used as
the finer level of a parent LOD node. This is actually the basic structure of the octree. The
rough levels of all LODs are always represented by wire-frame boxes (osg::Geode).

There's more...
You may find that integrating the scene graph with an indexing algorithm like a quad-tree
and octree is not a very complex procedure. In this recipe, we only used the osg::LOD
node to manage different levels of the tree, but it is recommended to replace them with
osg::PagedLOD to provide paging functionality for huge scene rendering, just like the
VPB utility has done to terrain database.

You may be interested in some other spatial indexing methods and their introduction
links, including:

 f Binary space partitioning (BSP): Navigate to the following URL for more infromation:
http://en.wikipedia.org/wiki/Binary_space_partitioning

http://en.wikipedia.org/wiki/Binary_space_partitioning
http://en.wikipedia.org/wiki/Binary_space_partitioning

Managing Massive Amounts of Data

342

 f K-dimensional tree (KDTree): It is used internally by OSG' s intersection visitor.
Navigate to the following URL for more infromation:
http://en.wikipedia.org/wiki/K-d_tree

 f R-Tree: Navigate to the following URL for more infromation:

http://en.wikipedia.org/wiki/R-tree

Try to implement one or more of them along with the scene graph structure. You can use them
either for culling objects before rendering, or for speeding up the intersection work between
scene objects and a line segment (or some other operators).

Rendering point cloud data with draw
instancing

Point cloud data is widely used in scientific fields. It is formed by a huge number of points,
including the positions, normals, colors, and other attributes. Point cloud is usually generated
using specific scanners (for example, laser, structured light, and so on) and can describe the
surface of any complex objects. There are also many solutions for 3D model reconstruction
using point cloud as the source. But the first problem we will face is—how to display them?

You might use a geometry to contain all the points and render them in GL_POINTS mode,
but the frame rate may drop seriously if the number is too large. Fortunately, we have the
draw instancing extension, which may help improve performance. In Chapter 3, we have
already provided a recipe for a drawing instance. In this recipe, we will make use of it again
and convert the sample point cloud data to texture and handle them in the shaders.

The cloud rendering example in Chapter 6, has a data.txt file, which can be directly used
as the data source.

How to do it...
Let us start.

1. Include necessary headers.
#include <osg/Point>
#include <osg/Group>
#include <osgDB/ReadFile>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>
#include <fstream>
#include <iostream>

http://en.wikipedia.org/wiki/K-d_tree
http://en.wikipedia.org/wiki/K-d_tree

Chapter 8

343

2. We have already learnt that gl_InstanceID can be used to indicate a specific
instance of the same drawable object. In order to visualize the sample data, we will
have to place these instances at different positions for representing every point
element in the point cloud. Thus, we will use the defaultTex variable to pass the
texture object to the shader and use texels to describe point locations:
const char* vertCode = {
 "uniform sampler2D defaultTex;\n"
 "uniform int width;\n"
 "uniform int height;\n"
 "varying float brightness;\n"
 "void main()\n"
 "{\n"
 " float row = float(gl_InstanceID) /
 float(width);\n"
 " vec2 uv = vec2(fract(row), floor(row) /
 float(height));\n"
 " vec4 texValue = texture2D(defaultTex, uv);\n"
 // Read and specify the position data from texture
 " vec4 pos = gl_Vertex + vec4(texValue.xyz, 1.0);\n"
 // Use alpha of the texel as the brightness value
 " brightness = texValue.a;\n"
 " gl_Position = gl_ModelViewProjectionMatrix * pos;\n"
 "}\n"
};

3. The fragment shader will be used to draw the color of points according to the
brightness parameter read from the alpha component of the texture:
const char* fragCode = {
 "varying float brightness;\n"
 "void main()\n"
 "{\n"
 " gl_FragColor = vec4(brightness, brightness,
 brightness, 1.0);\n"
 "}\n"
};

4. Now, we will create the instanced geometry in the createInstancedGeometry()
function. It uses an osg::Image object to record point cloud data:
osg::Geometry* createInstancedGeometry(osg::Image* img,
 unsigned int numInstances)
{
 ...
}

Managing Massive Amounts of Data

344

5. In the function, we first create a geometry with only one point. It should use the
numInstances parameter to enable using the OpenGL draw instancing extension,
and disable display lists for the purpose of dynamic modification:
osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;
geom->setUseDisplayList(false);
geom->setUseVertexBufferObjects(true);
geom->setVertexArray(new osg::Vec3Array(1));
geom->addPrimitiveSet(new osg::DrawArrays(GL_POINTS, 0, 1,

 numInstances));

6. Then we will set the image object as the texture of the geometry. We will add
necessary uniforms and the program object to the state set in order to make
shaders work properly:
osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
texture->setImage(img);
texture->setInternalFormat(GL_RGBA32F_ARB);
texture->setFilter(osg::Texture2D::MIN_FILTER,
 osg::Texture2D::LINEAR);
texture->setFilter(osg::Texture2D::MAG_FILTER,
 osg::Texture2D::LINEAR);
geom->getOrCreateStateSet()->setTextureAttributeAndModes
 (0, texture.get());
geom->getOrCreateStateSet()->addUniform(new
 osg::Uniform("defaultTex", 0));
geom->getOrCreateStateSet()->addUniform(new
 osg::Uniform("width", (int)img->s()));
geom->getOrCreateStateSet()->addUniform(new
 osg::Uniform("height", (int)img->t()));

osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader(new osg::Shader(osg::Shader::VERTEX,
 vertCode));
program->addShader(new osg::Shader(osg::Shader::FRAGMENT,
 fragCode));
geom->getOrCreateStateSet()->setAttributeAndModes
 (program.get());
return geom.release(); // end of createInstancedGeometry()

7. We will implement one more function that is the readPointData() method. It
will be used to load point data from an ASCII file and save them in an image with
specified size (w and h):
osg::Geometry* readPointData(const std::string& file,
 unsigned int w, unsigned int h)
{
 ...
}

Chapter 8

345

8. The image must use the GL_RGBA and GL_FLOAT format. We will discuss the reason
why we should use this format later in the How it works… section. The position and
brightness values read from the text file will be set to the data pointer of the image:
std::ifstream is(file.c_str());
if (!is) return NULL;

osg::ref_ptr<osg::Image> image = new osg::Image;

image->allocateImage(w, h, 1, GL_RGBA, GL_FLOAT);

unsigned int density, brightness;
osg::BoundingBox boundBox;
float* data = (float*)image->data();
while (!is.eof())
{
 osg::Vec3 pos;
 is >> pos[0] >> pos[1] >> pos[2] >> density >> brightness;
 boundBox.expandBy(pos);

 *(data++) = pos[0];
 *(data++) = pos[1];
 *(data++) = pos[2];
 *(data++) = brightness / 255.0;
}

9. We will create the geometry and accept an initial bounding box to make it visible in
the scene; otherwise such a geometry object with only one point will be automatically
culled while rendering.
osg::ref_ptr<osg::Geometry> geom = createInstancedGeometry
 (image.get(), w*h);
geom->setInitialBound(boundBox);
geom->getOrCreateStateSet()->setAttributeAndModes
 (new osg::Point(5.0f));
return geom.release();

10. Now in the main entry, we will add the draw instancing geometry to the scene graph
and render it in the viewer. A 512x512 sized image is enough here to contain all the
points in the sample data.txt file (from the cloud rendering example in Chapter 6)
which includes about 64000 lines:
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(readPointData("data.txt", 512, 512));

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(geode.get());

Managing Massive Amounts of Data

346

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
viewer.addEventHandler(new osgViewer::StatsHandler);
return viewer.run();

11. The result is shown in the following screenshot. It renders smoothly and doesn't
need too much system memory on the CPU side. You can make any changes or
improvements to the rendered data by altering the shader code. You can also modify
the primitive set of the origin geometry object to change the shapes of all points or
apply textures on them:

How it works...
The most important step in this recipe is to add the point cloud data to the image object,
which should be used in the shader code for efficiently rendering the points. The osg::Image
class uses the allocateImage() method to create an empty image object, and provides
the data() method for developers to set up image pixels. We assume that the point cloud
requires to record only the position and brightness of each element, so it is enough to
have four float components (pixel format GL_RGBA, datatype GL_FLOAT) for each pixel.
The first three components save the XYZ values of the point, and the last one saves the
brightness parameter.

Chapter 8

347

The draw instancing extension is not all that powerful. The size of texture object for keeping
point cloud data cannot be infinite. If we have millions or even billions of points to display,
the current solution will not be suitable for it. In that case, some spatial index methods can
be used as well. For instance, the octree algorithm, which was introduced in this chapter, will
be a good idea here. We can first pre-treat all the point data and divide them into different
smaller areas. Each area uses draw instancing to render actual point attributes. Then we
can use the octree algorithm along with the paged LOD nodes to manage these 'leaf' areas,
guaranteeing that there are not too many points shown at the same time.

Speeding up the scene intersections
There is a common demand while developing huge scene viewing applications, such as
when we move the mouse onto the terrain or other scene objects, we hope that we can
immediately see the current intersection result of the mouse coordinate and the 3D objects.
The intersection result is useful for practical use, for example, describing user's point of
interest on the earth or in a digital city.

As OSG uses bounding volumes to manage scene graphs, the computation process can be
much quicker than intersecting with all scene objects one by one. However, we still have
room for speeding up the process. OSG internally provides the KDTree structure for scene
intersections with geometries, which can help do the calculations and return results in a
faster way.

Another potential problem to be considered here is that the results may not be accurate
enough while intersecting with paged scene. That's because paged nodes are loaded due to
the current viewer's position and attitude, and the highest level may not be reachable by the
intersection visitor at any time. We will discuss a solution for this issue in this recipe.

How to do it...
Let us start.

1. Include necessary headers:
#include <osg/Group>
#include <osgDB/ReadFile>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>
#include <sstream>
#include <iostream>

Managing Massive Amounts of Data

348

2. The PagedPickHandler class is designed to calculate the intersections of current
cursor coordinate and the scene graph when the mouse is moving. It refreshes the
result intersection point to an HUD text object and can accept a reading callback for
obtaining the highest levels of paged nodes:
class PagedPickHandler : public osgGA::GUIEventHandler
{
public:
 virtual bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa);

 osg::ref_ptr<osgUtil::IntersectionVisitor::ReadCallback>
 _pagedReader;
 osg::ref_ptr<osgText::Text> _text;
};

3. In the handle() method, we will do the computations for all user events except the
FRAME event:
if (ea.getEventType()==osgGA::GUIEventAdapter::FRAME)
 return false;

osgViewer::View* viewer = dynamic_cast<osgViewer::View*>(&aa);
if (viewer && _text.valid())
{
 ...
}

4. The osg::Timer object is used for timekeeping. We will retrieve a time value and
then use the intersection visitor to traverse the whole scene. The _pagedReader
callback, if valid, will be applied to the setReadCallback() method here for
handling paged nodes. We will show you how to quickly implement such a new
callback later, but at present, we will leave this variable to NULL.
osg::Timer_t t1 = osg::Timer::instance()->tick();
osg::ref_ptr<osgUtil::LineSegmentIntersector> intersector =
 new osgUtil::LineSegmentIntersector
 (osgUtil::Intersector::WINDOW, ea.getX(), ea.getY());
osgUtil::IntersectionVisitor iv(intersector.get());
iv.setReadCallback(_pagedReader.get());
viewer->getCamera()->accept(iv);

Chapter 8

349

5. If there is any result that is, the mouse has an intersection point with the scene
in world space. Then we will obtain the intersection result and record the time
again. The difference between the two time variables is the time spent for scene
intersections. We will print all these this information on the screen in real-time:
if (intersector->containsIntersections())
{
 osgUtil::LineSegmentIntersector::Intersection result =
 *(intersector->getIntersections().begin());
 osg::Vec3 point = result.getWorldIntersectPoint();
 osg::Timer_t t2 = osg::Timer::instance()->tick();

 std::stringstream ss;
 ss << "X = " << point.x() << "; ";
 ss << "Y = " << point.y() << "; ";
 ss << "Z = " << point.z() << "; ";
 ss << "Delta time = " << osg::Timer::instance()->
 delta_m(t1, t2) << "ms" << std::endl;
 _text->setText(ss.str());
}

6. In the main entry, we will use the setBuildKdTreesHint() method to enable
building KDTree structure for all scene objects. Then we are going to construct the
scene graph with the loaded model and an HUD camera displaying the text:
osg::ArgumentParser arguments(&argc, argv);
osgDB::Registry::instance()->setBuildKdTreesHint(
 osgDB::Options::BUILD_KDTREES);
osg::ref_ptr<osg::Node> loadedModel =
 osgDB::readNodeFiles(arguments);

osgText::Text* text =
 osgCookBook::createText(osg::Vec3(50.0f, 50.0f, 0.0f),
 "", 10.0f);
osg::ref_ptr<osg::Geode> textGeode = new osg::Geode;
textGeode->addDrawable(text);

osg::ref_ptr<osg::Camera> hudCamera =
 osgCookBook::createHUDCamera(0, 800, 0, 600);
hudCamera->addChild(textGeode.get());

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(hudCamera.get());
root->addChild(loadedModel.get());

Managing Massive Amounts of Data

350

7. The PagedPickHandler will be then allocated and added to the viewer for
intersection operations:
osg::ref_ptr<PagedPickHandler> picker =
 new PagedPickHandler;
picker->_text = text;

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
viewer.addEventHandler(picker.get());
viewer.addEventHandler(new osgViewer::StatsHandler);
return viewer.run();

8. We hope you kept the terrain models generated in the last chapter. The gcanyon
data is a good sample for testing the picking handler here. We can execute this
recipe (the executable is named as cookbook_08_09) using the following command:

 # cookbook_08_09 output/out.osgb

9. The computation time is about 0.06-0.09 milliseconds on the author's computer.
The output generated is shown in the following screenshot:

10. Now delete the line enabling the KDTree. Rebuild the application and run it again.
The time increases to 0.2 – 0.5 milliseconds.

Chapter 8

351

11. Now, we start implementing the special reading callback. It is derived from the os
gUtil::IntersectionVisitor::ReadCallback class and the only method
to be overridden is readNodeFile(). Regardless of file caching and other
optimization solutions, we can directly load the filename variable by calling the
osgDB::readNodeFile() method. The input filename variable is automatically
invoked by the intersector and is actually the filename of the highest level child of
each osg::PagedLOD node:
struct PagedReaderCallback : public
 osgUtil::IntersectionVisitor::ReadCallback
{
 virtual osg::Node* readNodeFile(const std::string& filename)
 { return osgDB::readNodeFile(filename); }
};

12. Set up the _pagedReader variable in the main entry:
picker->_pagedReader = new PagedReaderCallback;

13. Restart the application again. Oh, you will see the computation speed is much slower
than before (even 200-400 milliseconds). This happens because we spent a lot of
time loading new files in the paged LOD's subgraph. This is the price of obtaining the
most precise intersection results.

How it works...
The KDTree is a binary tree for organizing vertices in a k-dimensional space. It is a special
case of the famous Binary Space Partitioning (BSP) tree, but very useful for range searching
and some other types of multidimensional data searching.

OSG encapsulates the KDTree algorithm totally in the OSG core and uses it to manage
vertices in any osg::Geometry objects. By default, the intersection visitor can make use
of the scene graph's bounding volume hierarchy to quickly find the leaf nodes that may have
intersections with the intersector. But on the geometry level, it must traverse all the primitives
(for example all the triangles) to find out intersections, no matter whether only a small portion
of the node is intersected. Most calculations are useless here and will cost precious time. In
this case, KDTree is extremely important, as it creates another new spatial index structure
inside the geometry and thus makes the traversing of primitives much faster.

Managing Massive Amounts of Data

352

The following line will enable building KDTree structure for all geometries loaded:

osgDB::Registry::instance()->setBuildKdTreesHint(
 osgDB::Options::BUILD_KDTREES);

But we can also enable KDTree on a few specified nodes before they are ready to be loaded,
for instance:

osg::ref_ptr<osgDB::Options> options = new osgDB::Options;
options->setBuildKdTreesHint(osgDB::Options::BUILD_KDTREES);
osg::Node* model = osgDB::readNodeFile("cow.osg", options.get());

9
Integrating with GUI

In this chapter, we will cover:

 f Integrating OSG with Qt

 f Starting rendering loops in separate threads

 f Embedding Qt widgets into the scene

 f Embedding CEGUI elements into the scene

 f Using the osgWidget library

 f Using OSG components in GLUT

 f Running OSG examples on Android

 f Embedding OSG into web browsers

 f Designing the command buffer mechanism

Introduction
This chapter is full of GUIs. As you may already know, OSG can be integrated with windowing
systems by specifying the window handle to the Traits class before creating the graphics
context. But for different GUI toolkits, the situations may be different too.

Integrating with GUI

354

OSG itself provides a list of examples that demonstrates the solutions of integrating OSG with
many kinds of GUIs:

Example name Description
osgAndroidExampleGLES1 and
osgAndroidExampleGLES2

OSG and Android (with GLES v1 or v2)

osgQtBrowser and osgQtWidgets Embed Qt web browsers/widgets to OSG scene
osgviewerCocoa OSG and Cocoa
osgviewerFLTK OSG and FLTK (http://www.fltk.org/)
osgviewerFOX OSG and FOX (http://www.fox-toolkit.org/)
osgviewerGLUT OSG and GLUT (use GLUT as windowing system, but not

renderer)
osgviewerGTK OSG and GTK (http://www.gtk.org/)
osgviewerIPhone OSG and iOS (iPhone, iPad, etc.)
osgviewerMFC OSG and MFC (for Windows only)
osgviewerQt OSG and Qt
osgviewerSDL OSG and SDL (http://www.libsdl.org/)
osgviewerWX OSG and wxWidgets (http://www.wxwidgets.org/)

Some of them may be too difficult for you to understand at once. We will also introduce
how to design GUI elements in 3D world, including using the well known third-party library
CEGUI, and using the native osgWidget library. The use of threads in GUI integration is also
introduced, as well as an initial example of using the command buffer concept (which is
useful for handling OSG events in an external thread).

Integrating OSG with Qt
Qt is one of the most successful cross-platform application and UI frameworks, which can be
used under Linux, Windows, Mac OS X, and even mobile systems. So it is more convenient and
portable than integrating OSG with X11/Windows window handles. Qt provides a QGLWidget
class that can render OpenGL elements directly on the window surface, and in older versions
of the OSG source code, you may find some examples using this class. But for 3.0 and newer
versions, OSG 3.0 has an osgQt library for implementing different functionalities related to Qt.
We will first make use of the osgQt::GraphicsWindowQt class in this recipe.

http://www.fltk.org/
http://www.fox-toolkit.org/
http://www.gtk.org/
http://www.libsdl.org/
http://www.wxwidgets.org/

Chapter 9

355

Getting ready
You have to download and compile Qt 4.x before working on the following few examples. Under
Ubuntu, you can quickly get the full precompiled packages (including the UI designer tool)
using the apt-get command:

apt-get install qt4-dev-tools qt4-doc qt4-qtconfig qt4-demos

qt4-designer

For other Linux and Windows developers, visit the Qt website and use online installers to get
the SDK:

http://qt.nokia.com/downloads

You can also obtain the source code and compile Qt by yourselves:

http://download.qt.nokia.com/qt/source/

If you are using CMake to find dependencies and generate project files, you can ask CMake to
look for Qt installations, for example:

FIND_PACKAGE(Qt)
INCLUDE_DIRECTORIES(${QT_INCLUDE_DIR})
…
TARGET_LINK_LIBRARIES(your_app ${QT_QTCORE_LIBRARY}
 ${QT_QTGUI_LIBRARY})

You must specify CMake's QT_QMAKE_EXECUTABLE variable manually to the location of
qmake executable file if CMake can't find it automatically.

How to do it...
Let us start.

1. Include necessary headers. Note that you may include specific Qt class headers
instead of including <QtCore> and <QtGui>.
#include <QtCore/QtCore>
#include <QtGui/QtGui>>
#include <osgDB/ReadFile>
#include <osgGA/TrackballManipulator>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>
#include <osgQt/GraphicsWindowQt>

http://qt.nokia.com/downloads
http://qt.nokia.com/downloads
http://download.qt.nokia.com/qt/source/
http://download.qt.nokia.com/qt/source/

Integrating with GUI

356

2. The createCamera() function will use the Traits class to define basic window
parameters, and then apply it to a new osgQt::GraphicsWindowQt instance. This
osgQt::GraphicsWindowQt object in fact includes a Qt widget associated with
OSG's graphics context for the rendering operations. Once you have set the scene's
camera, the widget will automatically render the scene.
osg::Camera* createCamera(int x, int y, int w, int h)
{
 osg::DisplaySettings* ds =
 osg::DisplaySettings::instance().get();
 osg::ref_ptr<osg::GraphicsContext::Traits> traits =
 new osg::GraphicsContext::Traits;
 traits->windowDecoration = false;
 traits->x = x;
 traits->y = y;
 traits->width = w;
 traits->height = h;
 traits->doubleBuffer = true;

 osg::ref_ptr<osg::Camera> camera = new osg::Camera;
 camera->setGraphicsContext(
 new osgQt::GraphicsWindowQt(traits.get()));
 camera->setClearColor(osg::Vec4(0.2, 0.2, 0.6, 1.0));
 camera->setViewport(new osg::Viewport(
 0, 0, traits->width, traits->height));
 camera->setProjectionMatrixAsPerspective(
 30.0f, static_cast<double>(traits->width)/
 static_cast<double>(traits->height), 1.0f, 10000.0f);
 return camera.release();
}

3. We define a ViewerWidget class which is derived from QWidget as the container
of the rendering widget. It also has a timer that can trigger an updating event in order
to execute OSG's frame() method frequently.
class ViewerWidget : public QWidget
{
public:
 ViewerWidget(osg::Camera* camera, osg::Node* scene);

protected:
 virtual void paintEvent(QPaintEvent* event)
 { _viewer.frame(); }

 osgViewer::Viewer _viewer;
 QTimer _timer;
};

Chapter 9

357

4. In the constructor of ViewerWidget class, we can set up the OSG viewer as usual,
including setting the main camera, scene data, and camera manipulator.
_viewer.setCamera(camera);
_viewer.setSceneData(scene);
_viewer.addEventHandler(new osgViewer::StatsHandler);
_viewer.setCameraManipulator(
 new osgGA::TrackballManipulator);

// Use single thread here to avoid known issues under Linux
_viewer.setThreadingModel(osgViewer::Viewer::SingleThreaded););

5. We will have to obtain the osgQt::GraphicsWindowQt object again and add its
internal widget to the parent Qt window with the getGLWidget() method.
osgQt::GraphicsWindowQt* gw =
 dynamic_cast<osgQt::GraphicsWindowQt*>(
 camera->getGraphicsContext());
if (gw)
{
 QVBoxLayout* layout = new QVBoxLayout;
 layout->addWidget(gw->getGLWidget());
 setLayout(layout);
}

6. The last step in the constructor is to start the QTimer and make it start with a
constant timeout interval. When the timer times out, a timeout() signal will be
emitted and the update() method will be called, which repaints the window and,
thus, executes _viewer.frame() in the overridden paintEvent().
connect(&_timer, SIGNAL(timeout()), this, SLOT(update()));
_timer.start(40);

7. In the main body of the code, we will create the camera and widget object one after
another, and start the Qt event loop with the exec() method. The OSG simulation
loop is already done in the paintEvent() method.
QApplication app(argc, argv);
osg::Camera* camera = createCamera(50, 50, 640, 480);
osg::Node* scene = osgDB::readNodeFile("cow.osg");

ViewerWidget* widget = new ViewerWidget(camera, scene);
widget->setGeometry(100, 100, 800, 600);
widget->show();
return app.exec();

Integrating with GUI

358

8. Now you will see the scene with a cow model embedded into a Qt window. Try adding
some other common controls like buttons and choice boxes and put them in the
widget layout. It is wonderful to have an application with UI elements and a 3D scene.

How it works...
Press S and you can see the frame rate is near to 25 fps. That is simply because the
paintEvent() method will be called when the timer times out every 40 ms, and, thus,
causes the frame() method of the viewer to be called 25 times per second.

We can also find in the ViewerWidget constructor that the viewer uses single threading
model here:

_viewer.setThreadingModel(osgViewer::Viewer::SingleThreaded);

Chapter 9

359

It means the updating, culling, and rendering operations are running in the same thread/
process, without benefiting from OSG's multithreading optimization strategy, and, thus, being
limited by the timer's interval. Under Windows, we can remove this line directly to improve the
rendering performance. But under some Linux distributions, there may be problems when
enabling multithreaded rendering with the Qt widget, and the application may crash. Please
run the viewer single-threaded in this situation, or report your issues to the osg-users if you
think it necessary.

Starting rendering loops in separate threads
We may not be delighted with the rendering speed of 25 fps; it means that OSG can use at
most 1/25 of one second for the rendering work. And when there are more objects to render
or more tasks to finish in the callbacks, the frame rate will continue to drop down and makes
the whole process inefficient.

One solution is to use an independent thread for OSG traversals and drawing commands. Of
course, the OpenThreads library, which is included in the core OSG source code, is the best
choice for implementing such a job. But as we are working with Qt too, we will try the the Qt
threading class here. The code will be based on the Integrating OSG with Qt recipe and only
have a few modifications.

How to do it...
Let us start.

1. The createCamera() function doesn't need to be modified in this recipe. We will
derive from the QThread class to design a multithreaded rendering solution. It in
fact overrides only the run() method to perform the viewer's simulation loop. And
when the instance is destroyed, we must immediately set the exiting flag of the
viewer and wait for the loop to be finished. This is a tiny but standard style for
writing multithreaded programs.
class RenderThread : public QThread
{
public:
 RenderThread() : QThread(), viewerPtr(0) {}

 virtual ~RenderThread()
 { if (viewerPtr) viewerPtr->setDone(true); wait(); }

 osgViewer::Viewer* viewerPtr;

protected:
 virtual void run()
 { if (viewerPtr) viewerPtr->run(); }
};

Integrating with GUI

360

2. In the constructor of ViewerWidget class, we will no longer trigger updating events
with the timer, but start the thread instead.
// 'RenderThread _thread' is the member of ViewerWidget
_thread.viewerPtr = &_viewer;
_thread.start();

3. No more changes in the main entry.

4. The result is exactly the same as the Qt integration example before. But when you
press S to view the scene and the rendering statistics. You will find that the frame
rate will be stable at 60 fps this time (in the last one, it was about 25 fps). This is
all because rendering work in a separate thread will run concurrently along with the
main process instead of waiting for being called in a timer event.

Chapter 9

361

How it works...
The QThread class is easy to understand as it only re-implements the following method:

virtual void run()
{ if (viewerPtr) viewerPtr->run(); }

Usually a multithreading developer will use a loop to fill the method body so that it will
continuously work when a thread is waked up. The osgViewer::Viewer::run() method is
suitable for this case. But to add more controls of your own, you can create a loop and call the
viewer's frame() method inside. The update traversal of the scene graph will be done in the
thread loop, but the culling and rendering tasks may create and use additional threads due to
the threading mode used currently.

There's more...
This time we come across a classic question—how can OSG, or OpenGL work in multithreaded
applications? In this recipe, it is a quite simple situation because all rendering-related work
is done in one thread and all UI operations in another. It should be safe because there is only
one current OpenGL graphics context inside the newly-created thread.

The OpenGL context is thread-specific. It must be released before another context is made as
current, and it must always be used from the same thread. Otherwise, the application may fail
to continue or even crash.

The preferred way to make OpenGL-based applications benefit from multiple threads is
to decouple the user thread from the drawing one. That is, to process the user logic and
updating work, as well as scene culling operations in one or more threads, which can never be
modified during rendering. The data to be updated or culled must be delayed if it is to be used
by the rendering thread at the same time. This is also known as the famous app-cull-draw
structure of modern rendering frameworks.

Fortunately, all this is handled nicely in the OSG system and we don't have to worry about
these 'multi-programming' problems, including multi-threaded, multi-core, multi-context, and
multi-display applications.

Embedding Qt widgets into the scene
Besides rendering OpenGL elements in a Qt window, it is also possible to embed Qt content
(especially different types of Qt widgets) into the 3D world. A complete example named
WolfenQt can be found at http://qt.gitorious.org/qt-labs/wolfenqt.

http://qt.gitorious.org/qt-labs/wolfenqt
http://qt.gitorious.org/qt-labs/wolfenqt

Integrating with GUI

362

It shows an amazing Wolfenstein-like (a famous old computer game) demo program with Qt
buttons, edit boxes, movie players, and other widgets embedded on the walls of a maze. All
the widgets are derived from the QGraphicsItem class with a customized transform and
QGraphicsView used to handle all user events. This example isn't intended to use Qt as an
internal GUI tool in 3D applications, but it is a good demonstration for people who want to try
some interesting concepts.

Fortunately, OSG has also encapsulated the QGraphicsItem/QGraphicsView structure in
the osgQt namespace, which will be shown in the following recipe.

How to do it...
Let us start.

1. Include necessary headers.
#include <QtCore/QtCore>
#include <QtGui/QtGui>>
#include <osg/Texture2D>
#include <osg/Geometry>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>
#include <osgGA/TrackballManipulator>
#include <osgViewer/ViewerEventHandlers>
#include <osgViewer/Viewer>
#include <osgQt/QWidgetImage>

2. The createDemoWidget() function is used to create a simple but funny window,
composed of a label which can play animated GIF files and two buttons for starting
and stopping the movie. We use Qt's preset signals and slots to implement the movie
controllers.
QWidget* createDemoWidget(const QString& movieFile)
{
 ... // Please see source code for details
}

3. In the main entry, we allocate an osgQt::QWidgetImage object with the created
Qt widget as the parameter. Note that this must be done after the QApplication
variable is established; otherwise Qt itself will not be initialized properly.
QApplication app(argc, argv);
osg::ref_ptr<osgQt::QWidgetImage> widgetImage =
 new osgQt::QWidgetImage(createDemoWidget("animation.gif"));

Chapter 9

363

4. There is no reason to ignore user events on Qt widgets (such as pushing the button
or typing in the text-box) in the 3D scene. OSG provides an osgViewer::Intera
ctiveImageHandler class to handle such events, that is, to pass the mouse and
keyboard events to the osgQt::QWidgetImage object.
osg::ref_ptr<osgViewer::InteractiveImageHandler> handler =
 new osgViewer::InteractiveImageHandler(widgetImage.get());

5. Now we set the image which displays Qt scene to a new texture object.
osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
texture->setImage(widgetImage.get());

6. Allocate a new quad and set the specialized event handler to its callbacks (both event
and cull callbacks as the image handler requires).
osg::ref_ptr<osg::Geometry> quad =
 osg::createTexturedQuadGeometry(osg::Vec3(), osg::X_AXIS,
 osg::Z_AXIS);
quad->setEventCallback(handler.get());
quad->setCullCallback(handler.get());

7. Add both the texture and the quad drawable to the scene graph.
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->addDrawable(quad.get());
geode->getOrCreateStateSet()->setTextureAttributeAndModes(
 0, texture.get());
geode->getOrCreateStateSet()->setMode(
 GL_LIGHTING, osg::StateAttribute::OFF);
geode->getOrCreateStateSet()->setRenderingHint(osg::StateSet::TRAN
SPARENT_BIN);

osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(geode.get());

8. Now we can start the viewer. You must still remember that Qt has its own event loop
to handle in every frame. We will simply call the processEvents() method in the
simulation loop body to make it work here. This is essentially the same as running
frame() in QWidget's painting event in the previous recipe. But later, we
will introduce another method to integrate OSG and Qt, but execute them in
different threads.
osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
viewer.setCameraManipulator(new osgGA::TrackballManipulator);
viewer.addEventHandler(new osgViewer::StatsHandler);

while (!viewer.done())

Integrating with GUI

364

{
 QCoreApplication::processEvents(QEventLoop::AllEvents,
 100);
 viewer.frame();
}
return 0;

9. Now it is exciting to see Qt GUI elements embedded in our familiar OSG scene. You
can rotate, pan, and zoom the camera as usual. When you move the mouse inside
the widget quad and press on either of the buttons, you will find that the movie's
state (playing or paused) is changed at the same time, which is exactly as intended.

How it works...
Here the osgQt::QWidgetImage class is actually derived from osg::Image. It means
that the entire Qt widget is drawn to a picture first, and then the picture is attached to
a texture and rendered in the 3D world. The drawing process is done in the internal
osgQt::QGraphicsViewAdapter class which connects OSG and Qt's graphics scene/view
mechanism. A similar method is used while we are playing movies in the scene graph, that is,
each frame of a movie is encoded and painted to an osg::Image object and then updated to
the texture for displaying.

Chapter 9

365

The osgViewer::InteractiveImageHandler is also special as it won't be applied
to the viewer, but to the drawable used for containing the image. It replaces the normal
event handling and culling processes of the drawable and handles user events and passes
them to Qt widgets. The mapping from OSG key/mouse values to Qt ones is also defined
in osgQt::QGraphicsViewAdapter. You may take a look at this important class in
src/osgQt subdirectory of the OSG source code.

Embedding CEGUI elements into the scene
Crazy Eddie's GUI (CEGUI) is an open source library providing 2D GUI widgets for graphic APIs
such as OpenGL and DirectX. It is one of the most successful 3D GUI projects written in C++
and targeted mainly to game developers. You can read more about this library and download
the source code or precompiled SDK at http://www.cegui.org.uk.

CEGUI can be used to design fantastic UIs and is already proven to be usable in many
commercial and non-commercial projects. It will be great to integrate it into the OSG scene
graph and benefit from its powerful functionalities. In this recipe, we will try to provide a
solution embedding CEGUI as a customized drawable object in the scene graph. First, you may
download the CEGUI library and read its examples to learn how to make use of CEGUI widgets
and windowing functions. We won't focus on the usage of CEGUI in the following sections of
this recipe.

Getting ready
You can download the CEGUI source code and precompiled libraries at
http://www.cegui.org.uk/wiki/index.php/CEGUI_Downloads_0.7.5.

Although Ubuntu and other Linux distributions can obtain the CEGUI SDK using apt-get and
other tools, it still doesn't fit our requirements here. We need version 0.7.5 for the following
code to compile and run properly, but there are some vital differences between 0.7.5 and
older versions. So you should compile CEGUI from the source code before tasting this recipe
if there are no binary CEGUI SDKs provided for your operating systems.

You can add the following lines in the CMakeLists.txt file to help specify the CEGUI
headers and main libraries (CEGUIBase and CEGUIOpenGLRenderer), and link them
to your project:

FIND_PACKAGE(OpenGL)
FIND_PATH(CEGUI_INCLUDE_DIR CEGUI.h)
FIND_LIBRARY(CEGUI_GL_LIBRARY CEGUIOpenGLRenderer)
FIND_LIBRARY(CEGUI_LIBRARY CEGUIBase)
…
INCLUDE_DIRECTORIES(${CEGUI_INCLUDE_DIR} ${OPENGL_INCLUDE_DIR})
TARGET_LINK_LIBRARIES(your_app ${CEGUI_GL_LIBRARY} ${CEGUI_LIBRARY}
${OPENGL_gl_LIBRARY})

http://www.cegui.org.uk/
http://www.cegui.org.uk/wiki/index.php/CEGUI_Downloads_0.7.5
http://www.cegui.org.uk/wiki/index.php/CEGUI_Downloads_0.7.5

Integrating with GUI

366

How to do it...
Let us start.

1. Include necessary headers:
#include <CEGUI.h>
#include <RendererModules/OpenGL/CEGUIOpenGLRenderer.h>
#include <osg/BlendFunc>
#include <osg/Drawable>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
#include <osgViewer/ViewerEventHandlers>
#include <iostream>

2. We will derive osg::Drawable class to execute CEGUI updating and
drawing commands when the OpenGL context is current. The CEGUI controls
(a window with a single button in this recipe) should also be initialized when the
drawImplementation() method is called for the first time. The mutable member
variables _activeContextID and _initialized are useful here as they record
the working context ID and check if the initialization is finished.
class CEGUIDrawable : public osg::Drawable
{
public:
 CEGUIDrawable();
 CEGUIDrawable(const CEGUIDrawable& copy,const osg::CopyOp&
 copyop=osg::CopyOp::SHALLOW_COPY);
 META_Object(osg, CEGUIDrawable);

 virtual void drawImplementation(osg::RenderInfo&
 renderInfo) const;

 void initializeControls();
 bool handleClose(const CEGUI::EventArgs& e);

protected:
 virtual ~CEGUIDrawable() {}

 // They are mutable for being altered in const methods
 mutable double _lastSimulationTime;
 mutable unsigned int _activeContextID;
 mutable bool _initialized;
};

Chapter 9

367

3. Set up suitable member values in the constructor and copy constructor. We should
also turn off lighting and depth test here to make sure the CEGUI widgets are always
on top of other scene objects.
CEGUIDrawable::CEGUIDrawable()
: _lastSimulationTime(0.0), _activeContextID(0),
 _initialized(false)
{
 setSupportsDisplayList(false);
 setDataVariance(osg::Object::DYNAMIC);
 getOrCreateStateSet()->setMode(GL_LIGHTING,
 osg::StateAttribute::OFF);
 getOrCreateStateSet()->setMode(GL_DEPTH_TEST,
 osg::StateAttribute::OFF);
}

CEGUIDrawable::CEGUIDrawable(const CEGUIDrawable&
 copy,const osg::CopyOp& copyop)
: osg::Drawable(copy, copyop),
 _lastSimulationTime(copy._lastSimulationTime),
 _activeContextID(copy._activeContextID),
 _initialized(copy._initialized)
{}

4. Let us start to implement the drawImplementation() method now, which is the
key for integrating CEGUI with OSG.
void CEGUIDrawable::drawImplementation(osg::RenderInfo&
renderInfo) const
{
 ...
}

5. Get the current context ID for later use and check if the initialization process is
ever called.
unsigned int contextID = renderInfo.getContextID();
if (!_initialized)
{
 ...
}
else
{
 ...
}

Integrating with GUI

368

6. If this is the first time we have entered this method, we have to initialize the CEGUI
system as shown in the following block of code. You may read more about the startup
of a CEGUI-based application on the CEGUI website. Here we will only create a
new OpenGL renderer and set up the search paths and names for different
resource types.
CEGUI::OpenGLRenderer::bootstrapSystem(
 CEGUI::OpenGLRenderer::TTT_NONE);
if (!CEGUI::System::getSingletonPtr()) return;
... // Please see source code for details

Run initializeControls() method to create some CEGUI widgets and
bind callbacks with widgets' specific events.
const_cast<CEGUIDrawable*>(this)->initializeControls();
_activeContextID = contextID;
_initialized = true;

7. If we have already initialized CEGUI and ensured the context ID is the same as the
one we used to create CEGUI elements (if we work with multiple windows, we have to
handle multiple IDs too), we can start the rendering work. The first step is to disable
any previous vertex arrays and back up current OpenGL states.
osg::State* state = renderInfo.getState();
state->disableAllVertexArrays();
state->disableTexCoordPointer(0);

glPushMatrix();
glPushAttrib(GL_ALL_ATTRIB_BITS);

8. Now we have to check if the viewport is changed or not and call the CEGUI
system's resizing method. We will explain why this is not done in event
handlers in the next section.
CEGUI::OpenGLRenderer* renderer =
 static_cast<CEGUI::OpenGLRenderer*>(
 CEGUI::System::getSingleton().getRenderer());
osg::Viewport* viewport =
 renderInfo.getCurrentCamera()->getViewport();
if (renderer && viewport)
{
 const CEGUI::Size& size = renderer->getDisplaySize();
 if (size.d_width!=viewport->width() ||
 size.d_height!=viewport->height())
 {
 CEGUI::System::getSingleton().notifyDisplaySizeChanged(
 CEGUI::Size(viewport->width(), viewport->height()));
 }
}

Chapter 9

369

9. Compute delta time from last frame to current frame, use it to update elements
requiring timing, and then render the GUI widgets. Don't forget to restore OpenGL
attributes at the end of this method.
double currentTime = (state->getFrameStamp() ?
 state->getFrameStamp()->getSimulationTime() : 0.0);
CEGUI::System::getSingleton().injectTimePulse((
 currentTime - _lastSimulationTime)/1000.0);
CEGUI::System::getSingleton().renderGUI();
_lastSimulationTime = currentTime;

glPopAttrib();
glPopMatrix();

10. In the initializeControls() method, you can implement any kind of
CEGUI-based interface if you have the knowledge of this powerful library. To make
this recipe simple, we will only create a demo window with a single button and add it
to the root window using the default TaharezLook style. The window's close button
at the right-top corner is connected with the callback method handleClose() to
ensure that we can quit this window when desired.
void CEGUIDrawable::initializeControls()
{
 CEGUI::SchemeManager::getSingleton().create(
 "TaharezLook.scheme");
 CEGUI::System::getSingleton().setDefaultMouseCursor(
 "TaharezLook", "MouseArrow");

 ... // Please see source code for details

 demoWindow->subscribeEvent(
 CEGUI::FrameWindow::EventCloseClicked,
 CEGUI::Event::Subscriber(&CEGUIDrawable::handleClose,
 this));
 demoWindow->addChildWindow(demoButtonOK);
 root->addChildWindow(demoWindow);
}

11. In the handleClose() method, we just hide the window as it is closed by the user.
bool CEGUIDrawable::handleClose(const CEGUI::EventArgs& e)
{
 CEGUI::WindowManager::getSingleton().getWindow(
 "DemoWindow")->setVisible(false);
 return true;
}

Integrating with GUI

370

12. Now we have to design an event handler to convert OSG's mouse events to
CEGUI-styled ones. This is important as CEGUI can never receive any user inputs
without such a conversion. Note that we don't implement keyboard conversion here.
If you wish to finish it by yourselves, just remember to use a map to record OSG keys
and corresponding CEGUI keys. For example, OSG's KEY_Return value must be
converted to CEGUI::Key::Return and sent to the CEGUI system if it is detected.
class CEGUIEventHandler : public osgGA::GUIEventHandler
{
public:
 CEGUIEventHandler(osg::Camera* camera) : _camera(camera) {}

 virtual bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa);

protected:
 CEGUI::MouseButton convertMouseButton(int button);
 osg::observer_ptr<osg::Camera> _camera;
};

13. In the handle() method, don't forget to recalculate the correct Y value for CEGUI,
which increases downwards.
int x = ea.getX(), y = ea.getY(), width = ea.getWindowWidth(),
 height = ea.getWindowHeight();
if (ea.getMouseYOrientation()==
 osgGA::GUIEventAdapter::Y_INCREASING_UPWARDS)
y = ea.getWindowHeight() - y;
if (!CEGUI::System::getSingletonPtr())
return false;

14. Execute proper CEGUI methods to deliver mouse events here. The only case to note
here is RESIZE. We must reset the projection matrix and viewport of the HUD camera
used by CEGUI (see the code segments in the next few steps for its creation) when
the window is resized. CEGUI will be notified about this in the next drawing process
in CEGUIDrawable::drawImplementation(), as described earlier.
switch (ea.getEventType())
{
.. // Please see source code for details
 case osgGA::GUIEventAdapter::RESIZE:
 if (_camera.valid())
 {
 _camera->setProjectionMatrix(osg::Matrixd::ortho2D(
 0.0, width, 0.0, height));
 _camera->setViewport(0.0, 0.0, width, height);
 }

Chapter 9

371

 break;
 default:
 return false;
}

15. The last step in the handle() method is to check if any CEGUI window is
intersected with the mouse cursor. We will try to return true to notify other handlers
not to pick up the same event again, because a CEGUI window has already handled
the event.
CEGUI::Window* rootWindow =
 CEGUI::System::getSingleton().getGUISheet();
if (rootWindow)
{
 CEGUI::Window* anyWindow = rootWindow->
 getChildAtPosition(CEGUI::Vector2(x, y));
 if (anyWindow) return true;
}
return false;

16. The convertMouseButton() method is just used for converting OSG mouse event
values to CEGUI's.
switch (button)
{
 case osgGA::GUIEventAdapter::LEFT_MOUSE_BUTTON:
 return CEGUI::LeftButton;
 case osgGA::GUIEventAdapter::MIDDLE_MOUSE_BUTTON:
 return CEGUI::MiddleButton;
 case osgGA::GUIEventAdapter::RIGHT_MOUSE_BUTTON:
 return CEGUI::RightButton;
 default: break;
}
return static_cast<CEGUI::MouseButton>(button);

17. In the main entry, we will add a new CEGUIDrawable instance to an osg::Geode
node. Don't forget to call setCullingActive(false) here; otherwise, the
drawable will be culled because we didn't implement the computeBound() method
to define its bound (in fact we don't have such a bound). The node can be transparent
to prepare for any translucent widgets.
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
geode->setCullingActive(false);
geode->addDrawable(new CEGUIDrawable);
geode->getOrCreateStateSet()->setAttributeAndModes(
 new osg::BlendFunc);
geode->getOrCreateStateSet()->setRenderingHint(
 osg::StateSet::TRANSPARENT_BIN);

Integrating with GUI

372

18. Now we must put the CEGUI widgets to a HUD display and render them on
the top of all other models. That means a HUD camera should be placed in
the scene graph. We should make sure it can receive user events by calling
setAllowEventFocus(true) function.
osg::ref_ptr<osg::Camera> hudCamera =
 osgCookBook::createHUDCamera(0, 800, 0, 600);
hudCamera->setAllowEventFocus(true);
hudCamera->addChild(geode.get());

19. OK, now create the root node and start the viewer.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(osgDB::readNodeFile("cow.osg"));
root->addChild(hudCamera.get());

osgViewer::Viewer viewer;
viewer.setSceneData(root.get());
viewer.addEventHandler(
 new CEGUIEventHandler(hudCamera.get()));
viewer.addEventHandler(
 new osgViewer::WindowSizeHandler);
viewer.addEventHandler(
 new osgViewer::StatsHandler);
return viewer.run();

20. The last thing to do is to copy the datafiles folder in the CEGUI SDK to current
working directory. The location of datafiles is already specified to CEGUI resource
groups in the initialization process of the drawImplementation() method. Without
the datfilesdatafiles folder, CEGUI will miss all the widgets, fonts, and style
information, and simply fail to start.

21. Now we can see a game-like dialog with only one button appearing in front of the cow
model. Click on the X at the top-right and you can close this dialog at any time. If you
have time to read the CEGUI documentation and design a complex enough interface,
you can easily integrate it with OSG by rewriting CEGUIDrawable::initializeCo
ntrols() method and create beautiful GUI elements from now on.

Chapter 9

373

How it works...
Now we will see why CEGUI's resizing is done in the rendering process instead of in the event
handler. CEGUI internally uses plenty of textures to draw different UI elements. When the
window size is modified, it rescales all these elements to fit the new size. This requires a
recompilation of OpenGL textures and thus needs to be done when the OpenGL context is
current. That is why we call notifyDisplaySizeChanged() method of the CEGUI system
singleton in the drawable's method. The HUD camera's viewport and matrix must be altered
as well to ensure that the display is not distorted.

This example successfully detaches the GUI part from other scene operations. CEGUI
elements and callbacks are centralized in the customized CEGUIDrawable and the
CEGUIEventHandler. It won't affect the scene graph even if you open or close dialogs,
press buttons, or input texts in the text boxes.

The only problem is the threading model. As you can see from the source code, CEGUI uses
a singleton system pointer everywhere to handle events and control UI objects. The pointer
may be called in more than one thread if we have to take part in the CEGUI system in node
callbacks or other places. And due to CEGUI's design, it is already hard to provide any
protection solutions here to avoid visiting at the same time. The only suggestion is that you
must run these kinds of OSG applications in single-threaded model, or use a command buffer
to record operations to the CEGUI system and execute them later. We will discuss the latter in
the last recipe of this chapter.

Integrating with GUI

374

Using the osgWidget library
The osgWidget library is a NodeKit that helps OSG support 2D GUI windows and elements
in the 3D world. As you have seen from the last few examples, it is not hard to embed Qt and
CEGUI controls and layouts into the scene graph, but more external dependencies must be
added and maintained along with the program. In addition, the scene graph concept is not
used for constructing and updating the graphics interface, and it is really hard to visit, modify,
and compute the intersections with these UI elements. To solve this we require the osgWidget,
which depends heavily on the OSG node and image derivatives, and can integrate well with
other scene objects.

osgWidget accepts three kinds of basic widget (they can be nested, that is, have sub-widgets
inside)—box, canvas, and table. A box must line up child widgets horizontally or vertically. A
canvas can draw sub-widgets at any coordinates without any constraints. A table, as its name
suggests, lays out widgets in the correct cell (specified row and column) in a grid.

The UI example in this recipe will be very simple. We will make a tab widget including
three text tabs and sub-windows. It won't have a Windows- or Mac OS X-like style, but can
demonstrate how osgWidget works with scene graph and the UI event system simultaneously.

How to do it...
Let us start.

1. Include necessary headers:
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
#include <osgWidget/WindowManager>
#include <osgWidget/Box>
#include <osgWidget/Canvas>
#include <osgWidget/Label>
#include <osgWidget/ViewerEventHandlers>
#include <iostream>
#include <sstream>

2. Let us declare the tabPressed() callback function which will be executed
automatically when one of the tabs is selected.
extern bool tabPressed(osgWidget::Event& ev);

Chapter 9

375

3. We will have a createLabel() function for creating labels quickly. You can find that
its methods are very similar to osgText::Text. In fact, the osgText library is also
used by osgWidget for text rendering.
osgWidget::Label* createLabel(const std::string& name,
 const std::string& text, float size,
 const osg::Vec4& color)
{
 osg::ref_ptr<osgWidget::Label> label =
 new osgWidget::Label(name);
 label->setLabel(text);
 label->setFont("fonts/arial.ttf");
 label->setFontSize(size);
 label->setFontColor(1.0f, 1.0f, 1.0f, 1.0f);
 label->setColor(color);
 label->addSize(10.0f, 10.0f);
 label->setCanFill(true);
 return label.release();
}

4. Now we are going to create the entire tab widget.
osgWidget::Window* createSimpleTabs(float winX, float winY)
{
 ...
}

5. First, we will create a canvas which allows sub-widgets to be placed at any
coordinates, and a box window for positioning children uniformly. The canvas
is used as the tab contents, and the box will include three tab labels horizontally.
osg::ref_ptr<osgWidget::Canvas> contents =
 new osgWidget::Canvas("contents");
osg::ref_ptr<osgWidget::Box> tabs =
 new osgWidget::Box("tabs", osgWidget::Box::HORIZONTAL);

6. We create the three tab labels and link them with the same callback function in
succession; and to make the recipe easy enough, we will only add three multi-text
labels to the contents. The setLayer() method decides which label will be placed
at the top and, thus, visible to viewers. It actually sets the Z-order of UI window
elements.
for (unsigned int i=0; i<3; ++i)
{
 osg::Vec4 color(0.0f, (float)i / 3.0f, 0.0f, 1.0f);
 std::stringstream ss, ss2;
 ss << "Tab-" << i;
 ss2 << "Tab content:" << std::endl <<

Integrating with GUI

376

 "Some text for Tab-" << i;

 osgWidget::Label* content = createLabel(ss.str(),
 ss2.str(), 10.0f, color);
 content->setLayer(osgWidget::Widget::LAYER_MIDDLE, i);
 contents->addWidget(content, 0.0f, 0.0f);

 osgWidget::Label* tab = createLabel(ss.str(),
 ss.str(), 20.0f, color);
 tab->setEventMask(osgWidget::EVENT_MOUSE_PUSH);
 tab->addCallback(new osgWidget::Callback(
 &tabPressed, osgWidget::EVENT_MOUSE_PUSH, content));
 tabs->addWidget(tab);
}

7. After the creation of three tabs and their contents, we use a vertical box to contain
them and set its title using another new label object, and return it.
osg::ref_ptr<osgWidget::Box> main =
 new osgWidget::Box("main", osgWidget::Box::VERTICAL);
main->setOrigin(winX, winY);
main->attachMoveCallback();
main->addWidget(contents->embed());
main->addWidget(tabs->embed());
main->addWidget(createLabel("title", "Tabs Demo",
 15.0f, osg::Vec4(0.0f, 0.4f, 1.0f, 1.0f)));
return main.release();

8. The tabPressed() function can handle mouse-clicking events on the tab and
change the content shown in the canvas. To achieve this, we must obtain the
canvas window first and reset all children's layer numbers. The layer to be displayed
will always have bigger values. After the modification, the canvas must be resized to
update all its elements. Returning true means the callback is captured and handled
in a proper way.
bool tabPressed(osgWidget::Event& ev)
{
 osgWidget::Label* content = static_cast<
 osgWidget::Label*>(ev.getData());
 if (!content) return false;

 osgWidget::Canvas* canvas = dynamic_cast<
 osgWidget::Canvas*>(content->getParent());
 if (canvas)
 {
 osgWidget::Canvas::Vector& objs = canvas->getObjects();

Chapter 9

377

 for(unsigned int i=0; i<objs.size(); ++i)
 objs[i]->setLayer(osgWidget::Widget::LAYER_MIDDLE, i);

 content->setLayer(osgWidget::Widget::LAYER_TOP, 0);
 canvas->resize();
 }
 return true;
}

9. In the main entry, we create a window manager with a fixed size and a mask for
the intersectors to ignore 2D elements. An ortho camera can be retrieved from the
window manager for adding to the root node, and the simple tab window should be
added to the manager before calling resizeAllWindows() method.
osgViewer::Viewer viewer;
osg::ref_ptr<osgWidget::WindowManager> wm =
 new osgWidget::WindowManager(&viewer, 1024.0f,
 768.0f, 0xf0000000);
osg::Camera* camera = wm->createParentOrthoCamera();

wm->addChild(createSimpleTabs(100.0f, 100.0f));
wm->resizeAllWindows();

10. Add the UI camera and all other scene nodes to the root and configure the viewer. A
few osgWidget-specific handlers are also used here, which will be introduced in the
next section of this recipe.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(osgDB::readNodeFile("cow.osg"));
root->addChild(camera);

viewer.setSceneData(root.get());
viewer.setUpViewInWindow(50, 50, 1024, 768);
viewer.addEventHandler(
 new osgWidget::MouseHandler(wm.get()));
viewer.addEventHandler(
 new osgWidget::KeyboardHandler(wm.get()));
viewer.addEventHandler(new osgWidget::ResizeHandler(wm.get(),
 camera));
viewer.addEventHandler(
 new osgWidget::CameraSwitchHandler(wm.get(), camera));
return viewer.run();

Integrating with GUI

378

11. Run the application and you can see a rough UI window shown in the scene graph,
along with the cow model:

12. As osgWidget is still young and weak, it doesn't have any built-in styles and is not as
beautiful and professional as the X11/Windows/Mac OS X interfaces we are familiar
with. But it is still good to know that OSG has its own UI system which is under
construction. If, after reading this book, you choose osgWidget, why not contribute
some of your own improvements?

How it works...
The base structure of osgWidget elements is easy to understand—a window manager must be
created and maintained separately as it defines the size and basic attributes of the entire UI
system. Numbers of window objects, such as osgWidget::Box and osgWidget::Canvas,
can be added to the manager for displaying and receiving user events. They are also added
to the ortho camera internally. A window object always has widgets inside, such as labels,
buttons, input boxes, and other customized elements. All these objects are in fact group
nodes with special functionalities, so the UI can be visited by osg::NodeVisitor class
and can have updates and cull callbacks besides the event-related ones.

There are four handlers defined in the osgWidget library that are necessary for work:

 f osgWidget::MouseHandler: It handles mouse events and transfers events to
corresponding callbacks defined by osgWidget::Callback.

 f osgWidget::KeyboardHandler: It handles keyboard events and sends them
to callbacks.

Chapter 9

379

 f osgWidget::ResizeHandler: It handles resizing of the window manager and all
its children.

 f osgWidget::CameraSwitchHandler: With this handler, you can press F12
to change to 3D view of the UI elements, which is convenient and sometimes
interesting.

You can also use the global osgWidget::createExample() function to manage the
camera and all these events internally. The code segment is as follows:

osgWidget::createExample(viewer, wm.get());

Using OSG components in GLUT
Now we will try to discuss another interesting topic, that is, how to integrate OSG into other 3D
engines based on OpenGL.

This would seem meaningless to developers who use OSG from start to finish in their projects.
But for people who are familiar with some other SDKs, such as Ogre3D, Open Inventor,
or others, they might have already worked under those SDKs for a long time and had a
lot of products and modules in hand, and wouldn't want to change to OSG and rewrite all
the existing code. In that case, they can just embed some OSG components into their own
applications as modules, and render OSG elements using standard OpenGL contexts
(WGL/GLX).

In this recipe, we choose the GLUT library (http://www.opengl.org/resources/
libraries/glut/) as the base system and do the rendering and interacting work in GLUT
callbacks. Then we will directly call OSG's rendering back end to update, cull, and render the
scene. The scene graph structure and visitor mechanism may not be affected because they
have no relations with the renderer.

Getting ready
Under Ubuntu, you can download the FreeGLUT library, which is completely compatible with
the original GLUT library:

apt-get install freeglut-dev

Windows users can obtain the original GLUT headers and libraries pre-built at
http://www.opengl.org/resources/libraries/glut/glut37.zip.

Then configure this library to be found in CMake scripts:

FIND_PACKAGE(GLUT)
...
INCLUDE_DIRECTORIES(${GLUT_INCLUDE_DIR})
TARGET_LINK_LIBRARIES(${GLUT_LIBRARIES})

http://www.opengl.org/resources/libraries/glut/
http://www.opengl.org/resources/libraries/glut/glut37.zip
http://www.opengl.org/resources/libraries/glut/glut37.zip

Integrating with GUI

380

How to do it...
Let us start.

1. Include necessary headers. Note that we don't need to include osgViewer headers
here, because GLUT will take the place of it.
#include <osgDB/ReadFile>
#include <osgUtil/SceneView>
#include <GL/glut.h>

2. Define some global variables for use. The osgUtil::SceneView class is often used
internally as the rendering back end, but this time it takes the leading role.
osg::ref_ptr<osgUtil::SceneView> g_sceneView =
 new osgUtil::SceneView;
osg::Matrix g_viewMatrix, g_projMatrix;
float g_width = 800.0f, g_height = 600.0f;
unsigned int g_frameNumber = 0;
osg::Timer_t g_startTick;

3. Create an initializeFunc() function to initialize some OSG-related data,
including the view and projection matrices, the start time of the timer, and
passing the input root node to the SceneView object.
void initializeFunc(osg::Node* model)
{
 if (model)
 {
 const osg::BoundingSphere& bs = model->getBound();
 g_viewMatrix.makeLookAt(
 bs.center() - osg::Vec3(0.0f,4.0f*bs.radius(),0.0f),
 bs.center(), osg::Z_AXIS);
 }
 g_projMatrix.makePerspective(30.0f, g_width/g_height,
 1.0f, 10000.0f);
 g_startTick = osg::Timer::instance()->tick();

 g_sceneView->setDefaults();
 g_sceneView->setSceneData(model);
 g_sceneView->setClearColor(osg::Vec4(0.2f,0.2f,0.6f,1.0f));
}

Chapter 9

381

4. GLUT uses callbacks to handle drawing, resizing, and user events of a render window.
The displayFunc() function will be called every time when GLUT is going to draw
a new frame in the window. We will set the correct reference time, update, and draw
the SceneView object before the buffer-switching operation.
void displayFunc()
{
 osg::Timer_t currTick = osg::Timer::instance()->tick();
 double refTime = osg::Timer::instance()->delta_s(
 g_startTick, currTick);

 osg::ref_ptr<osg::FrameStamp> frameStamp =
 new osg::FrameStamp;
 frameStamp->setReferenceTime(refTime);
 frameStamp->setFrameNumber(g_frameNumber++);

 g_sceneView->setFrameStamp(frameStamp.get());
 g_sceneView->setViewport(0.0f, 0.0f, g_width, g_height);
 g_sceneView->setViewMatrix(g_viewMatrix);
 g_sceneView->setProjectionMatrix(g_projMatrix);

 g_sceneView->update();
 g_sceneView->cull();
 g_sceneView->draw();
 glutSwapBuffers();
}

5. When the window is resized, alter the projection matrix used by the
SceneView object.
void reshapeFunc(int width, int height)
{
 g_width = width; g_height = height;
 g_projMatrix.makePerspective(30.0f, g_width/g_height,
 1.0f, 10000.0f);
}

6. In the main entry, we will just put the simplest GLUT code here. There are no
OSG-related functions except using osgDB::readNodeFile() function to
read a scene graph from the disk file.
glutInit(&argc, argv);
glutInitWindowSize(800, 600);
glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_DEPTH);
glutCreateWindow("OSG in GLUT");

glutReshapeFunc(reshapeFunc);

Integrating with GUI

382

glutDisplayFunc(displayFunc);
initializeFunc(osgDB::readNodeFile("cow.osg"));

glutMainLoop();
return 0;

7. Is that all? Yes, we have just finished the whole program! Compile and run, and we
will see a window exactly the same as previous one using osgViewer. But it can't
be manipulated, and Esc key can't be used to exit the program either. Mouse and
keyboard events are not migrated into this recipe yet. But this is already the rudiment
of a GLUT application with OSG scene graph rendered in.

How it works...
It is a little too complex to introduce the osgUtil::SceneView class here. It is in fact the
main renderer of OSG 1.x versions and a Producer project that is built upon it for high-level
windowing functionalities. But these are out-dated projects.

Chapter 9

383

Today, OSG has a specific osgViewer library for encapsulating windowing APIs, implementing
different multithreading mechanisms, and handling user events and camera manipulators.
The osgUtil::SceneView class is only used internally for sorting and transferring actual
rendering commands to the OpenGL pipeline. When we want to merge OSG with other 3D
engines, we may have to directly utilize osgUtil::SceneView class. But we cannot benefit
from OSG's user-level advantages (such as multithreaded rendering) and may have to
re-invent the wheel at some point.

Running OSG examples on Android
We have already discussed about compiling OSG on Android in the first chapter of this book.
Now it's time to do something more exciting. As Android uses Java as the user-level rendering
surface (in 2.3 and higher, Android starts to support C++ programs fully), OSG libraries for
Android must also use Java as the front end and there is too much coding work before we can
make the simplest OSG program work. So we will directly compile an existing OSG on Android
example and try to run it on a true device (a Motorola XOOM).

You can find the example project in examples/osgAndroidExampleGLES1 and
examples/osgAndroidExampleGLES2 in the OSG source code, but it is not
compiled along with the core libraries and other examples. That is because CMake
cannot handle Android makefiles properly at present. Copy the folder to a suitable
place first. Remember that I assume you have already compiled OSG with GLES v1
support. So examples/osgAndroidExampleGLES1 should be used here.

Important! If you are using Tegra devices (mentioned in Chapter 1), please remember to
comment a line in jni/Android.mk for both examples.

LOCAL_ARM_NEON := true

Otherwise, your application will crash and exit while running on mobile devices.

Getting ready
Be sure to configure Android SDK and NDK properly first. If you are also new to Android
developing, see their following official website for instructions:

http://developer.android.com/sdk/installing.html

It is OK if you don't use the ADT plugin for Eclipse, we will use Apache Ant in this recipe
to generate debug/release versions of Android packages. You can read more about it at
http://ant.apache.org/.

To obtain Ant under Ubuntu, type the following command:

apt-get install ant

http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/installing.html
http://ant.apache.org/

Integrating with GUI

384

You must sign your application if you are generating release versions of Android packages
(APK). In this recipe, we choose the debug build.

How to do it...
Let us start.

1. First let us make some changes to the jni/Android.mk file to specify the OSG
installation path. Of course, it should be compiled using GLES configurations.
replace '< type your install directory >' with your OSG
installation path, for instance, /usr/osg_android/
OSG_ANDROID_DIR := < type your install directory >

2. We have two ways to start the building process. First, it is quick and simple to execute
ndk-build directly in the example's root folder:

 # ndk-build

3. Another choice is a little more complex—change to the subfolder jni and compile the
source code, then copy the generated libraries to the libs folder:

 # cd jni

 # ndk-build NDK_APPLICATION_MK=Application.mk

 # cd ..

 # cp –r obj/local/armeabi/ libs/

 # cp –r obj/local/armeabi-v7a/ libs/

4. Change to the root folder of the example. Use tools/android to generate projects
for Ant to use.

 # tools/android update project --name osgAndroidExampleGLES1

 --path . --target "android-14"

5. Use Ant to generate the package file with .apk as the extension. Debug version must
be used here as it will automatically generate a public key for signing the application.

 # ant debug

6. OK, now find the file bin/osgAndroidExampleGLES-release-unsigned.apk
(or something with a similar name) and copy it to your Android device.

7. Install and have a look at your result. It is empty except the classic blue screen, isn't
it? This just means you got your foot in the door of running OSG applications on
Android. Congratulations!

Chapter 9

385

How it works...
We don't have enough space to explain how this example is written. Thanks to the original
author of OSG on Android—Jorge Izquierdo Ciges. He contributes these two examples and
makes sure they work on most Android platforms.

In short words, the example (either one) is divided into two parts: The files in src/osg/
AndroidExample are Java source code that manages the UI elements, dialogs, and the
interface to middle-level render surface; the .cpp files in jni are actually using OSG
libraries for rendering. The file osgNativeLib.cpp uses JNI to wrap some C/C++
functionalities to Java. And the file osgMainApp.cpp provides a simple encapsulation
of osgViewer::Viewer class with some more methods to load models and handle
mouse events.

If you want to show something in your first OSG on Android application, try looking into
osgMainApp.cpp and add some more code to create a triangle or draw elements with
shaders. If you need to read model files of other formats, use static macros to declare plugins
(refer to examples/osgstaticviewer) at the very beginning. You may also build cUrl and
a few more libraries for Android and add them to CMake variables for building with the mobile
version of OSG.

Integrating with GUI

386

Embedding OSG into web browsers
It would be cool to create and view OSG-based applications in a web browser such as Firefox,
Internet Explorer, or Google Chrome. But to design a plugin for these web browsers is not as
easy as one might hope. First of all, you have to be an expert of web plugin programming.
Internet Explorer accepts ActiveX, but others accept NPAPI (hopefully), so you have to do
some extra work to support more than one platform. Is there any way to create powerful
web plugins in a simpler and portable way?

The answer is FireBreath, a web plugin framework that can work either as an NPAPI plugin
or as an ActiveX control. It supports all the web browsers we just described, as well as
Apple's Safari and the Opera browser (partly). You may read detailed information at
http://www.firebreath.org/display/documentation/FireBreath+Home.

In this recipe, we will learn to quickly integrate OSG into web browsers using the power of
FireBreath. The example code can only work under Windows systems at present as there are
some platform-specific parts (a totally platform-independent one is too long for this recipe).
But you can certainly rewrite it to support more operating systems after you are familiar with
the FireBreath APIs.

Getting ready
We are not going to introduce the full-build instructions of a new FireBreath project. FireBreath
itself doesn't need to be compiled. Download it at https://github.com/firebreath/
FireBreath/tarball/firebreath-1.6.

FireBreath provides a convenient Python utility fbgen.py for quickly creating new projects
from templates. Please follow the link below to create a new plugin project and make sure it
can compile before we continue. The Plugin Name is osgWeb, and so is the name of Plugin
Identifier. Don't edit the default values of other fields unless you really need to make
some changes.

http://www.firebreath.org/display/documentation/
Creating+a+New+Plugin+Project

The final settings look as shown in the following screenshot:

http://www.firebreath.org/display/documentation/FireBreath+Home
http://www.firebreath.org/display/documentation/FireBreath+Home
https://github.com/firebreath/FireBreath/tarball/firebreath-1.6
https://github.com/firebreath/FireBreath/tarball/firebreath-1.6
http://www.firebreath.org/display/documentation/Creating+a+New+Plugin+Project
http://www.firebreath.org/display/documentation/Creating+a+New+Plugin+Project
http://www.firebreath.org/display/documentation/Creating+a+New+Plugin+Project

Chapter 9

387

And you will find a new directory osgWeb in the projects folder.

How to do it...
Let us start.

1. When we have the CMakeLists.txt file in the project folder (in projects/
osgWeb), open it with any text editor and modify the last few lines:
find_path(OPENSCENEGRAPH_ROOT include/osg/Node PATHS
$ENV{OSG_ROOT})
include_directories(${OPENSCENEGRAPH_ROOT}/include)
link_directories(${Boost_LIBRARY_DIRS}
${OPENSCENEGRAPH_ROOT}/lib)
include_platform()
target_link_libraries(${PROJECT_NAME} OpenThreads
osg osgDB osgGA osgViewer)

2. Follow the pre-making process in the last web link to generate the Visual Studio
solution in the build/ folder. Any other dependencies (such as Boost) will be
downloaded automatically.

3. If you encounter any errors, use cmake-gui to open the CMakeCache.txt file and
see if you have correctly configured the OSG dependencies for the project. Now it's
time to do some coding work in the osgWeb.h and osgWeb.cpp files, which are
originally created by FireBreath.

4. Include necessary headers in osgWeb.h.
#include "PluginWindowWin.h"
#include <osg/Group>
#include <osgDB/ReadFile>
#include <osgGA/TrackballManipulator>
#include <osgViewer/Viewer>
#include <osgViewer/api/Win32/GraphicsWindowWin32>

Integrating with GUI

388

5. As described in the QThread example, it is possible to refresh OSG scene in a
separate thread while the main process is busy with different GUI events. Now we will
design such a thread class derived from OpenThreads::Thread, which is the base
of OSG's threading solutions.
class RenderingThread : public OpenThreads::Thread
{
public:
 RenderingThread()
 : OpenThreads::Thread(), viewerPtr(0) {}

 virtual ~RenderingThread();

 virtual void run()

 osgViewer::Viewer* viewerPtr;
};

6. We have to cancel the simulation loop when the thread object is destroyed, that is, in
the destructor.
if (viewerPtr) viewerPtr->setDone(true);
while(isRunning())
OpenThreads::Thread::YieldCurrentThread();

7. In the virtual run() method, we start the rendering work in a loop and will only quit
if the viewer is done or testCancel() returns true. The latter is implemented and
used by OpenThreads to check the state of a running thread.
if (!viewerPtr) return;
do
{
 viewerPtr->frame();
}
while (!testCancel() && !viewerPtr->done());
viewerPtr = NULL;

8. Now we have to make some changes to the auto-generated osgWeb class. Let us
re-implement the onWindowAttached() and onWindowDetached() methods,
and add two member variables to allocate the viewer and the rendering thread.
class osgWeb : public FB::PluginCore
{
public:
 ...
 virtual bool onWindowAttached(FB::AttachedEvent *evt,
 FB::PluginWindow *);
 virtual bool onWindowDetached(FB::DetachedEvent *evt,

Chapter 9

389

 FB::PluginWindow *);
 ...
 osgViewer::Viewer _viewer;
 RenderingThread* _thread;
};

9. The onWindowAttached() method will be called when the web browser has
initialized the plugin and attached a window handle to it. This is the only chance to
integrate OSG context to the browser. The following code works for Windows platforms
only as it is much easier to implement. You may try writing the X11 version by casting
the window parameter to FB::PluginWindowX11.
bool osgWeb::onWindowAttached(FB::AttachedEvent *evt,
 FB::PluginWindow *win)
{
 FB::PluginWindowWin* window =
 reinterpret_cast<FB::PluginWindowWin*>(win);
 if (window)
 {
 …
 }
 return false;
}

10. If the window exists, we can now set the traits of the OSG context. You should be
already familiar with the following code.
osg::ref_ptr<osg::Referenced> windata =
 new osgViewer::GraphicsWindowWin32::WindowData(
 window->getHWND()););
// This works under Windows only
osg::ref_ptr<osg::GraphicsContext::Traits> traits =
 new osg::GraphicsContext::Traits;
traits->x = 0;
traits->y = 0;
traits->width = 800;
traits->height = 600;
traits->windowDecoration = false;
traits->doubleBuffer = true;
traits->inheritedWindowData = windata;

Integrating with GUI

390

11. Create the main camera.
osg::ref_ptr<osg::GraphicsContext> gc =
 osg::GraphicsContext::createGraphicsContext(
 traits.get());
osg::ref_ptr<osg::Camera> camera = new osg::Camera;
camera->setGraphicsContext(gc);
camera->setViewport(new osg::Viewport(0, 0,
 traits->width, traits->height));
camera->setClearMask(GL_DEPTH_BUFFER_BIT |
 GL_COLOR_BUFFER_BIT);
camera->setClearColor(osg::Vec4f(0.2f, 0.2f,
 0.6f, 1.0f));
camera->setProjectionMatrixAsPerspective(
 30.0f, (double)traits->width/(double)traits->height,
 1.0, 1000.0);

12. Set the camera and an example scene graph to the viewer now. Don't allow Esc key to
be triggered, and you may call setKeyEventSetsDone(0) to disable this.
osg::ref_ptr<osg::Group> root = new osg::Group;
root->addChild(osgDB::readNodeFile("cessna.osg"));

_viewer.setCamera(camera.get());
_viewer.setSceneData(root.get());
_viewer.setKeyEventSetsDone(0);
_viewer.setCameraManipulator(
 new osgGA::TrackballManipulator);

13. At the end of the method, start the thread to render OSG scene!
_thread = new RenderingThread;
_thread->viewerPtr = &_viewer;
_thread->start();

14. When the plugin is going to be reset or released, don't forget to delete the thread to
cancel the rendering work.
bool osgWeb::onWindowDetached(FB::DetachedEvent *evt,
 FB::PluginWindow *win)
{
 delete _thread;
 return false;
}

Chapter 9

391

15. Now compile the osgWeb project. It will generate a dynamic plugin named
nposgweb.dll in build/bin/osgweb. Find it and copy it to a suitable position. A
web page file FBControl.htm including the simplest code for executing the plugin
is saved in build/projects/osgweb/gen. Don't forget to copy it out for the
testing work.

16. Under Windows, you will have to register the plugin before using it. Run the following
command in the plugin's directory:

 # regsvr32 nposgweb.dll

17. Now you can open the test page. Can you see the Cessna model displayed in the web
browser now? (We have run it on both Chrome and Internet Explorer.)

18. If you want to unregister the plugin, type the following command:

 # regsvr32 -u nposgweb.dll

How it works...
The mechanism used in FireBreath to implement a web plugin is out of the scope of this book.
To describe it in short words, it encapsulates two totally different APIs (ActiveX and NPAPI)
perfectly and uses one uniform PluginCore class to implement all common functionalities
during the plugin's lifecycle, including attaching and detaching window handle, and receiving
mouse and keyboard events.

Integrating with GUI

392

The integration of the OSG viewer nearly has no difference with earlier examples (mostly in
Chapter 4). A window handle is required for specifying the window traits, and then we use the
traits to create graphics context and the viewer's main camera. A separate thread is used to
render the scene in an efficient way, as discussed in an earlier recipe in this chapter.

We will talk about the safety problem of this integration solution in the next recipe.

There's more...
Web plugin is not the only solution for displaying 3D scene in browsers. Don't forget that we
can also make use of the JNI (http://java.sun.com/docs/books/jni/) to create Java
applets with C++ and OSG-based application.

The latest webGL standard is another good choice for Chrome and Firefox users (but it is
still blocked in some other browsers due to possible security problems). Fortunately there is
already a corresponding OSG project here named osgjs. It is actually a WebGL framework
based on OpenSceneGraph concepts, but not a wrapper based on the original OSG source
code. It can be viewed and downloaded from http://osgjs.org/.

Designing the command buffer mechanism
The command buffer is a queue of command strings (tokens) that the application
maintains. Each string represents a kind of command for parsing and executing. The
application must read the command buffer's tokens sequentially and execute them
sequentially too. The command buffer mechanism will be of much help especially in
multithreaded applications— the commands are sent in one thread, and received and
executed in another. You will have to ensure the buffer area is read/write safe using the
thread mutex, because it may be operated by different threads at the same time.

In this recipe, we are going to talk about the simplest implementation of command buffer
based on the web plugin example we just discussed. The command can be sent when
FireBreath receives mouse events from the outside. And we will only recognize the input
command string as filenames to be reloaded into the scene to replace original ones. The work
of loading and updating to scene graph will be done in FireBreath's event function first, and in
OSG's handler later.

How to do it...
Let us start.

1. We first consider how to add a simple functionality in osgWeb::onMouseUp()
method. Type the following code:
osg::Group* root = dynamic_cast<osg::Group*>(
 _viewer.getSceneData());

http://java.sun.com/docs/books/jni/
http://osgjs.org/

Chapter 9

393

if (root)
{
 root->removeChildren(0, root->getNumChildren());
 switch (evt->m_Btn)
 {
 case FB::MouseUpEvent::MouseButton_Left:
 root->addChild(osgDB::readNodeFile("cow.osg"));
 break;
 case FB::MouseUpEvent::MouseButton_Middle:
 root->addChild(osgDB::readNodeFile("cessna.osg"));
 break;
 case FB::MouseUpEvent::MouseButton_Right:
 root->addChild(osgDB::readNodeFile("dumptruck.osg"));
 break;
 }
}

2. It should clear all existing child nodes under the root node and add a new model
according to mouse button clicked. For example, left button up means to add a new
Cessna. This is only a naive functionality for test, but it can reproduce some issues
and will be solved later with some new mechanism such as the command buffer.

3. Compile and register the plugin. At the beginning, it seems to work like a charm. But
after a few attempts, especially when we are clicking mouse very quickly, the plugin
may crash, as shown in the following screenshot:

Integrating with GUI

394

Anything wrong with the program? Yes, this is just because we are trying to alter
OSG scene elements outside the rendering thread; neither in callback nor event
handlers, but in another thread (probably the UI thread) which may cause
data-sharing conflicts.

4. So we need a simple but handy command buffer to solve the problem. First let us
derive the class from osgGA::GUIEventHandler.
class CommandHandler : public osgGA::GUIEventHandler
{
public:
 void addCommand(const std::string& cmd)
 {
 OpenThreads::ScopedLock<OpenThreads::Mutex> lock(mutex);
 commands.push_back(cmd);
 }

 virtual bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa);

 std::vector<std::string> commands;
 OpenThreads::Mutex mutex;
};

5. In the handle() method, we will always swap the member command vector to a
local one in the FRAME event. To note, a mutex variable is always used before the
buffer commands is used. It is the key to protecting data from being corrupted by
more than one thread's operations.
if (ea.getEventType()!=osgGA::GUIEventAdapter::FRAME)
return false;

// Use a local command list as the 'front command buffer'
// Cut and paste the 'back buffer' commands to it for handling
std::vector<std::string> localCommands;
{
 OpenThreads::ScopedLock<OpenThreads::Mutex> lock(mutex);
 localCommands.swap(commands););
}
Implement the command now, that is, to remove old scene and add
new model from file.
osgViewer::Viewer* viewer =
 static_cast<osgViewer::Viewer*>(&aa);
if (viewer && viewer->getSceneData())
{
 osg::Group* root = dynamic_cast<osg::Group*>(
 viewer->getSceneData());

Chapter 9

395

 if (root)
 {
 for (unsigned int i=0; i<localCommands.size(); ++i)
 {
 root->removeChildren(0, root->getNumChildren());
 root->addChild(osgDB::readNodeFile(
 localCommands[i]));
 }
 }
}
return false;

6. We record the command handler variable in the osgWeb class.
class osgWeb : public FB::PluginCore
{
 ...
 osg::ref_ptr<CommandHandler> _commandHandler;
};
Don't forget to apply the handler to the viewer in
osgWeb::onWindowAttached().
_commandHandler = new CommandHandler;
_viewer.addEventHandler(_commandHandler.get());

7. Now in the implementation of osgWeb::onMouseUp() method, we can add string to
the command handler instead of directly operating on scene graph nodes.
if (_commandHandler.valid())
{
 switch (evt->m_Btn)
 {
 case FB::MouseUpEvent::MouseButton_Left:
 _commandHandler->addCommand("cow.osg"); break;
 case FB::MouseUpEvent::MouseButton_Middle:
 _commandHandler->addCommand("cessna.osg"); break;
 case FB::MouseUpEvent::MouseButton_Right:
 _commandHandler->addCommand("dumptruck.osg"); break;
 }
}
return false;

8. Re-run the application, try your best to click on the mouse buttons as command
buffer mechanism as fast as possible. You won't see any crashes again, will you? That
is because command buffer stores the commands transferred between two threads
(UI and OSG) and each thread will only work on these commands when the other one
doesn't. The scene graph is also altered in OSG event handlers (will never conflict
with the rendering process), rather than in the UI thread function.

Integrating with GUI

396

How it works...
The OpenThreads::Mutex variable is of great use here. It can lock the thread in a
scoped time, until all the commands after its birth and before its death are executed. The
CommandHandler class uses mutex variable in two places: one is the addCommand()
function, which is only called in osgWeb::onMouseUp(); the other is the handle()
method, which uses mutex to protect the command list and then parses its contents.

You can easily find that addCommand() method is in fact only called in the UI thread, and it
will lock the data commands before writing a new value to it. Meanwhile, handle() is only
called in OSG, locks commands and reads all its elements, and then parses them to execute
preset functionalities. These two locks make the data transferring process safe, stable, and
clear to understand. Also you may extend the command string to any form, and use them in
your own applications.

Index
Symbols
2D camera manipulator

designing 162-166
2D quad-tree 334
2D shape

extruding, to 3D 86-89
3D world

movie, playing 177, 178
_activeContextID member variables 366
_direction variable 203
_distance variable 203
_fadingState 188
_initialized member variables 366
_initialized variable 69
_needleTransform node 76
_nodeMap variable 320
_pagedReader callback 348
_plateTransform node 76
_root node 223
_scene variable 217
_viewer.frame() 357
<marquee> tag 180
-d option 290
-o option 284
-t option 290
.osgb 287
.svn file 14
--polygonal option 287, 289
--geocentric option 289
--image-ext 287
--tasks argument 293
--terrain option 287

A
ABSOLUTE_RF 249
accept() method 80, 95
Acer IconiaTab 26
ACTUAL_3DPARTY_DIR option 21
addCommand() function 396
addCommand() method 396
addFileList() function 319
addGround() method 221
addMatrixManipulator() method 160
addPhysicsBox() method 221
addPhysicsData() method 222
addPhysicsSphere() method 221
addProfile() method 274, 276
addVertices() function 212, 213
allocateImage() method 346
AlphaPixel 8
Android

OSG examples, running 383-385
Android NDK

URL, for downloading 25
Android SDK

URL, for downloading 25
Ant

obtaining under ubuntu, commad for 383
Apache Ant 383
API documentation

generating 30-32
app-cull-draw structure 361
applyEnd() method 275
apply() method 59, 275
AppServ

URL 301

398

apt-get command 14, 19, 355
ARM OpenGL ES 2.0 Emulator

URL 28
astronomical unit (AU) 139
AuxiliaryViewUpdater class 152, 154

B
background image node

implementing 61-64
BackMotion 183
Ball-* node 341
BFS

BFSVisitor class 60
designing 58

BFSVisitor class 60
Binary space partitioning (BSP)

URL 341
bin directory 282
binormal array 233
Bloom

URL 256
BlueMarble

URL 288
BMP 18
Boost library 43
borderlines

used, for creating polygon 82-85
BounceMotion 183
bounding box

computing 47-51
BoundingBoxCallback class 47
breadth-first-search. See BFS
brightness parameter 343
build_master.source file 292, 294
build_master.tasks file 293
build() method 335, 337
Bullet Physics

URL 225
bump mapping 119, 229-232

C
CACHE_IMAGES value 320
car

running car, creating 51-56
CEGUI

about 365

precompiled libraries , URL for downloading
365

source code, URL for downloading 365
CEGUIDrawable::drawImplementation() 370
CEGUIDrawable::initializeControls() method

372
CEGUIDrawable instance 371
CEGUI elements

embedding, in scene 365-373
CEGUI library 354
CellIndex 324
CgEndDrawCallback class 69
CgFX 68
cgGLDisableProfile() function 276, 277
Cg language 67
CGprofile object 68
CgProgram attribute 275, 277
CgProgram class 273, 274, 276
CGprogram object 68
CgStartDrawCallback class 69
checkout operation 10, 13, 15
childData 336
CIAT 290
CircMotion (circular equation) 183
clone() method 46
cloud

about 266
bounding box, computing 269, 271
CloudCell object 270
CloudCell structure 268
creating 267
makeGlow() function 270
readCloudCells() function 271
viewer, starting 271

CloudCell
about 267
object 270
structure 268

cluster generation
implementing, SSH used 298-300

CMake
generators 18
options, configuring 14-17
URL 7
URL, for binary packages 14
used, for creating project 33-36

CMAKE_BUILD_TYPE item 17

399

CMake, generators
about 18
CodeBlocks 18
MinGW Makefiles 18
NMake Makefiles 18
Unix Makefiles 18
Visual Studio 18
XCode 18

cmake-gui tool 297
cmake-gui utility 14, 15
CMAKE_INSTALL_PREFIX item 17
CMake options

configuring 14-17
CMake scripts 7
CodeBlocks 18
Collada DOM 18
command buffer mechanism 392-395
CommandHandler class 396
compare() method 274
compass class 74
compass node

implementing 74-80
computeBound() method 91, 92, 95, 267,

371
computeLocalToWorldMatrix() method 257,

259
computer animation 171
computeTargetToWorldMatrix() 157
computeWorldToLocalMatrix() method 257
convertMouseButton() method 371
CPack packaging system 22
Crazy Eddie’s GUI. See CEGUI
create2DView() function 151, 154
createActor() function 220
createAnimateNode() 145
createAnimationPath() 48
createAnimationPathCallback() function 82
createBlurPass() function 251
createBone() function 212
createBoneShapeAndSkin() function 213
createBoneShape() function 212
createBoxForDebug() method 339
createBox() method 218
createCamera() function 356, 359
createChannel() function 208, 212
createColorInput() function 251

createDemoWidget() function 362
createElement() 337
createElement() method 338
createEmoticonGeometry() function 184
createEndBone() function 212
createFace() function 100
createFaceSelector() method 111
createFireParticles() function 191
createGraphicsContext() method 73
createHUDCamera() function 38
createInstancedGeometry() function 125,

343
createLabel() function 375
createMatrixTransform() function 44
createMaze() function 325, 326
createNewLevel() method 338
createPointSelector() method 115
createQuads() function 313
createRandomImage() function 311
createRibbon() function 102
createRTTCamera() function 228
createScene() function 140
createScreenQuad() function 229
createSimpleGeometry() function 112, 117
createSimpleGeometry() method 107
createSlaveCamera() 134
createSphere() method 219
createStaticNode() function 145
createTexture() function 263
createTilescreateTiles() function 307
createTiles() function 308
createTransformNode() function 52
createView() function 132
createWorld() method 218
cube map

sky box, designing 257-261
cube mapping 261
CubicMotion class 183
CubicMotion (cubic equation) 183
culling algorithms 324
culling strategy

about 324
designing 324-330
working 331

Cygwin 14

400

D
dangling pointer 42
database pager

configuring 321-323
data.txt file 342
DDS 18
deep copy 44
defaultTex variable 343
define_passes() class 238
define_techniques() method 238
degrees-of-freedom (DOF) 129
DEM 122
depth buffer

displaying 241-244
reading 241-244

depth-first-search. See DFS
depth-of-field. See DOF
depth partition

using, to display huge scene 139-143
depth partition range 141
depth partition setting 141
depth peeling 190
derivation of a normal map. See DUDV map
DFS 58
digital elevation model. See DEM
DirectInput library 166
DirectX. See HLSL
dirtyBound() 103
dirtyDisplayList() method 105
dirty() method 105
displacement mapping 119
displayFunc() function 381
DOF

implementing 249-254
door

animation, adding to manager 175
closing 172
door geometry, creating 173
handler, configuring 175
headers, including 172
OpenDoorHandler class 174
opening 172
osgAnimation::UpdateMatrixTransform 176
scene graph, creating with updater 175
StackedMatrixElement 177

StackedQuaternionElement 177
StackedRotateAxisElement 177
StackedScaleElement 177
StackedTranslateElement 177
viewer, starting 175
wall geometry, creating 172, 173

dot utility 31
doUserOperations() method 42, 107-111, 116
Doxygen tool

about 30
URL, for downloading 31

draw callbacks
used, for executing NVIDIA Cg functions 67-74

drawImplementation() method 91, 92, 95,
267, 269, 366, 367, 372

draw instanced extension 124, 125
DUDV map 266
dynamic clock

drawing, on screen 96-101
dynamic libraries

about 29
compiling 29, 30
using 29, 30

DYNAMIC_OPENSCENEGRAPH option 26
DYNAMIC_OPENTHREADS option 26

E
early-Z algorithm 331
earth

terrain database, generating 287-290
EaseMotion header 182
ElasticMotion 183
elements variable 336
elevation data

working with 290-293
emoticonSource() function 184
emoticonTarget() function 184
EnumJoysticksCallback() method 168
exec() method 357
ExpoMotion (exponential equation) 183
export command 13
extentSet[] array 336
extrusion

2D shape to 3D 86-89
about 86-89

401

F
FadeInOutCallback class 190
fading in effect 187-190
fading out effect 187-190
Fast Approximate Anti-Aliasing. See FXXA
FBO 241
FFmpeg library

URL 179
FIFO 59
fire

flight, animating on 190-193
FireBreath 386
first in, first out. See FIFO
flight

animating, on fire 190-194
FRAME_BUFFER method 244
frame buffer object. See FBO
FRAME_BUFFER_OBJECT 244
FRAME event 318
frame() method 356, 358, 361
FreeGLUT library 379
FreeType 19
front view, model

manipulating 152-155
model 148-151

FXXA
URL 256

G
Galaxian game

creating 198-206
Gaussian Blur

URL 256
gcanyon data 289, 294
gcanyon terrain 294
GCC 14
gc variable 151
GDAL group 282
geode1 node 46
geode2 node 45
geode3 node 46
geographic coordinate system 287
Geographic Information Systems. See GIS
geometry data

merging 306-309

GeoTiff imagery 288
getBlurFromLinearDepth() function 256
getCellIndex() method 329
getDistanceFromEyePoint() method 189
getGLWidget() method 357
getInverseMatrix() method 163
getMatrix() method 163, 166, 219
getNodeByName() method 318
getNumScreens() method 133
getOrCreateBox() function 325
getOrCreatePlane() function 325
getParentalNodePaths() method 51
getValue() method 183
getViewMatrixAsLookAt() method 155
getVisitorType() method 67
GIS 74, 82
glBegin() function 272
glCopySubImage() function 244
glEnd() function 272
GL_FLOAT format 345
gl_MultiTexCoord* variable 127
gl_Normal variable 127
globalElements variable 339
GL_POINTS mode 342
GL_POLYGON primitive 85, 87
GL_QUAD_STRIP parameter 121
glReadPixels() 316
GL_RGBA format 345
GLSL 67
GlusterFS

URL 300
GLUT

OSG components, using 379-383
GLUT library 379
gl_Vertex variable 127
g_mazeMap variable 325, 332
Graph Visualization Software 31

H
handleClose() callback method 369
handleClose() method 369
handle() function 156
handle() method 153, 155, 169, 203, 221,

348, 370, 371, 394, 396
handlers, osgWidget library 378

402

HDR
URL 256

heads-up display. See HUD
height() 199
High Dynamic Range. See HDR
HLSL 67
home() method 164
HUD 38
huge scene

displaying, depth partition used 139-143

I
indexList variable 112
initializeControls() method 368, 369
initializeFunc() function 380
init() method 169
instance() function 217
International Centre for Tropical Agriculture

290
intersectWith() function 202
isAbsolute argument 248
isLeafNode 336

J
JNI

URL 392
joysticks

used, for manipulating view 166-170
JPEG 18

K
KCEGUI::Key::Return 370
K-dimensional tree (KDTree)

about 342, 347, 350, 351
structure, building 352
URL 342

KEY_Return value 370

L
LAN 298
lastMatrix variable 327
leaf node, octree 337
LessDepthSortFunctor functor 267
LessDepthSortFunctor structure 268

libCURL 19
libJPEG 18
libopenscenegraph-dev package 25
libopenscenegraph package 25
libopenthreads-dev package 25
libopenthreads package 25
lib subdirectory 283
LIF 245
lighting

with shaders 194-197
Light Interference Filters. See LIF
LightPosCallback class 196
LINEAR_MIPMAP_LINEAR parameter 121
LLC 288
loadedModel node 240
Local Area Network. See LAN
localToWorld matrix 48
local-to-world transformation 47
lock() method 43
LOD (level-of-details) 286
LOD nodes 341

M
MAIN_CAMERA_MASK constant 147
makeGlow() function 270
make package operation 24
manipulator

using, to follow models 159, 160
maze 324
MazeCullCallback instance 330
MazeManipulator class 326
MazeManipulator object 328
maze map 324
member _text variable 41
mesh

customized mesh, skinning 211-215
META_Effect macro 238
META_StateAttribute macro 273
MinGW Makefiles 18
mobile devices

OSG, compiling on 25-27
OSG, using on 25-27

model
following, manipulator used 159, 160
front view, showing 148-151
highlighting 106-109

403

moving model, following 155-158
point, selecting 114-118
ribbon, drawing from 101-105
selecting 106-109
side view, showing 148-151
top view, showing 148-151
triangle face, selecting 110-113

morph geometry
implementing 183
implementing, steps 183-186

Motion Blur
URL 256

motions 183
Motorola XOOM 26
movie

playing, in 3D world 177, 178
MSDN site 43
multiple imagery

working with 290-293
multiple passes

transparency, implementing 237-241
multiple screens

views, setting up on 130-133
mutex variable 394

N
ndk-build 384
NeHe OpenGL tutorials

URL 58
Network File System. See NFS
Newton

URL 225
NFS 299
night vision effect

about 245
implementing 246-248

NMake Makefiles 18
node

screen, facing to 64-67
NodeCallback class 329
NodeKit 374
NodeMap variable 221
Non-Uniform Rational B-Splines. See NURBS
normalColor 106
notifyDisplaySizeChanged() method 373
NPAPI 386

NSIS
about 22
URL, for downloading 22

Nullsoft Scriptable Install System. See NSIS
numInstances parameter 344
NURBS 89
NURBS surface

drawing 89-95
NurbsSurface class 90
NVIDIA Cg functions

executing, draw callbacks used 67-74
NVIDIA PhysX library 215
NVIDIA shader library

URL 256
NVTT 315

for device-independent generation 296-298

O
objects

cloning 43-46
culling, occlusion query used 331-333
sharing 43-46

ObserveShapeCallback class 41
occlude node class 331
occluders 331
occlusion query

about 331
using, for culling objects 331-333

octree 306
octree algorithm 335
octree structure 334
ODE

URL 225
OIS 170
onWindowAttached() method 388, 389
onWindowDetached() method 388
OpenDoorHandler class 174
OpenGL. See also GLSL
OpenGL

about 8
URL 127

OPENGL_egl_LIBRARY option 27
OpenGL ES 25
OpenGL for Embedded Systems. See OpenGL

ES
OPENGL_gl_LIBRARY option 27

404

OPENGL_glu_LIBRARY option 27
OPENGL_INCLUDE option 27
openNURBS

URL 96
OpenSceneGraph. See also OSG
OpenSceneGraph

about 7
official download link 8
URL, for binaries 8
URL, for online installer 8
URL, for resources 8

OpenSceneGraph 3.0 8
openscenegraph-doc 25
openscenegraph-examples package 25
OpenSceneGraph library 8
openscenegraph package 25
OpenSSH website

URL 300
OpenThreads::Mutex variable 396
openthreads-doc package 25
OpenThreads library 359
operator() implementation 48, 65
operator() method 69, 103, 181
Oriented Input System. See OIS
ortho camera 377
osg

Light’s setPosition() method 197
PolygonOffset attribute 112

OSG. See also OpenSceneGraph
OSG

about 7
compiling, on different platforms 22-24
compiling, on mobile devices 25-27
culling strategy, designing 324-330
database pager, configuring 321-323
embedding, in web browser 386-392
examples, list 354
geometry data, merging 306-309
integrating, with Qt 354-358
latest version, checking out 8, 9
latest version, checking out for Ubuntu users

9-11
latest version, checking out for Windows users

9-13
massive data, managing 305, 306
objects culling, occlusion query used

331-333

osgQtBrowser 354
osgQtWidgets 354
osgviewerCocoa 354
osgviewerFOX 354
osgviewerGLUT 354
osgviewerGTK 354
osgviewerIPhone 354
osgviewerMFC 354
osgviewerQt 354
osgviewerSDL 354
osgviewerWX 354
packaging, on different platforms 22-24
plugins, building 18-21
point cloud data 342
point cloud data, rendering with draw

instancing 342-346
scene intersections, speeding 347-352
scene objects, managing with octree

algorithm 333-341
scene objects, sharing 316-320
textures, compressing 310-315
using, on mobile devices 25-27

osg::Billboard class 64
osg::BlendFunc attribute 271
osg::Camera class 74
osg::Camera node 228
osg::CollectOccludersVisitor 67
osg::ComputeBoundsVisitor class 47, 48
osg::computeLocalToWorld() function 51
osg::computeWorldToLocal() function 51
osg::Depth attribute 258
osg::Drawable class 74, 89, 90, 366
osg::Drawable object

display list, generating 309
osg::DrawArrays class 125
osg::DrawElements* class 125
osg::Geode node 42, 44, 97, 185, 193, 207,

371
osg::Geometry class 85
osg::Geometry object 82, 106, 109, 186
osg::GraphicsContext object 73, 131
osg::Group class 80
osg::Group’s traverse() method 80
osg::image class 296, 346
osg::Image object 364
osg::ImageStream class 177
osg::Material object 188

405

osg::Matrix::scale() function 57
osg::Matrix::translate() function 57
osg::MatrixTransform node 103, 113, 194
osg::Node class 59
osg::NodeCallback class 331
osg::NodeVisitor class 58, 61, 378
osg::OccluderNode class 331
osg::OcclusionQueryNode class 331
osg::observer_ptr<> 40
osg::observer_ptr<> template class 40, 41,

42
osg::PagedLOD node 321, 351
osg::PrimitiveSet’s sub-classes 85
osg::ProxyNode node 321
osg::ShapeDrawable object 44
osg::StateAttribute class 273
osg::StateAttribute derived class 273
osg::TexGen class 262
osg::Texture class 296
osg::TextureCubeMap class 262
osg::Timer object 348
osg::Uniform::Callback structure 197
osg::Uniform class 197
osgAnimation::Bone node 207
osgAnimation::LinearMotion class 182
osgAnimation::LinearMotion object 181
osgAnimation::MorphGeometry 183
osgAnimation::MorphGeometry object 187
osgAnimation::RigGeometry class 212
osgAnimation::RigGeometry object 214
osgAnimation::UpdateBone callback 207
osgAnimation::UpdateMatrixTransform 176
osgAnimation::UpdateMorph 187
osgAnimation::UpdateMorph object 185
osgAnimation::VertexInfluenceMap object

213
osgAnimation library 172
osganimationmorph 187
OSG_BUILD_PLATFORM_ANDROID option 26
osgCg module 74
OSG components

using, in GLUT 379-383
osgCookBook

createRTTCamera() function 248
osgCookBook::createRTTCamera() function

241, 244
osgCookBook::createText() method 39

osgCookBook::PickHandler auxiliary class 40
osgCookbook namespace 39, 82
osgCookBook namespace 228, 306
OSG_CPP_EXCEPTIONS_AVAILABLE option

26
osgDB::DatabasePager class 301
osgDB::DatabasePager object 321
osgDB::FileLocationCallback object 302
osgDB::Options class 320
osgDB::ReadFileCallback 316
osgDB::readImageFile() function 320
osgDB::readImageFile() method 18
osgDB::readNodeFile() function 292, 381
osgDB::readNodeFile() method 18, 144
osgDB::ReaderWriter class 298
osgDB::SharedStateManager 316
osgdb_curl plugin 20, 301
osgdb_directshow 179
osgdb_ffmpeg plugin 177, 179
osgdb_freetype plugin 21
osgdb_gif plugin 21, 179
osgdb_jpeg plugin 21
osgdb_nvtt plugin 298
osgdb_png plugin 21
osgdb_* prefix 18
osgdb_QTKit 180
osgdb_quicktime 180
osgdem 283
osgdem utility 280
osgdrawinstanced 127
osgEarth 305
osgEarth project 280
OSG examples

running, on Android 383-385
OSG_FILE_PATH variable 13
osgFX::Cartoon node 109
osgFX::Effect node 237
osgFX::Technique node 238
osgGA

FirstPersonManipulator class 159
osgGA::CameraManipulator abstract class

161
osgGA::CameraManipulator class 162
osgGA::EventVisitor 67
osgGA::FirstPersonManipulator 326
osg::Geometry object 307
osgGA::GUIEventAdapter object 170

406

osgGA::GUIEventHandler class 394
osgGA::KeySwitchMatrixManipulator class

162
osgGA::NodeTrackerManipulator class 159,

162
osgGA::OrbitManipulator object 156
osgGA::StandardManipulator class 162
osgGA::StandardManipulator instance 164
osgGA::TrackballManipulator class 130, 162
OSG_GL1_AVAILABLE option 26
OSG_GL2_AVAILABLE option 26
OSG_GL3_AVAILABLE option 26
OSG_GL_DISPLAYLISTS_AVAILABLE option 26
OSG_GLES1_AVAILABLE option 26, 28
OSG_GLES2_AVAILABLE option 26
OSG_GL_FIXED_FUNCTION_AVAILABLE option

28
OSG_GL_MATRICES_AVAILABLE option 28
OSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE

option 28
OSG_GL_VERTEX_FUNCS_AVAILABLE option

28
OSG group 282
osg::Image class 346
osgmultiplerendertargets 256
osgNativeLib.cpp 385
osgParticle library 172
osgQt::GraphicsWindowQt class 354
osgQt::GraphicsWindowQt instance 356
osgQt::GraphicsWindowQt object 357
osgQt::QGraphicsViewAdapter class 364
osgQt::QWidgetImage class 364
osgQt::QWidgetImage object 362, 363
osgQtBrowser 354
osgQt library 21
osgQtWidgets 354
osgShadow::ShadowedScene node 237
osgShadow::ViewDependentShadowMap class

237
OSG source code 58
osgTerrain::TerrainTile class 287
osgTerrain::TerrainTile node 292
osgText::Text class 64
osgUtil

Intersector class 118

osgUtil::CullVisitor 67
osgUtil::CullVisitor class 189
osgUtil::CullVisitor object 65, 259
osgUtil::GLObjectsVisitor 67
osgUtil::IntersectionVisitor 67
osgUtil::IntersectionVisitor::ReadCallback

class 351
osgUtil::PrintVisitor class 60, 339
osgUtil::SceneView class 380, 382, 383
osgUtil::TangentSpaceGenerator class 230
osgUtil::TangentSpaceGenerator tool 233
osgUtil::Tessellator class 85
osgUtil::UpdateVisitor 67
osgViewer

about 322
Viewer class 385

osgViewer::CompositeViewer class 132
osgViewer::InteractiveImageHandler 365
osgViewer::InteractiveImageHandler class

363
osgViewer::Viewer::run() method 361
osgviewerCocoa 354
osgviewerFOX 354
osgviewerGLUT 354
osgviewerGTK 354
osgviewerIPhone 354
osgviewerMFC 354
osgviewerQt 354
osgviewerSDL 354
osgviewerWX 354
osgWeb::onMouseUp() method 392, 395
osgWeb::onWindowAttached() 395
osgWidget::Box 378
osgWidget::CameraSwitchHandler 379
osgWidget::Canvas 378
osgWidget::createExample() function 379
osgWidget::KeyboardHandler 378
osgWidget::MouseHandler 378
osgWidget::ResizeHandler 379
osgWidget library 354

handlers 378
using 374-379

OSG_WINDOWING_SYSTEM option 26
OVERRIDE mask 232

407

P
PagedPickHandler class 348, 350
paintEvent() method 357, 358
parent node 330
PBO 245
performMovementLeftMouseButton() method

165, 169
performMovementRightMouseButton()

method 165, 169
PhysicsUpdater class 220, 225
PhysXInterface class 217
PhysX SDK object 217
PhyxXInterface class 225
PIXEL_BUFFER method 245
Pixel Buffer Object. See PBO
PIXEL_BUFFER_RTT method 245
PluginCore class 391
plugins

building 18-21
point

selecting, for model 114-118
point cloud data

about 342
rendering, draw instancing used 342-346

pointer
dangling pointer 42
smart pointer 40
strong pointer 40
weak pointer 43

polygon
creating, with borderlines 82-85

pos variable 127
power-wall

slave cameras, using 133-138
processEvents() method 363
Process Explorer

about 310
download link 310

project
creating, CMake used 33-36

prune() function 317
Python utility 386

Q
QApplication variable 362
QGLWidget class 354

QGraphicsItem class 362
QGraphicsItem structure 362
QGraphicsView 362
QGraphicsView structure 362
Qt

downloading 355
OSG, integrating with 354-358
SDK, downloading 355

QThread class 359, 361
QTimer 357
QT_QMAKE_EXECUTABLE variable 355
Qt toolkit 21
Qt widgets

embedding, in scene 361-365
QuadMotion (quadratic equation) 183
quad-tree internal node 333
quad-tree scene graphs 333
Qualcomm Adreno SDK

URL 28
QWidget 356

R
radar map

implementing 143
implementing, steps 144-148

randomMatrix() function 306
randomValue() function 306
randomVector() function 306
raw pointer 43
ReadAndShareCallback 319
readCloudCells() function 271
ReaderWriterDAE class 298
readNodeFile() 351
readNode() function 317
readNode() method 320
readPointData() method 344
real-time water rendering

creating 262
RELATIVE_RF 249
removeAttribute() method 277
RemoveModelHandler class 318
RemoveShapeHandler class 40, 42
RemoveShapeHandler instance 42
renderCells() method 269
rendering loop

starting, in separate threads 359-361

408

Rendering-to-texture. See RTT
render-to-texture technique 56
reset() method 59
resizeAllWindows() method 377
ribbon

drawing, from model 101-105
R-Tree

URL 342
RTT 241
run() method 150, 359, 388

S
S3TC DXT1 format 314
scene

CEGUI elements, embedding 365-373
Qt widgets, embedding 361-365

scene culling 324
scene graph

mirrorring 56, 58
scene intersections

speeding 347-352
scene objects

managing, octree algorithm used 333-341
sharing 316-320

SceneView object 380, 381
screen

dynamic clock, drawing 96-101
screenNum value 132
screenNum variable 133
Screen Space Ambient Occlusion. See SSAO
scrolling text

about 180
designing, steps 180, 181, 182

ScrollTextCallback class 180
SDK 365
SDK package

URL 179
Secure Shell. See SSH
selectedColor 106
SelectModelHandler class 110, 115
SelectModelHandler object 109
SEPERATE_WINDOW method 245
setAllowEventFocus(true) function 372
setBuildKdTreesHint() method 349
setByInverseMatrix() method 164
setByMatrix() method 164, 166

setColorArray() line 100
setCullingActive() method 258
setCullMaskLeft() method 148
setCullMask() method 148
setCullMaskRight() method 148
setDoPreCompile() 322, 323
setDrawableColor() method 107
setEnvironmentMap() method 258
setFileLocationCallback() method 302
setHomePosition() method 161, 164
setInitialBound() method 122, 123
setInternalFormatMode() method 314
setLayer() method 375
setLightingMode() method 148
setLight() method 148
setMatrixInSkeletonSpace() method 211
setMatrix() method 66
setMaxChildNumber() method 335
setMaxTexturePoolSize() method 323
setMaxTreeDepth() method 335
setNearFarRatio() method 143
setObjectCacheHint() method 320
setProjectionMatrix() method 256
setReadCallback() method 348
setReadFileCallback() 320
setRenderBinDetails() method 258
setRenderOrder() 152
SetShapeColorHandler class 44
setSpeedVector() 199
setTargetMaximumNumberOfPageLOD()

method 322, 323
setTessellationType() method 85
setUnrefImageDataAfterApply() 315
setUpDepthPartition() method 143
setUpViewInWindow() method 71, 73
setUpView*() method 73
setVelocity() method 219
setVisibilityThreshold() 333
shaders

dynamically lighting 194-197
vertex-displacement mapping, using 119-123

shadow
view-dependent shadow, simulating 233-237

shallow copy 44
side view, model

manipulating 152-155

409

model 148-151
simulate() method 220
SineMotion (sinusoidal equation) 183
skeleton system

building 206-210
sky box

designing, with cube map 257-261
SkyBox constructor 258
slave cameras

using, for power-wall 133-138
small feature culling 148
small terrain database

generating 283-286
smart pointer 40
source code control 13
SSAO

URL 256
SSH

about 299
using, to implement cluster generation

298-300
StackedMatrixElement 177
StackedQuaternionElement 177
StackedRotateAxisElement 177
StackedScaleElement 177
StackedTranslateElement 177
state attribute

customizing 273-277
static libraries

about 29
compiling 29, 30
using 29, 30

strong pointer 40
Subversion tool 9, 13
sudo command 10
supports() method 95

T
tabPressed() callback function 374
tabPressed() function 376
TaharezLook style 369
tangent array 233
terrain

loading, from internet 301-303
rendering, from internet 301-303

terrain database
existing database, patching with newer data

293-295
generating, on earth 287-290

TESS_TYPE_GEOMETRY 85, 87
TESS_TYPE_POLYGONS 85, 87
testCancel() 388
textures

compressing 310-315
internal format mode 315

theosgGA::GUIEventHandler class 169
threads

rendering loop, starting 359-361
top view, model

manipulating 152-155
model 148-151

TortoiseSVN 9
TrailerCallback 103
Traits class 133, 353
transformation node 51
transparency

implementing, with multiple passes 237-241
TRANSPARENT_BIN hint 239
traverseBFS() 59
traverse() method 67, 75, 331
triangle face

selecting, for model 110-113
TrueMarble

URL 288
TwoDimManipulator constructor 168

U
Ubuntu users

OSG’s latest version, checking out for 9-11
Unix Makefiles 18
update() method 183, 201, 357
update operation 13
USE_DOTOSGWRAPPER_LIBRARY() macro 30
USE_GRAPHICSWINDOW() macro 30
USE_OSGPLUGIN() macro 30
USE_SERIALIZER_WRAPPER_LIBRARY()

macro 30

410

V
validate() method 238
VBO

about 105, 309
features, URL 105

Vertex Buffer Objects. See VBO
vertex-displacement mapping

using, in shaders 119-123
vertical sync feature 309
view

manipulating, joysticks used 166-170
setting up, on multiple screens 130-133

view-dependent shadow
simulating 233-237

viewer.run() method 150, 248
ViewerWidget class 356, 357, 360
ViewerWidget constructor 358
view-frustum culling 148
VirtualPlanetBuilder. See VPB 13
Visual Studio 18
VPB

about 280
building 281, 282
requisites 280
URL 280

vpb::DatabaseBuilder object 292
vpbcache 283
vpbmaster 282, 283
vpbsizes 283

W
water effect

creating 262-266
weak pointer 43
weak_ptr implementation 43
web browser

OSG, embedding 386-392
webGL standard 392
WGS-84 289
width() 199
WindowingSystemInterface class 130-133
Windows 7 310
Windows users

OSG’s latest version, checking out for 9-13
WinZIP 22
WolfenQt

URL 361
Wolfenstein 362
World Geodetic System 1984. See WGS-84

X
XCode 14, 18
XOY plane 57

Z
Zlib library 21

Thank you for buying

OpenSceneGraph 3 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 450 pages

Over 130 easy to follow recipe backed up with real life
examples, walking you through the basic Ext JS features
to advanced application design using Sencha Ext JS

1. Learn how to build Rich Internet Applications with
the latest version of the Ext JS framework in a
cookbook style

2. From creating forms to theming your interface, you
will learn the building blocks for developing the
perfect web application

3. Easy to follow recipes step through practical and
detailed examples which are all fully backed up
with code, illustrations, and tips

Sencha Touch 1.0 Mobile
JavaScript Framework
ISBN: 978-1-84951-510-8 Paperback: 300 pages

Build web applications for Apple iOS and Google Android
touchscreen devices with this first HTML5 mobile
framework

1. Learn to develop web applications that look and
feel native on Apple iOS and Google Android
touchscreen devices using Sencha Touch through
examples

2. Design resolution-independent and graphical
representations like buttons, icons, and tabs of
unparalleled flexibility

3. Add custom events like tap, double tap, swipe, tap
and hold, pinch, and rotate

Please check www.PacktPub.com for information on our titles

PhoneGap Beginner's Guide
ISBN: 978-1-84951-536-8 Paperback: 328 pages

Build cross-platform mobile applications with the
PhoneGap open source development framework

1. Learn how to use the PhoneGap mobile
application framework

2. Develop cross-platform code for iOS, Android,
BlackBerry, and more

3. Write robust and extensible JavaScript code

4. Master new HTML5 and CSS3 APIs

HTML5 Mobile Development
Cookbook
ISBN: 978-1-84969-196-3 Paperback: 254 pages

Over 60 recipes for building fast, responsive HTML5
mobile websites for iPhone 5, Android, Windows Phone,
and Blackberry

1. Solve your cross platform development issues
by implementing device and content adaptation
recipes

2. Maximum action, minimum theory allowing you to
dive straight into HTML5 mobile web development

3. Incorporate HTML5-rich media and geo-location
into your mobile websites

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Customizing OpenSceneGraph
	Introduction
	Checking out the latest version of OSG
	Configuring CMake options
	Building common plugins
	Compiling and packaging OSG on different platforms
	Compiling and using OSG on mobile devices
	Compiling and using dynamic and static libraries
	Generating the API documentation
	Creating your own project using CMake

	Chapter 2: Designing the Scene Graph
	Introduction
	Using smart and observer pointers
	Sharing and cloning objects
	Computing the world bounding box of any node
	Creating a running car
	Mirroring the scene graph
	Designing a breadth-first node visitor
	Implementing a background image node
	Making your node always face the screen
	Using draw callbacks to execute NVIDIA Cg functions
	Implementing a compass node

	Chapter 3: Editing Geometry Models
	Introduction
	Creating a polygon with borderlines
	Extruding a 2D shape to 3D
	Drawing a NURBS surface
	Drawing a dynamic clock on the screen
	Drawing a ribbon following a model
	Selecting and highlighting a model
	Selecting a triangle face of the model
	Selecting a point on the model
	Using vertex-displacement mapping in shaders
	Using the draw instanced extension

	Chapter 4: Manipulating the View
	Introduction
	Setting up views on multiple screens
	Using slave cameras to simulate a
power-wall
	Using depth partition to display huge scenes
	Implementing the radar map
	Showing the top, front, and side views of a model
	Manipulating the top, front, and side views
	Following a moving model
	Using manipulators to follow models
	Designing a 2D camera manipulator
	Manipulating the view with joysticks

	Chapter 5: Animating Everything
	Introduction
	Opening and closing doors
	Playing a movie in the 3D world
	Designing scrolling text
	Implementing morph geometry
	Fading in and out
	Animating a flight on fire
	Dynamically lighting within shaders
	Creating a simple Galaxian game
	Building a skeleton system
	Skinning a customized mesh
	Letting the physics engine be

	Chapter 6: Designing Creative Effects
	Introduction
	Using the bump mapping technique
	Simulating the view-dependent shadow
	Implementing transparency with multiple passes
	Reading and displaying the depth buffer
	Implementing the night vision effect
	Implementing the depth-of-field effect
	Designing a skybox with the cube map
	Creating a simple water effect
	Creating a piece of cloud
	Customizing the state attribute

	Chapter 7: Visualizing the World
	Introduction
	Preparing the VirtualPlanetBuilder (VPB) tool
	Generating a small terrain database
	Generating terrain database on the earth
	Working with multiple imagery and
elevation data
	Patching an existing terrain database with newer data
	Building NVTT support for
device-independent generation
	Using SSH to implement cluster generation
	Loading and rendering terrain from the
Internet

	Chapter 8: Managing Massive Amounts of Data
	Introduction
	Merging geometry data
	Compressing texture
	Sharing scene objects
	Configuring the database pager
	Designing a simple culling strategy
	Using occlusion query to cull objects
	Managing scene objects with an octree algorithm
	Rendering point cloud data with draw
instancing
	Speeding up the scene intersections

	Chapter 9: Integrating with GUI
	Introduction
	Integrating OSG with Qt
	Starting rendering loops in separate threads
	Embedding Qt widgets into the scene
	Embedding CEGUI elements into the scene
	Using the osgWidget library
	Using OSG components in GLUT
	Running OSG examples on Android
	Embedding OSG into web browsers
	Designing the command buffer mechanism

	Index

